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Abstract—Outbreaks of insect pests periodically cause large losses of volume in Canada’s forests.
Compounded with climate change, outbreaks create significant challenges for managing the
sustainable delivery of ecosystem services. Current methods to monitor damage by these pests
involve both field and aerial surveys. While relatively cost effective and timely, aerial survey
consistency and spatial coverage may be insufficient for detailed monitoring across Canada’s vast
forest-land base. Remote sensing can augment these methods and extend monitoring capabilities in
time and space by incorporating knowledge of pest-host interactions and of how damage translates into
a remote sensing signal for detection and mapping. This review provides a brief introduction to major
forest insect pests in Canada (two bark beetles (Coleoptera: Curculionidae) and six defoliators) and the
damage they cause, a synthesis of the literature involving aerial survey and remote sensing, and
a discussion of how these two approaches could be integrated into future pest monitoring from a
Canadian perspective. We offer some lessons learned, outline roles that remote sensing could serve in a
management context, and discuss what ongoing and upcoming technological advances may offer to
future forest health monitoring.

Introduction

Outbreaks of insect pests such as bark beetles
(Coleoptera: Curculionidae) and defoliators cause
damage to Canada’s forests through growth loss
and mortality (Price et al. 2013). The damage
caused to a forest stand depends on the cumulative
effect of damage to individual trees within the
stand, where damage from a forest pest to a host
tree is defined as any type and intensity of an
effect that temporarily or permanently reduces the
financial value of the tree, or impairs or removes
its biological ability of growth, reproduction,
and survival (Murtha 1972). Pest damage can
therefore lead to impacts on valuable ecosystem
services such as the supply of timber, and the
ability of forests to sequester and store carbon,
reduce flood risk, and purify water (Boyd et al.
2013). The association of damage with impact,
however, can be complicated as damage may

result in a reduction in one service while increasing
another. From this perspective, impact could be
considered the net effect on the quantity and quality
of the multiple services expected from the damaged
area (adapted from Alfaro 1988).
Climate change is threatening forests globally

(McDowell et al. 2015b), and is already con-
sidered to be affecting Canada’s forests from
changes to forest fire regimes, large-scale insect
outbreaks, and droughts (Johnston et al. 2010).
In particular, a changing climate is expected to
amplify the impact of insect outbreaks by
increasing their frequency, severity, and duration
(Dale et al. 2001; Volney and Fleming 2007;
Gray 2008; Dukes et al. 2009; Williamson et al.
2009; Bentz et al. 2010). These potential impacts
are particularly relevant for the boreal forest,
where natural disturbances entailing both insects
and fire largely control the interannual and
interdecadal changes to its carbon balance

R.J. Hall,1 G. Castilla, B.J. Cooke, R.S. Skakun, Natural Resources Canada, Canadian Forest Service, Northern
Forestry Centre, Edmonton, Alberta, T6H 3S5, Canada
J.C. White, Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British
Columbia, V8Z 1M5, Canada

1Corresponding author (e-mail: Ron.Hall@Canada.ca).
Langor, D.W. and Alfaro, R.I. (eds.) Forest Entomology in Canada: Celebrating a Century of Science Excellence
doi:10.4039/tce.2016.11

*This paper is dedicated to the memory of Dr. Peter A. Murtha (1938–2016).

Received 17 September 2015. Accepted 18 January 2016. First published online 12 May 2016.

Can. Entomol. 148: S296–S356 (2016) © 2016 Her Majesty the Queen in Right of Canada

S296

https://doi.org/10.4039/tce.2016.11 Published online by Cambridge University Press

mailto:Ron.Hall@Canada.ca
https://doi.org/10.4039/tce.2016.11


(Bernier and Apps 2005). Widespread and severe
damage from natural disturbances affects forest
carbon dynamics of both managed and unma-
naged forest areas that may reduce the ability of
the forest to sequester carbon from the atmosphere
(MacLean 1990; Alfaro 1991; Bhatti et al. 2003;
Hicke et al. 2012; Kurz et al. 2013). The com-
bined effects of insects and fire, for example, can
reportedly transform a forested region from a
carbon sink to a source (Kurz et al. 2008). As the
climate of the planet continues to change, the
direct and indirect effects of warming and natural
disturbances threaten the sustainability of
Canada’s forest sector (Volney and Hirsch 2005).
Indeed, evidence of such impacts is accumulating
quickly in Canada and beyond (Gauthier et al.
2015; Girardin et al. 2015; McDowell et al.
2015a). From a global viewpoint, coping with the
rising impact of forest disturbances under climate
change will require the development of a modern
forest health monitoring system, of which remote
sensing tools will play an increasing role
(McDowell et al. 2015a). A component of such a
system is one focussed on mapping pest damage,
which is the focus of this paper.
Information regarding the areal extent, location,

and severity of insect damage is required for a
range of forest pest management planning and
modelling purposes (Alfaro 1988; MacLean
1990; Wulder et al. 2006d; Alberta Environment
and Sustainable Resource Development 2014;
Westfall and Ebata 2014). Across Canada, insect
defoliators combined with beetles (Dendroctonus
Erichson; Coleoptera: Curculionidae) and other
insects, reported figures climbed from 8.8 million
ha in 2012 to more than 20 million ha in 2013
(Natural Resources Canada 2015). The fact that
tens of millions of hectares are being affected by
major forest pests in Canada raises the need to
quantify and understand their consequences on
the wide range of ecosystem services that forests
provide (Hicke et al. 2012; Boyd et al. 2013).
Uncertainties and knowledge gaps regarding the
role of disturbances in forest ecosystem dynamics,
however, create significant challenges to those
charged with managing insect outbreaks (Doblas-
Miranda et al. 2009). This problem is further
complicated by how past disturbances influence
future successional trajectories (Sharik et al.
2010). Collecting high-quality data from long-
term monitoring at different spatial and temporal

scales is a prerequisite for sound pest management
decisions and development of forest policies
(Bechtold et al. 2007; Lovett et al. 2007; Sharik
et al. 2010). Such information also supports
analyses such as quantifying pest effects on future
forest productivity (Volney and Fleming 2000);
generating regional and national reports on
the state of Canada’s forests (Natural Resources
Canada 2014, 2015); quantifying natural dis-
turbance effects on forest carbon (Kurz and Apps
1999); reconstructing pest outbreaks to predict
future outbreaks in the context of climate change
(Logan et al. 2003); understanding disturbance
dynamics on ecosystem processes at different
spatiotemporal scales (Raffa et al. 2008); and
testing key hypotheses of forest insect population
dynamics, such as the prevalence and origins
of synchronised outbreak cycling behaviour
(Peltonen et al. 2002).
Pest damage information in Canada is collected

using a combination of field and aerial surveys
(Canadian Council of Forest Ministers 2012b).
Aerial survey programmes track disturbances
over space and time using maps sketched from the
air by trained observers. These maps stratify the
forest landscape, provide statistics regarding
infested areas and trends, and identify where more
precise surveys are required for pest management.
The aerial maps are subjective and relatively
coarse in spatial detail, however, resulting in a
long-standing research interest for data from
sensors mounted on aircraft or satellites
(i.e., remote sensing) as a complement to aerial
surveys. Remote sensing has long offered a means
to quantify the frequency and extent of
disturbances (McDowell et al. 2015a). While this
interest has materialised in many studies, remote
sensing remains a technology that is not in
frequent operational use (Riley 1989; Franklin
2001; Hall et al. 2007; Rullan-Silva et al. 2013).
Recent reviews have attempted to identify and
explain the capabilities and roles of remote
sensing for forest pest damage (Wulder et al.
2006a; Hall et al. 2007; Rullan-Silva et al. 2013).
This paper builds from this foundation and aims at
reviewing a broad range of satellite remote
sensing studies encompassing both bark beetles
and defoliators, examining the context of aerial
surveys, discussing the problem of validating
aerial surveys and remote sensing products,
synthesising these studies into lessons learned,
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and speculating about the potential of new and
upcoming remote sensing sensors and analysis
approaches. More specifically, new technologies
such as airborne laser scanning (ALS) and
unmanned aerial vehicles (UAV) were reviewed
because they offer local, above canopy perspec-
tives of stand condition that could bridge field
to satellite scales by offering data for image
calibration and validation of satellite-based
monitoring. Our review serves to inform how
remote sensing may complement aerial and field
surveys towards an integrated, multi-scale, multi-
source national forest pest monitoring system.
While focussed mostly on Canada, this paper

includes relevant literature from theUnited States of
America and elsewhere for completeness. We
consider nine major insect pests in Canada,
including the mountain pine beetle (Dendroctonus
ponderosae Hopkins (Coleoptera: Curculionidae));
spruce beetle (Dendroctonus rufipennis (Kirby));
spruce budworm (Choristoneura fumiferana
(Clemens) (Lepidoptera: Tortricidae)) and western
spruce budworm (Choristoneura occidentalis
(Freeman)); jack pine budworm (Choristoneura
pinus pinus Freeman); hemlock looper (eastern:
Lambdina fiscellaria fiscellaria (Guenée)
(Lepidoptera: Geometridae)) and western hemlock
looper (Lambdina fiscellaria lugubrosa (Hulst));
forest tent caterpillar (Malacosoma disstria Hübner
(Lepidoptera: Lasiocampidae)); large aspen tortrix
(Choristoneura conflictana Walker); and gypsy
moth (Lymantria dispar (Linnaeus) (Lepidoptera:
Lymantriidae)). These are pests that feature most
prominently in annual national and regional forest
health reports over the last seven decades (Hall
et al. 1998; Simpson and Coy 1999; Canadian
Forest Service 2013).

Major insect pests in Canada

Some knowledge of forest insect pests, and
their manifestation of damage is necessary for
understanding how detection and mapping by
aerial survey and remote sensing is conducted.
Hall et al. (2007) suggested that a knowledge
triangle comprising the insect pest, tree host, and
remotely sensed image is necessary for successful
use of remote sensing for detecting forest pest
damage. For the purposes of detection by remote
sensing, Table 1 summarises the optimal habitat,
damage type, manifestation of damage, and timing

for damage detection for the nine major insect pests
in Canada. The timing is from the perspective of
remote sensing data collection, which may be dif-
ferent than that required for pest management for
locating insect presence on the ground.

Mountain pine beetle
The mountain pine beetle is the most damaging

insect of pine (Pinus Linnaeus; Pinaceae) in
western North America (Bentz et al. 2010;
Safranyik et al. 2010), attacking most pine
species, although it is particularly prevalent
on lodgepole pine (Pinus contorta latifolia
(Engelmann) Critchfield; Pinaceae). Recent
outbreaks have caused widespread and severe
mortality, affecting more than 18 × 106 ha of
forest and 723 × 106m3 of timber in British
Columbia alone (Nealis and Cooke 2014). The
host range of the beetle has recently expanded
from the Rocky Mountains and the southern
plains regions of Saskatchewan, Canada (Cypress
Hills) and North Dakota, United States of
America (Black Hills) to include jack pine (Pinus
banksiana Lambert) in the northern boreal plains
region of Alberta (Cullingham et al. 2011).
Mountain pine beetles attack selected

hosts en masse, overwhelming the defensive
mechanisms of the tree. Directly following a
successful mass attack, the foliage of the tree
remains visibly unchanged. This is known as the
green-attack stage, which is characterised by a
decrease in sapwood moisture (Reid 1963;
Yamaoka et al. 1990). As the tree is girdled
through larval feeding on phloem, a blue-stain
fungus that penetrates the xylem impedes water
conductance through the outer xylem and the
foliage of the crown begins to fade from green to
greenish-yellow, commonly starting at the top of
the tree crown (Safranyik and Carroll 2006).
These trees are termed “faders”. The fading
process progresses, with foliage changing from
yellow to red over the subsequent spring and
summer in the year following attack (Amman
1982). Up to one year after being successfully
attacked, more than 90% of killed trees will have
red needles; this is known as the red-attack stage
(Wulder et al. 2006a). Gradually the needles will
drop off the tree and typically, within three years
after being attacked, most trees will have lost all
their needles. This is referred to as the grey-attack
stage. The rate of fade and progression through
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Table 1. Optimal habitat, damage pattern, and timing for eight major forest pests in Canada.

Species Optimal habitat Damage type Damage manifestation
Timing for damage
detection Caveats References

Mountain pine beetle
(Dendroctonus
ponderosae Hopkins)

Host choice varies with
population levels:
endemic infests
suppressed trees;
incipient-epidemic
follows drought or
disease; epidemic
depends on large host
base and favourable
weather

Widespread mortality on
successfully mass-
attacked trees caused
by beetle-carried fungi
that prevent water
transport in the xylem

In the spring after the attack
crown begins to fade
starting at the top to
greenish yellow,
changing from yellow to
red. Two years later, most
trees will have lost all of
their needles. At the stand
level, attacked trees tend
to appear in clusters

Red-attack: summer
after the attack;
grey attack: two to
three years after
attack

Green attack not
detectable

Safranyik and Carroll
(2006), Wulder et al.
(2006a)

Spruce beetle
(Dendroctonus rufipennis
(Kirby))

Primarily colonises
weakened trees including
newly fallen, stressed,
including those with root
disease

Widespread mortality on
successfully mass-
attacked trees caused
by beetle-carried fungi
that prevent water
transport in the xylem

By the following July,
needles will usually fade
to greenish yellow and
fall shortly thereafter,
while the bare red twigs
that remain give the
crown a red appearance.
Attacked trees appear in
clumps

Summer after the
attack

Reynolds and Holsten
(1994), Holsten et al.
(1999), Jenkins et al.
(2014)

Spruce budworm
(Choristoneura
fumiferana (Clemens),
Choristoneura
occidentalis (Freeman))

Dominant white spruce and
balsam fir stands,
relatively open, mature
stands on dry sites

Defoliation of young
needles; severe
defoliation for three or
more consecutive
years results in
cumulative defoliation
and leads to mortality

Current defoliation:
Residual needles
entangled with silken
threads and frass, will
turn reddish brown in
colour. Cumulative
defoliation: loss of
foliage, top-kill.
Mortality: dead tree

Current defoliation:
two to three weeks
in early July
Cumulative
defoliation: mid-
August to early
September

Heavy rains or
high winds can
remove the
reddish-brown
foliage

Fellin and Dewey
(1982), Martineau
(1984), Ives and
Wong (1988), Ostaff
and MacLean (1989),
Shepherd et al.
(1995)

Jack pine budworm
(Choristoneura pinus
pinus Freeman)

Overstocked, overmature
stands on poor-quality
sites

Defoliation of young
needles; severe
defoliation for three or
more consecutive
years leads to
mortality

Defoliation results in
reddish-brown foliage
and loss of foliage as the
needles fall off

Early – mid-July
coinciding with
red-brown foliage

Kulman et al. (1963),
DeBoo and Hildahl
(1968), Hall et al.
(1998), Ives and
Wong (1988),
Cadogan (1995)
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Table 1. Continued

Species Optimal habitat Damage type Damage manifestation
Timing for damage
detection Caveats References

Hemlock looper (Lambdina
fiscellaria fiscellaria
(Guenée) and Lambdina
fiscellaria lugubrosa
(Hulst))

Stressed trees; climatic
factors leading to
decreased vigour of forest
stands

Can defoliate all age
classes with mortality
after only one to two
years of severe
defoliation

Damaged trees have
characteristic reddish-
brown needles. Mortality
follows with grey colour
of dead trees

Culmination of larval
feeding: August to
September

Coulson and Witter
(1984), Martineau
(1984), Mills and
Räther (1990), Raske
et al. (1995),
MacLean and Ebert
(1999), Hébert et al.
(2003)

Aspen defoliator:
Forest tent caterpillar
(Malacosoma disstria
Hübner)

Vigourously growing
aspen-dominated stands
in mid-life

Defoliation of the outer
envelope of the crown;
severe defoliation may
lead to mortality,
particularly if
combined with other
stressors, such as
rising water table

Loss of foliage Latter June to mid
July

reflush Witter et al. (1975),
Ives and Wong
(1988), Peterson and
Peterson (1992),
Cerezke and Volney
(1995), Charbonneau
et al. (2012), Perrette
et al. (2014)

Aspen defoliator:
large aspen tortrix
(Choristoneura
conflictana Walker)

Presence of predominant
host species.
Physiological stress may
influence susceptibility

Partial or full defoliation
of foliage. The degree
of foliage loss governs
severity

Loss of foliage Mid to late June reflush Prentice (1955), Ives
and Wong (1988),
Cerezke (1992),
Peterson and
Peterson (1992),
Yukon Energy,
Mines, and
Resources (2011)

Gypsy moth (Lymantria
dispar (Linnaeus))

No apparent preference for
specific habitat conditions
although tends to attack
overmature, suppressed,
diseased trees. Drought
increases hazard

Defoliation in all parts;
severe defoliation
only leading to
mortality if combined
with other stressors

Loss of foliage, repeat
severe defoliation results
in mortality

June to early July Nealis and Erb (1993),
Humble and Stewart
(1994), Jobin (1995),
Leatherman et al.
(1995)

S
300

C
an.Entom

ol.
Vol.148,2016

©
2016

H
er

M
ajesty

the
Q
ueen

in
R
ightof

C
anada

https://doi.org/10.4039/tce.2016.11 Published online by Cam
bridge U

niversity Press

https://doi.org/10.4039/tce.2016.11


these attack stages is highly variable and depends
upon a number of factors, including attack density
and timing, tree moisture and condition, tree
species, as well as site-specific factors (Safranyik
and Carroll 2006). If peak attack occurs in July,
faders may become visible in late autumn, but the
bulk of the fading trees will not be detectable until
the following spring (Wulder et al. 2006a). If
attack occurs later, then fade phenology also
becomes delayed. The timing of the attack stages
associated with mountain pine beetle infestation is
an important operational consideration for forest
health programmes, as detection from aerial
survey or remote sensing data typically relies on
the characteristic red-attack stage that is not
reached until 6–12 months after the trees have
been killed by the beetle (Table 1). Red-attack
mapping will inform where trees have been
attacked but it does not inform where beetles may
have gone.
Detection and mitigation of beetle outbreaks

typically takes advantage of the spatial correlation
between red-attack and green-attack stages. Aerial
survey is used to detect locations of new
red-attack, with ground crews deployed to these
locations to conduct ground surveys at the leading
edge to detect and remove green-attack trees as a
sanitation exercise to help control the outbreak
(Wulder et al. 2006a; Alberta Environment and
Sustainable Resource Development 2014). The
operational detection of green-attack with
remotely sensed data is a long sought-after
objective that remains elusive (Wulder et al.
2009b). Throughout this paper and relative to
mountain pine beetle, attacked trees refers to
successfully mass-attacked trees for the purposes
of detection, mapping, and assessment by remote
sensing.

Spruce beetle
The spruce beetle is the most destructive pest of

mature spruce (Picea Dietrich; Pinaceae) in wes-
tern North America (Humphreys and Safranyik
1993; Holsten et al. 1999). Outbreaks of this bark
beetle have caused widespread mortality from
Alaska, Yukon, and British Columbia, to the
central Rocky Mountain states in the United
States of America to Newfoundland in Canada
(Holsten et al. 1999; Jenkins et al. 2014). While
the spruce beetle will attack all species of spruce
within its range, its primary hosts include

Englemann spruce (Picea engelmannii Parry ex
Engelmann; Pinaceae), white spruce (Picea
glauca (Moench) Voss), and Sitka spruce (Picea
sitchensis (Bongard) Carrière). Spruce beetle can
kill up to 90% of the trees within an infested stand
during the four-year to five-year duration of a
typical outbreak (Humphreys and Safranyik
1993), which results in changes to stand structure,
in particular basal area, height, and stem density
(Holsten et al. 1999). While field information
about stand characteristics such as tree canopy
cover and composition has been used for rating
stand susceptibility to spruce beetle infestation
(Doak 2004; Schmitt and Powell 2005),
there would be benefits to monitoring if similar
evaluations could be done spatially using remote
sensing.
Identifying spruce beetle damage and asso-

ciated high-risk stands in the field is relatively
straightforward compared with its detection by
aerial surveys. At the beginning of an outbreak,
trees remain green during the first winter, which
renders early detection difficult and leads to an
underestimation of mortality (Jenkins et al. 2014).
By the following July, needles will usually fade to
greenish yellow and fall shortly thereafter, while
the bare red twigs that remain give the crown a
reddish appearance (Safranyik 1995; Table 1).
The four-week to six-week time window to detect
the yellow-green colour of fading foliage is very
narrow, and this will impact the availability of
satellite images in a remote sensing application
(Jenkins et al. 2014). The optimal timing for
detection is the summer following the attack
(Table 1) that results in similar observations to
those we made for mountain pine beetle.

Spruce budworm and western spruce
budworm
The spruce budworm is considered the most

destructive insect defoliator of forests in North
America (Volney and Fleming 2007). Its primary
hosts include balsam fir (Abies balsamea
(Linnaeus) Miller; Pinaceae), white spruce, black
spruce (Picea mariana (Miller) Britton, Sterns,
and Poggenburg), and red spruce (Picea rubens
Sargent) (Volney and Fleming 2000). The
western spruce budworm is an important native
defoliator of interior Douglas-fir (Pseudotsuga
menziesii (Mirbel) Franco; Pinaceae) in western
North America, but it can also defoliate grand fir
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(Abies grandis (Douglas ex Don) Lindlay), white
fir (Abies concolor (Gordon and Glendinning)
Lindley ex Hildebrand), subalpine fir (Abies
lasiocarpa var. arizonica (Merriam) Lemmon),
and many others (Fellin and Dewey 1982; Volney
and Fleming 2000). Spruce budworm outbreaks
typically last 5–15 years, with several consecutive
years of severe defoliation resulting in large areas
of mortality and subsequent stand replacement
(Fleming 2000). During larval feeding, residual
needles become entangled with silken threads and
frass, which then dry out and turn reddish-brown
in colour. This colouration is used as an indicator
of defoliation severity, and its occurrence governs
the two to three-week period when surveys must
be undertaken to assess the level of current
defoliation (MacLean and MacKinnon 1996;
Table 1). However, the ability to detect spruce
budworm defoliation during an aerial survey may
be influenced by heavy rain washing away the
discoloured dead foliage, or by the pest surveyor
being unable to detect light defoliation because
the proportion of discoloured foliage is very small
relative to the total foliage (Fleming et al. 2002).
Consecutive years of defoliation on current-year
shoots result in cumulative defoliation across the
younger age classes of foliage, which results in
growth reduction, top-kill, and tree mortality
(MacLean 1990; MacLean et al. 1996).
Cumulative defoliation in the canopy can be
evaluated visually by looking up from the ground
at a distance of 10–25m against a variable sky
background, which results in rough, whole-crown
estimates. Other methods such as the Fettes
method are used to assess cumulative defoliation
at the branch level (Fettes 1950; MacLean and
MacKinnon 1998). The timing for mapping
cumulative defoliation is towards the latter part of
the summer compared to an earlier summer period
used to assess current defoliation (Table 1).

Jack pine budworm
The jack pine budworm is the most damaging

insect of jack pine in Canada’s boreal forest
(Fleming 2000). Outbreaks have occurred in the
forests of Ontario, Manitoba, Saskatchewan in
Canada and the Great Lakes states of the United
States of America (Moody 1989). The primary
host is jack pine, but red pine (Pinus resinosa
Aiton), eastern white pine (Pinus strobus
Linnaeus), scots pine (Pinus sylvestris Linnaeus),

lodgepole pine, white spruce, black spruce, and
tamarack (Larix laricina (Du Roi) Koch) have
also been attacked (Ives and Wong 1988),
especially when near susceptible jack pine stands
(DeBoo and Hildahl 1968).
Jack pine budworm larvae are considered was-

teful feeders, as they will feed on all but the midrib
of the basal portion of the needles (McCullough
2000). The typical feeding pattern is from the top
of the tree downwards and from the outside of the
crown inwards, with wasted needles becoming
entangled in a mass of silk and frass (Prebble
1975). As this material desiccates, it changes
to a distinctive reddish-brown colour, which is a
visual indicator of defoliation severity (Volney
1988). The time period for mapping defoliation,
whether by aerial survey or remote sensing, would
be during this reddish-brown colour stage, which
is short and ranges from late June to early July
(Table 1). Several years of defoliation can result in
top kill and mortality. Hall et al. (1998) studied
the relationships between stand and site
characteristics and the severity of top-kill damage,
of which trees that were overmature, 15–20m in
height and growing on poor-quality sites were
most likey caused by jack pine budworm
defoliation. Knowledge of these associations are
relevant to hazard rating and can help identify
those stands where mortality from jack pine
budworm defoliation could be expected to occur
(McCullough et al. 1996).

Hemlock looper
The eastern and western hemlock looper are

closely related allopatric subspecies that are
collectively distributed across Canada from
British Columbia to Newfoundland, with eastern
hemlock looper extending south to Georgia in the
eastern United States of America (MacLean and
Ebert 1999), and western hemlock looper
spanning much of northwestern North America
(Alfaro et al. 1999). The primary hosts are balsam
fir and eastern hemlock (Tsuga canadensis
(Linnaeus) Carrière; Pinaceae) for eastern hemlock
looper and western hemlock (Tsuga heterophylla
(Rafinesque), Sargent), Engelmann spruce and
white spruce for western hemlock looper,
although multiple conifer and deciduous species
can also be attacked during an outbreak (Alfaro
et al. 1999; MacLean and Ebert 1999). The
hemlock looper is an aggressive defoliator, with
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older larvae considered wasteful feeders, as they
mostly feed at the base of the needle (MacLean
and Ebert 1999). Defoliation begins in the upper
crown, with more of the tree crown being con-
sumed at heavier population levels (Koot 1994).
As with spruce budworm and jack pine budworm,
the silken threads produced by the larvae tend to
catch the residual foliage, which subsequently
dries and turns a dark red-brown colour (Raske
et al. 1995) that becomes a key visual clue for
aerial and remote sensing detection. Timing for
detection and mapping would be at the culmina-
tion of larval feeding from mid-August to early
September (Table 1). A challenge in detecting and
monitoring outbreaks is that hemlock looper
populations can grow rapidly, persist for one or
two years, and then collapse, with host tree
mortality occurring even in the first year of attack
(Harris et al. 1982; Delisle and Hébert 2012). The
distribution of damage can be patchy over wide-
spread areas, which hampers the detection of
impending outbreaks (Hébert et al. 2003) from
both aerial and ground surveys and remote
sensing perspectives. Severe outbreaks, however,
are easier to detect, as they result in high levels of
mortality over limited but well-defined areas
(Mills and Räther 1990). Mature and overmature
stands tend to suffer more severe damage (Delisle
and Hébert 2012), but there is little information
about tree mortality patterns (MacLean and Ebert
1999).

Forest tent caterpillar and large aspen
tortrix
The forest tent caterpillar and large aspen tor-

trix are the most serious defoliators of trembling
aspen (Populus tremuloidesMichaux; Salicaceae)
and balsam poplar (Populus balsamifera Lin-
naeus), and are a chronic pest in the prairie –

boreal forest ecotone in central Canada (Peterson
and Peterson 1992). Both these defoliators can
feed on multiple deciduous species such as white
birch (Betula papyrifera Marshall; Betulaceae)
and willows (Salix Linnaeus; Salicaceae), espe-
cially when populations are high (Table 1).
Defoliation is best detected near the latter stages
of larval feeding, approximately between
mid-June to early July for the forest tent cater-
pillar, and early to mid-June for the large aspen
tortrix (Table 1). By mid- to late July, trembling
aspen with sufficient vigour will refoliate with a

second flush of foliage (Ives and Wong 1988).
The severity of defoliation is therefore best
observed before refoliation, which results in a
very narrow time window to conduct aerial
surveys or remote sensing data collection (Hall
et al. 2007).
Outbreaks tend to last one to three years (rarely as

long as four to six years), recur at seven-year to 13-
year intervals, and are slightly less periodic and less
synchronised in western Canada than in eastern
Canada (Cooke et al. 2009). Large aspen tortrix
outbreaks are short-lived, lasting two to three years,
and tend to precede those of the forest tent
caterpillar, with damage largely comprising reduced
growth and radial increment (Cerezke and Volney
1995). Populations of large aspen tortrix can rise to
epidemic levels very quickly and larvae can
completely strip aspen trees of foliage before the last
instar, which will consequently contribute to their
collapse due to starvation (Holsten et al. 2008).
Drought and increasing temperatures have led to
insect outbreaks resulting in defoliation, dieback,
and mortality, with changes to stand dynamics
throughout much of the southern boreal forest
(Michaelian et al. 2011), including in the boreal
mixedwoods (Moulinier et al. 2013) and elsewhere
(Allen et al. 2010).

Gypsy moth
The gypsy moth was introduced into the United

States of America in the late 1860s and has since
become the most destructive alien insect pest in
North America, occupying most of the north-
eastern United States of America and eastern
Canada (Liebhold et al. 1992). While almost
exclusively a deciduous defoliator, the gypsy
moth has an extremely wide host base consisting
of several hundred different plant species
(Liebhold et al. 2000). Its eruptive nature, wide
host base, nuisance to the public, and damage to
high-value urban and suburban trees explain why
gypsy moth control has been a pest problem of
interest.
Challenges associated with modelling gypsy

moth population dynamics have led to the use of
spatial defoliation data to explain and predict
outbreaks (Liebhold et al. 1998). Aerial sketch
maps have been the primary source of defoliation
data, but they are limited in spatial detail, resulting
in difficulties in understanding processes at a finer
scale (Foster et al. 2013). This is a particularly
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challenging issue, since defoliation may appear
patchy within a region as a result of the mix of
preferred and non-preferred host species (Nealis
and Erb 1993). Similar to the effects of other
defoliators, defoliation by gypsy moth is most
obvious during the latter larval stages, when foli-
age consumption is maximal. Thus, the best tim-
ing for detection is during late June to early July,
coincident with the culmination of larval feeding
and pupation (Table 1). Light levels of defoliation
may be patchy in distribution, with only moderate
to severe levels considered detectable by aerial
survey (Nealis and Erb 1993). Because this pest
has such a wide host base and can feed on both
deciduous and coniferous species, detection and
mapping by remote sensing can be challenging, as
the spectral response of the defoliated forest
stands will vary by species.
Due to its eruptive potential, being aware of the

location, distribution, and spread of gypsy moth in
the United States of America is highly relevant to
Canada. While climatic barriers and aggressive
pest control have largely prevented a widespread
invasion into Canada, future projections suggest
a greatly increased risk to Canadian forests
from this pest, particularly in western Canada
(Régnière et al. 2009).

Mapping damage: assessment
through field and aerial surveys

Field surveys have routinely been undertaken
in Canada (Hall et al. 1998; Allen 2001) and the
United States of America (Alexander and Palmer
1999) as a means to report and assess forest
health. There are a multitude of methods, sam-
pling procedures, and indicators that have been
used to undertake this assessment (Ferretti 1997).
For example, trembling aspen defoliation has
been evaluated using 10–20 randomly selected
trees within sample plots, wherein trained
observers inspect each tree with binoculars and
assign a defoliation rating according to 10%
classes (Michaelian et al. 2001). Spruce budworm
defoliation has been assessed by a trained
observer dividing the living crown into thirds,
and then estimating the amount of total foliage
missing from the crown using binoculars
(Alfaro et al. 2001). In a study of jack pine
budworm, rectangular plots were established that
included ~10 sample trees from which the amount

of defoliation (three classes: light, moderate, or
severe) was visually assessed on current shoots
(Volney 1998). In a comparison of spruce
budworm defoliation between ocular and shoot-
count methods, differences were caused by
observer experience, observer bias, and previous
defoliation (MacLean and Lidstone 1982).
MacLean and Ebert (1999) rated defoliation of
hemlock looper through an ocular assessment of
each tree for total defoliation and through
selective branch sample assessment, from which
cumulative defoliation was estimated. These
examples illustrate how field procedures used to
assess or rate defoliation can vary considerably.
While there are some similarities between
methods, they are not standardised, and their
accuracy is notably affected by the observer’s
experience, time available, season, weather,
illumination, tree species, stand density, tree age,
and the natural variation of defoliation (Heikkilä
et al. 2002). To help reduce variation in observer
ratings, training, calibration, and procedure
documentation is essential to achieving consistent
field-based health assessments.
At the landscape scale, the mapping of forest

pest damage has largely been achieved by aerial
overview survey (hereinafter aerial survey),
which dates back at least to the 1920s, when an
open-cockpit aircraft was used to map spruce
budworm defoliation in portions of Québec and
Ontario, Canada (Swaine 1921). The Forest Insect
and Disease Survey was established in 1936,
creating the basis for a long-term record of pest
conditions (Hall et al. 1998; Simpson and Coy
1999). While this long-term record allows for
identifying outbreak locations and deriving
trends, the individual maps are not sufficiently
accurate to relate damage to impact (MacLean
1990). This limitation still holds even though
there have been continual technical advancements
that improve upon how such data are collected.
Aerial survey involves the delineation of

damaged areas onto a map by a trained observer
from a fixed-wing or rotary-wing aircraft,
whereby the observer, using a tablet that displays
a topographic map or digital imagery continually
repositioned with the aid of a Global Positioning
System (GPS), outlines the area of damage, rates
the severity, and identifies the causal agent, which
in addition to insects, may include foliar diseases
and abiotic events (Brandt 1997; Ciesla 2000).
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Historically, mapping was undertaken at carto-
graphic scales ranging from 1:100 000 to 1:250 000.
Finer-scale maps allow for greater accuracy and
detail, with scales of 1:50 000 or finer being used
for operational surveys (Resources Inventory
Committee 2000). Aerial surveys are best
conducted when the majority of damage is most
observable. However, budget limitations, aircraft
availability (especially during the fire season), or
adverse weather conditions for flying may result
in areas not being flown or surveyed at non-ideal
times. Aerial survey is considered relatively cost
effective, as information can be collected on a
range of forest health concerns on an annual
basis over large areas with a high likelihood of
successful data acquisition (Ciesla 2000; Wulder
et al. 2006d; Hall et al. 2007).
A previous role of the Canadian Forest Service

was to conduct annual insect and disease field and
aerial surveys that resulted in annual regional and
national reports on the state of forest pests in
Canada (Brandt 1997; Hall et al. 1998; Allen
2001). This responsibility was turned over to
provincial and territorial agencies in 1996
following dissolution of the Forest Insect and
Disease Survey. Since then, provincial and
territorial agencies conduct both field and aerial
surveys over predominantly managed forests in
their respective jurisdictions. The transition
period for assuming this responsibility and the
degree of monitoring varied by jurisdiction,
resulting in data gaps for the years 1997–1999.
These data gaps were particularly noteworthy in
British Columbia, as it led to the absence of
mountain pine beetle data in 1997 and 1998, when
the outbreak was just starting. Information gaps also
exist in damaged areas within and outside the
managed forest (Canadian Council of Forest
Ministers 2012b). Other than a composite atlas of
the major forest pests in Canada from 1980 to 1996
(Simpson and Coy 1999), there has been no
published annual report on the status of forest pests
in Canada since 1995 (Hall et al. 1998). As a result,
there is a need to rely on disparate provincial survey
reports, and there is no current system to compile a
standardised national status report of major insect
pest activity on an annual basis. A national pest
strategy information system has been in develop-
ment, however, which will consolidate provincial
survey data into a single geospatial data model
(Canadian Council of Forest Ministers 2012a).

The various methods employed in both field and
aerial surveys illustrate that the approach and results
depend on who is undertaking the survey and on the
level of resources and training invested (note:
factors governing the accuracy of an aerial survey
are discussed in the Validation section). Our review
of recent literature suggests that levels of survey
effort vary, and that survey procedures vary by
purpose (e.g., early detection versus tracking a
known outbreak), resulting in challenges towards
standardisation (Allen 2001; de Beurs and
Townsend 2008). Presently, 64% of the area of
Canada’s managed forests, and about half of all
forest lands, are monitored by aerial survey with
some differences that occur from year to year as the
amount of aerial coverage mapped annually may
vary from province to province (Canadian Council
of Forest Ministers 2012b). The occurrence of
monitoring gaps results in considerable opportu-
nities to explore the potential for complementing
field and aerial surveys with remote sensing.

Mapping damage: assessment
through remote sensing

There has been a limited use of remote sensing to
assess insect damage, and the reported degree of
success has been highly variable (Leckie and Ostaff
1988; Riley 1989; Wulder et al. 2006a; Hall et al.
2007). Reasons cited for the relatively limited use of
remote sensing for forest health include perceptions
of insufficient resolution of the image data
(Tuominen et al. 2009); cost and logistics of
acquiring the data; the lack of in-house expertise for
processing and analysing them; and the overselling
of its capabilities (Rullan-Silva et al. 2013). While
there is some basis for these concerns, factors such
as image resolution have become less of an issue
due to the increasing availability of sensors. The
incorporation of remote sensing into forest health
monitoring demands an understanding of the
appropriate characteristics, timing, and analysis
methods of image data required for the particular
forest pest problem at hand. This section answers
five questions regarding these requirements, which
also serve as the third component of the pest–host–
image triangle:

(1) What are the image characteristics of remote
sensors?

(2) What remote sensors are available?

Hall et al. S305

© 2016 Her Majesty the Queen in Right of Canada

https://doi.org/10.4039/tce.2016.11 Published online by Cambridge University Press

https://doi.org/10.4039/tce.2016.11


(3) What are the steps necessary to prepare
remote sensing images for analysis?

(4) What methods have been used to map pest
damage?

(5) What are some of the application examples
in the literature?

What are the image characteristics of
remote sensors?
Achieving a successful application of remotely

sensed data requires choosing images with the
appropriate image resolution characteristics from
which damage can be detected. The four
characteristics defining a remote sensing optical
sensor include its spatial, spectral, radiometric,
and temporal resolution (Lefsky and Cohen
2003).
Spatial resolution refers to the size of the

ground area covered by the individual detectors of
the sensor (i.e., pixel footprint), and is usually
expressed as the ground spacing between the
footprint centres of consecutive detectors (i.e.,
pixel size) (Lillesand et al. 2000). The pixel size
of satellite remote sensing images ranges from
hundreds of metres to less than a metre (Table 2).
Submetric resolution sensors (i.e., pixel size
< 1m) can resolve individual tree crowns and
even branches, but they deliver images of reduced
areal extent. For example, the 1.2-m pixel-size
sensor onboard the Worldview-3 satellite has a
13.1-km swath (i.e., image width), while the 30-m
OLI sensor onboard Landsat-8 has a swath of
185 km. Thus the typical trade-off is one of
increased spatial resolution at the expense of
decreased areal coverage. Multiple image tiles
(also known as image scenes) may be required to
fully capture large outbreaks. Some compromise
is needed between the desired spatial resolution of
the image and its extent, because multiple scenes
are logistically more difficult to acquire within the
narrow time frames often necessary to optimally
detect the manifestation of pest damage.
Optical remote sensing involves the recording

and analysis of sunlight reflected by illuminated
materials within the pixel footprint. The recorded
response is a function of the spectral reflectance of
those materials, the illumination (e.g., sun angle,
viewing angle), and the atmospheric (e.g., amount
of aerosols or haze/smoke) conditions at the
time of image acquisition. Spectral resolution
refers to the number and width of spectral bands

(i.e., portions of the electromagnetic spectrum)
that the sensor is able to record (Table 2). Sensors
that capture a relatively large number of spectral
bands of narrow width are considered to be of
higher spectral resolution (Lefsky and Cohen
2003). Landsat Thematic Mapper (TM) (United
States National Aeronautics and Space Institute),
for example, has six bands that have an average
width of over 100 nm. Thus, it is of lower spectral
resolution compared with the Hyperion (United
States National Aeronautics and Space Institute)
sensor, which has 220 bands that are 10 nm wide
(Pearlman et al. 2003) and can detect subtle
differences between similar surface materials that
are not detectable using the broad Landsat TM
bands. Satellite sensors such as the Hyperion are
known as hyperspectral and up to now were lar-
gely experimental, although there are new mis-
sions planned (e.g., HyspIRI – Hyperspectral
Infrared Imager) (Bioucas-Dias et al. 2013). The
suitability of a given sensor for mapping insect
damage is a function of the interrelationship
between spectral and spatial resolution. For a
given pixel, its spectral response is a function of
the spectral reflectance of the illuminated surfaces
of the objects within the pixel footprint. The larger
the pixel, the greater the number of distinct
surface materials that contribute to the overall
pixel response. In order for a sensor to be able to
detect insect damage, its effect on the spectral
response of the pixel must be larger or more
dominant than that of those materials within the
pixel unaffected by the damage.
Radiometric resolution is the number of inten-

sity levels in which the radiance received by the
sensor in a given spectral band is quantised. These
“grey levels” are stored pixel by pixel as digital
numbers that represent the ability of the sensor to
discriminate small differences in incoming
radiance from adjacent pixels (Lillesand et al.
2000). For example, Landsat 5 and 7 are quantised
to a bit depth of eight bits, or 256 grey levels
(Lefsky and Cohen 2003). While eight-bit radio-
metric resolution was common for earlier sensors,
current and upcoming sensors have higher bit
depths, ranging from 10 to 12 bits, that is, 1024
and 4056 grey levels, respectively (Table 2).
These higher radiometric resolution sensors
potentially translate to higher sensitivity to dif-
ferences in reflectance between healthy and
damaged vegetation. While radiometric resolution
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Table 2. Characteristics* of selected current and future spaceborne optical sensors, ordered by increasing spatial resolution.≅

Sensor name⊥
Spectral resolution
(number of bands) Spectral regions**

Spatial
resolution (m)

Radiometric
resolution (bits)

Temporal
resolution
(days)≅≅

Swath
width
(km) Availability⊥⊥

MODIS 7 Blue, green, red, NIR,
SWIR(3)

250 500 12 1 2330 2000–2020, full, free,
glovis

VIIRS 6 Pann, red, NIR, SWIR,
MWIR,LWIR

375 12 1 3000 2012–, full, free, laads

VÉGÉTATION-P 4 Blue, red, IR, SWIR 333 666 12 2 2285 2014–2020, full, free, vito
Sentinel-3 OLCI 21 Modifiable band position

and width
300 12 2 1270 2016–, full, free, eoli

AWIFS 4 Green, red, NIR, SWIR 56 12 5 740 2004–, full, $, eotec
HYPERION 220 VIS/NIR/SWIR 30 12 16 7.5 2001–2015, partial, free,

glovis
Landsat 7 ETM+ 8 Pan, blue, green, red,

NIR, 2 SWIR, LWIR
15 30 60 8 16 185 2000–2015, full, free,

glovis
Landsat 8 OLI 9 Pan, violet, blue, green,

red, NIR, SWIR(3)
15 30 12 16 185 2014–, full, free, glovis

ASTER 14 Green, red, NIR,
SWIR(6), LWIR(5)

15 30 90 8 8*** 60 1999–2020, full, free,
glovis

LISS-3 4 Green, red, NIR, SWIR 23.5 10 24 141 2004–, full, $, eotec
SLIM6 3 Green, red, NIR 22 10 1–3*** 650 2003–2020, full, $, dmcii
Sentinel-2 MSI 13 VIS(4), red edge(3),

NIR(3), SWIR(3)
10 20 12 5 290 2016–, full, free, eoli

Spot 5 HRG 5 Pan, green, red, NIR,
SWIR

2.5 10 20 8 1–5*** 60 × 2 2002–2015, partial, $$,
geostore

Rapideye REIS 5 Blue, green, red, red
edge, NIR

6.5 16 1*** 77 2009–2015, partial, $$,
eyefind

Spot 6 (and 7) NAOMI 5 Pan, VIS(3), NIR 1.5 6 12 1–3*** 60 × 2 2013–2025, partial, $$,
geostore

ResourceSat-2 LISS-4 3 Green, red, NIR 5.8 10 5*** 23.9 2004–, partial, $$, eotec
Kompsat-3 AEISS 5 Pan, blue, green, red,

NIR
0.7 2.8 14 1–4*** 16 2012–2020, partial, $$,

arirang
Pleaides HIRI 4 Pan, blue, green, red,

NIR
0.5 2 12 1–2*** 20 2013–2020, partial, $$$,

geostore

H
alletal.

S
307

©
2016

H
er

M
ajesty

the
Q
ueen

in
R
ightof

C
anada

https://doi.org/10.4039/tce.2016.11 Published online by Cam
bridge U

niversity Press

https://doi.org/10.4039/tce.2016.11


Table 2. Continued

Sensor name⊥
Spectral resolution
(number of bands) Spectral regions**

Spatial
resolution (m)

Radiometric
resolution (bits)

Temporal
resolution
(days)≅≅

Swath
width
(km) Availability⊥⊥

Geoeye-1 GIS 5 Pan, blue, green, red,
NIR

0.5 2 11 4*** 15.2 2009–2020, partial, $$$,
imagefinder

Worldview-3 WV110 9 Pan, violet, blue, green,
red, red edge, NIR(2)

0.3 1.2 11 1*** 13.1 2015–2020, partial, $$$,
imagefinder

Worldview-3 WV110 9 Pan, violet, blue, green,
red, red edge, NIR(2)

0.3 1.2 11 1*** 13.1 2015–2020, partial, $$$,
imagefinder

Notes: * Information compiled from data on sensor specifications available from the observing systems capability analysis and review tool (http://www.wmo-sat.info/oscar) and the Earth
observation (EO) portal directory (https://directory.eoportal.org).

≅Given as ground sampling distance (i.e., pixel size). When some bands are captured at a different spatial resolution, the figure in black corresponds to the majority of bands; blue is for bands
acquired at higher resolution, which also appear in blue in the “spectral region” column; red is for bands at lower resolution. Row order is based on the black figures.

⊥ Full name for sensor acronyms in the table: ASTER, advanced spaceborne thermal emission and reflection radiometer (on board NASA’s Terra); AWiFS, advanced wide field sensor (on board
ResourceSat satellites); Geoeye-1 GIS, geoeye imaging system; HYPERION, hyperspectral instrument on board NASA’s EO-1; Kompsat-3 AEISS, advanced electronic image scanning system;
LISS, linear imaging self-scanning sensor (on board ISRO satellites; two different sensors, LISS-3 and LISS-4); Landsat 7 ETM+ , enhanced thematic mapper plus; Landsat 8 OLI, operational land
imager; MODIS, moderate resolution imaging spectroradiometer (on board Terra and Aqua); Pleaides HiRi, high-resolution imager (on board Pleiades constellation); REIS, RapidEye Earth
imaging system; Sentinel-2 MSI, multi-spectral imager (on board ESA’s Sentinel-2 constellation); Sentinel-3 OLCI, ocean and land colour imager (on board ESA’s Sentinel-3 constellation);
SLIM6, surrey linear imager multispectral six channels (on board the Disaster Monitoring Constellation -DMC); Spot HRG, haute résolution géométrique (on board SPOT 5); Spot NAOMI, new
astrosat optical modular instrument (on board SPOT 6 and 7); VÉGÉTATION-P, SPOT-VGT instrument for the PROBA-V satellite; VIIRS: visible–infrared imager radiometer suite (on board
NASA and NOAA satellites; note that VIIRS has other imaging mode at 750m with 17 bands); Worldview-3 WV110, World View 110 camera. Sensor acronyms appear in upper-case letters; for
less-known sensors, the name of the carrying satellite precedes them in lowercase.

**Range (in μm) of named spectral regions: violet [0.4–0.45]; blue [0.45–0.5]; green [0.5–0.6]; red [0.6–0.7]; red edge [0.7–0.8]; pan, panchromatic [0.45–0.9] (pann: can acquire at night); VIS,
visible [0.4–0.7]; NIR, near infrared [0.7–1]; SWIR, MWIR, LWIR: short-wave – mid-wave – long-wave infrared ([1–3], [3–5], [8–14]). MWIR and LWIR are TIR (thermal infrared). Unless
indicated by a number (in brackets, after the region), there is one image channel per region; the spectral band covered by the channel is often narrower than the region.

≅≅Minimum number of days between consecutive acquisitions of the same area.
⊥⊥Availability regarding: temporal coverage (Common Era period; end of period is a rough estimate; if open, it means that sensor will continue in future satellites); spatial coverage (full: wall-to-

wall, systematic; partial: scattered, on-demand); cost (free: no charge, but restrictions may apply; “$”: USD$0.01–$1/km2; “$$”: USD$1–$10/km2; “$$$”: USD$10–$50/km2. Tasked imagery
usually costs twice as much as archived imagery); internet access (i.e., through a download, ordering, tasking portal: arirang: http://arirang.kari.re.kr/; dmcii: http://catalogue.dmcii.com/; eoli: http://
earth.esa.int/eoli/; eotec: http://www.eotec.com/; eyefind: http://eyefind.rapideye.com/; geostore: http://www.geo-airbusds.com/geostore/; glovis: http://glovis.usgs.gov/; imagefinder: https://
browse.digitalglobe.com/; laads: http://ladsweb.nascom.nasa.gov/; vito: http://www.vito-eodata.be. All websites were accessed on 6 October 2014.

*** Enabled by cross-track pointing capability; depends on latitude, maximum off-nadir angle, and number of satellites.
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was not an issue of concern in past studies of
forest disturbance (Coops et al. 2007), future
remote sensing of pest damage will be based on
the 12-bit generation of sensors such as Landsat
8’s Operational Line Imager (OLI) and Sentinel-2
Multi-Spectral Imager (MSI).
Temporal resolution, or revisit time, is the

number of days for which a particular sensor will
be able to obtain new imagery (cloud-free or not)
over a particular area of interest (Lefsky and
Cohen 2003). Higher temporal resolution usually
comes at the expense of coarser spatial resolution,
although many of the newer satellites with metric
(pixel size 1–9m) or submetric (< 1m) resolution
sensors can have higher revisit times because they
have pointable sensor heads and (or) are
concurrently carried by a constellation of satel-
lites. A trade-off of this acquisition mode, is
however, that the area of interest could be imaged
at an oblique angle of view, which can lead to
radiometric and geometric distortions (Wulder
et al. 2008c). In order to monitor disturbances
such as bark beetle outbreaks, images acquired in
different years corresponding to before and after
the outbreak are often employed (Coops et al.
2007). These “anniversary date” images need to
be acquired at approximately the same time of
year to minimise differences in solar illumination
and vegetative phenology. The opportunity to
acquire image data timed to when pest damage is
visible is increasing with new satellites such as
with Landsat 8 and Sentinel 2 (Table 2).

What sensors are available?
There is a plethora of sensors that can be

applied to forest pest damage. Here we will focus
on spaceborne sensors, because they produce
images that have consistent spatial resolution and
several are cost-free (for information on digital
aerial cameras, see Jacobsen 2010). There are
dozens of civilian satellites acquiring images
around the Earth every day, or hundreds if past
missions are considered (Kramer 2002). The
number of operational Earth observation (EO)
satellites has increased substantially in recent
years thanks to new technological developments
that enabled the deployment of affordable small
satellite missions (Sandau 2010; Argoun 2012).
A sample of 21 spaceborne optical sensors,
current and future, appears in Table 2, along with
information on different types of resolution and

availability. Spectral resolution varies from the
three bands of LISS-4 to the 220 bands of
Hyperion (Table 2). Radiometric resolution goes
from 256 grey levels (8-bit) in Landsat TM
imagery to 65 536 (16-bit) in RapidEye. Spatial
resolution ranges from two-thirds of a kilometre
in Vegetation-P to one-third of a metre in
Worldview-3 pan. Image width (i.e., swath) can
go from as little as 13 km (Worldview-3) to as
much as 3000 km (VIIRS). Images of a given
location can be acquired as frequently as daily
(many sensors) to only every 24 days (LISS-3).
Archived imagery from most sensors can be
searched and ordered online from dedicated web
map interfaces. New imagery can be downloaded
just a few days after it was acquired. When the
sensor works only on demand, tasking orders for a
particular project may be placed online or through
toll-free order desks, and the images delivered just
a few days after successful acquisition. Imagery of
30-m spatial resolution and coarser is now free
of charge, especially since the opening of the
Landsat archive in 2008 (Wulder et al. 2012a).
Sensors that have been most frequently used in

studies of remote sensing change detection are
those operating on a systematic, full coverage
basis such as Landsat (TM, ETM+ , and their
successor, OLI; Roy et al. 2014) and MODIS
(to be replaced by VIIRS; Justice et al. 2011).
Hectometric imagery like MODIS (i.e., with
spatial resolution on the order of hectometres; i.e.,
100m) can be used to precisely locate in time
changes in vegetation that occur concurrently
over very large areas, such as autumn’s leaf
abscission, since the larger number of revisits
increases the likelihood of securing relatively
cloud-free image data over the area of interest
(Reed et al. 2009). However, there are limitations
to using such imagery for detecting pest damage.
In the early stages of an outbreak, individual
coarse pixels are likely to contain relatively large
amounts of unaffected vegetation or unsusceptible
cover that will hamper detection. In general,
imagery from sensors such as MODIS has been
found useful for detecting insect damage over
large spatial scales, but not for estimating its
severity (e.g., van der Sanden et al. 2006; Eklundh
et al. 2009).
Of all sensors, the ones that have been

most frequently employed for pest damage
assessment are those onboard the Landsat series
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(Wulder et al. 2006c; Hall et al. 2007; Rullan-
Silva et al. 2013), which have a spatial resolution
(30m) and swath (185 km) suitable for damage
mapping at the stand level, although their 16-day
revisit time can limit detection opportunities for
tree species that re-flush after defoliation. For
example, the late June to early July peak defolia-
tion period for forest tent caterpillar throughout
much of the Canadian boreal forest is followed by
refoliation by aspen in late July, meaning that
there are only two or three chances to obtain
clear-sky Landsat observations before defoliation
is no longer visible (Hall et al. 2007). Other
decametric sensors (i.e., with spatial resolution on
the order of decametres), such as those in SPOT
satellites, can provide shorter revisit times by
“pointing” the sensor cross-track to collect
off-nadir imagery (Moran et al. 1995). Off-nadir
viewing can, however, introduce radiometric
distortion to the imagery, such as increased effects
of bidirectional reflectance, that would create
difficulties when implementing change detection
techniques, particularly if the off-nadir look-angle
was not consistent between pre-damage and
post-damage images (Asner and Warner 2003;
Davi et al. 2006).
Despite data gaps due to the failure, since May

2003, of the scan-line corrector of the Landsat
7 ETM+ sensor, the launch of OLI on board
Landsat-8 in February 2013 has guaranteed the
continuity of an over 40-year Landsat record that
has greatly advanced science and monitoring
applications, and that is available to the public
free of charge since 2008 (Wulder et al. 2012a;
Roy et al. 2014). To further extend the value of
the Landsat 7 ETM+ sensor for forest change
applications, various gap-filling algorithms have
been developed and evaluated (Wulder et al.
2008b; Chen et al. 2011; Zeng et al. 2013).
Monitoring capabilities from Landsat sensors will
be improved by the Sentinel-2 constellation,
which will offer a similar multispectral sensor
(MSI, Table 2) but with a 290 km swath and a
higher revisit rate of five days under the same
viewing conditions (Drusch et al. 2012). Sentinel-
2A was successfully launched 23 June 2015,
marking the beginning of a new era of increased
EO capabilities with the combination of Landsat 8
and Sentinel-2.
In addition to better spatial and temporal

resolution, the Sentinel-2 Multi-Spectral Imager

has three bands covering the red-edge region
(0.7–0.8 μm) as opposed to no coverage in OLI.
This will enable the detection of stress-induced
shifts in the spectral signature of vegetation in the
red edge that are suitable for early forest damage
detection (Rullan-Silva et al. 2013). Other future
missions (e.g., HyspIRI; not shown in Table 2)
include hyperspectral sensors that would
allow computing narrow-band indices such as
the structure-insensitive pigment index (SIPI;
Peñuelas et al. 1995), which has the potential to
detect early decline symptoms in vegetation
(Pontius 2014).
Metric (1–9m) and submetric (< 1m) resolu-

tion sensors enable the assessment of damage at
the plot (or even individual tree) level by acquir-
ing image data on-demand, and even if they have
a narrow swath (typically < 20 km for submetric
imagery), they can repeatedly acquire new images
every few days thanks to their cross-track pointing
capabilities. The availability of archived imagery,
however, is typically inconsistent and incomplete,
except perhaps in urban and other high-demand
areas. Operational mapping of large regions
would be cost prohibitive, since large numbers of
images would be required, and logistically more
difficult to acquire because of the need to “task”
(i.e., preorder) image acquisition (White et al.
2005). Off-nadir view angles, which result in
geometric distortion of trees and high contrast
between sunlit and shadow portions of tree
crowns, also complicate the use of change detec-
tion methods when applied to such data (Peddle
et al. 2003; Im and Jensen 2005). Notwithstand-
ing these issues, the use of submetric imagery may
be warranted for calibration and validation of
damage models derived from coarser imagery,
when the finer spatial resolution imagery is
only available for a portion of the area of interest
(e.g., Meddens et al. 2013).

What are the steps necessary to prepare
remote sensing images for analysis?
While forest pest damage may be detected in a

single remote sensing image, tracking damage
requires images from two or more dates. Ensuring
good alignment and radiometric consistency
between the images is a prerequisite to successful
change detection. Typical preprocessing steps
include geometric correction and image-to-
image registration, topographic correction, and
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radiometric and atmospheric corrections (Lu et al.
2004). Such procedures are relevant for
consistently detecting both gradual and abrupt
changes caused by insect pests, especially since
bark beetles and defoliators exhibit a wide range
of damage patterns (Ives and Wong 1988;
Armstrong and Ives 1995). There are a number of
geometric correction methods for digital images
whose selection depend somewhat on the inten-
ded use of the image (Toutin 2004). There is
consensus that subpixel registration accuracies are
preferred for change detection, that is, the distance
between the actual footprint centres of collocated
pixels should be on average less than the pixel size
(Coppin et al. 2004).
Slope and topography will influence the

amount of reflected radiation received by the
sensor, which can complicate the detection of
forest damage (Ekstrand 1996). For example,
different methods for topographic correction of
Landsat TM imagery were evaluated and shown
to influence the mapping of vegetation types
(Riaño et al. 2003). Healthy to slightly defoliated
forest was successfully separated frommoderately
defoliated forest when a model accounting for
topographic effects was employed (Ekstrand 1996).
In a bitemporal study that compared combinations
of atmospheric and topographic corrections with no
corrections, corrected images resulted in higher
land cover classification accuracies (Vanonckelen
et al. 2013). These studies support the rationale
that accounting for topography would improve
consistency for mapping forest damage.
Satellite images are subject to atmospheric

effects and variations in sensor response that
require corrections before analysis (Peddle et al.
2003). Spectral bands in the visible portion of the
spectrum are more sensitive to atmospheric
effects than those in the near and shortwave
infrared, which may cause spurious variations in
vegetation indices that combine both types of
bands (Liang et al. 2002). Seasonal phenology
and variability in ground conditions could also
create differences in the spectral responses (Song
and Woodcock 2003) that may have little to do
with change associated with the disturbance.
When analysing a multitemporal data set, some
level of radiometric correction is considered
necessary to differentiate real change from
noise (Schroeder et al. 2006). Employing change
detection methods generally requires either an

absolute correction for atmospheric effects or a
relative correction (i.e., normalisation through
pseudo-invariant features such as barren lands)
between the two or more images that represent
pre- and post-disturbance stages (Song et al.
2001; Coppin et al. 2004; Lu et al. 2004).
Ensuring the comparability of multitemporal data
sets requires some level of radiometric correction
procedures (Vicente-Serrano et al. 2008), which
would be particularly relevant when analysing
gradual changes in vegetation cover such as
defoliation. For example, a simple relative nor-
malisation between two images was successfully
applied to forest mortality mapping by only
applying histogram matching between pseudo-
invariant targets (e.g., deep water, healthy vege-
tation) (Collins and Woodcock 1996).
Methods and/or correction coefficients have

been published for many radiometric correction
techniques, including conversion to top-of-
atmosphere reflectance (Chander and Markham
2003; Chander et al. 2007), dark-object subtrac-
tion (Chavez 1988; Teillet and Fedosejevs 1995),
measuring or estimating atmospheric aerosols to
derive surface reflectance (Liang et al. 2001;
Thome 2001), applying radiative transfer functions
(Moran et al. 1992), empirical line calibration
(Moran et al. 2001), and haze removal (Richter
1996). More detailed reviews and summaries of
radiometric image processing entailing terminol-
ogy, sensor radiometric calibration, surface
reflectance retrieval, image normalisation, and
topographic corrections are available from Richards
and Jia (1999), Liang et al. (2001, 2002), Peddle
et al. (2003), Schaepman-Strub et al. (2006), and
Vanonckelen et al. (2013). Atmospheric correction
is considered essential if multiband ratioing such as
vegetation indices will be used in the detection of
change (Gong and Xu 2003). Thus, while the
selection of the appropriate level of atmospheric
processing does depend on the intended application
and the nature of the disturbance being detected, the
general consensus is that radiometric and atmo-
spheric corrections should be considered when ana-
lysing multitemporal images (Lunetta and Elvidge
1999; Schroeder et al. 2006; Coops et al. 2007).

What methods have been used or are
relevant to forest pest damage?
While some forest pest damage patterns may be

detected using a single date image, employing two
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or more image dates is in general more reliable.
There is a plethora of change detection methods in
the remote sensing literature (see reviews by
Singh 1989; Coppin et al. 2004; Lu et al. 2004;
Hussain et al. 2013). Unfortunately, there is no
universal change detection method (Tewkesbury
et al. 2015), and no single approach is optimal and
applicable to all cases (Lu et al. 2004). As a result,
selecting a suitable change detection approach for
a particular area and problem can be challenging
(Lu et al. 2014). A general procedure for con-
ducting a change detection analysis was presented
by Lu et al. (2014), whose major steps include:
(1) describing the change detection problem;
(2) selecting suitable remotely sensed data;
(3) conducting image preprocessing; (4) selecting
suitable variables; (5) selecting a suitable change
algorithm; and (6) evaluating change detection
results. It is important to stress that the last step
calls for linking the change detected on the image
to observations on the ground, which in turn
requires field data collection and characterisation
of forest condition. An approach for selecting a
change detection method for forest pest damage
assessment is to review past experiences from
which to summarise methods used and results
attained. From this perspective, what are the
change detection methods that have been applied
to studies of pest damage?
We compiled a list of remote sensing studies

from Canada and the United States of America
dealing with change detection and created a table
that describes the different methods, including
their advantages and disadvantages (Table 3). The
methods were stratified into five groups that we
labeled as visual analysis, image algebra, classi-
fication, spectral mixture analysis, and time series
analysis. Together, they exemplify the change
detection methods that have been applied to
studies of pest damage. Consistent with previous
observations (Hall et al. 2007), image differen-
cing of vegetation indices based on spectral band
ratios have been most frequently employed. This
approach, also called layer arithmetic, is among
the simplest and most frequently used method of
bitemporal change detection (Lu et al. 2004;
Tewkesbury et al. 2015). The challenge with this
approach is in defining the threshold value to the
magnitude of change (Hussain et al. 2013) that
represents a meaningful change in terms of for
example, insect defoliation, which calls for

associating field-measured estimates of percent
defoliation to changes in the image.
A review of Table 3 suggests change detection

methods are evolving. Change detection was
based on the detection of change between image
dates timed to observe spectral response differ-
ences in variables of interest such as insect
damage. More recent studies are investigating the
use of multiple image dates to track a more
continuous time series of pixel spectral response
as a function of ecosystem dynamics. By inte-
grating multiple image dates, factors such as
growth trajectories, phenology, climate effects,
and natural and anthropogenic disturbances can
also be considered as these will influence changes
in the forest landscape in addition to those
caused by insect damage (Table 3). This trend is
consistent with directions toward annual land
cover classification maps that incorporate change
information by tracking disturbance and recovery
derived from long time series of satellite imagery
(Franklin et al. 2015).

What are some of the application examples
in the literature?
We reviewed a number of studies dealing with

the application of remote sensing to forest pest
damage, which include those cited in previous pest-
related remote sensing reviews (Wulder et al.
2006a; Hall et al. 2007; Rullan-Silva et al. 2013).
In the following subsections, we briefly review the
historical evolution of this field, summarise remote
sensing studies for both bark beetles (Table 4) and
defoliators (Table 5), and offer an overview of
emerging remote sensing technologies.

Brief historical review. Before the availability of
satellite data, early studies on forest pest damage
were undertaken with aerial photographs taken
mostly from fixed-wing and rotary-wing aircraft.
Among the first studies in both Canada and the
United States of America were the following:
damaged and defoliated trees were reported to be
darker than healthy trees on black and white
infrared photographs (Spurr 1946); a comparison
of panchromatic, infrared, colour, and colour
infrared aerial films at three scales was undertaken
for assessing damage from western pine beetle
(Dendroctonus brevicomis LeConte (Coleoptera:
Curculionidae)) (Wear and Bongberg 1951); an
evaluation of camera systems was completed for
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Table 3. Some change detection techniques that have been applied to the mapping of forest pest damage.*

Description Advantages Disadvantages Examples

(I) Visual analysis
Judicious selection of bands from
bitemporal imagery to form an enhanced
composite image

Analyst’s image and field expertise can be
exploited. Results are often superior to
automated approaches

Employs manual interpretation of the image.
Requires clear understanding of spectral
response patterns related to defoliation

Hall et al. (1983, 1984),
Skakun et al. (2003)

(II) Image algebra
Image differencing and thresholding
Subtracts digital values between a pre-

damage image and a post-damage
image, and then identifies damage
regions (possibly by damage level)
based on threshold(s) applied to the
difference image. The latter is usually
derived from transformed features like
Kauth–Thomas (KT) or band ratios
rather than from the original bands

Simple, quick; easy to interpret results. The
use of transformed bands reduces data
redundancy. Can further enhance or better
detect subtle differences in spectral
response. When image ratios are used,
results are more robust to topographic and
illumination effects

Requires careful selection of thresholds to
balance errors of commission versus errors
of omission. Differences related to varying
atmospheric, illumination, and
phenological conditions can cause
confusion. If based on image ratios (e.g.,
NDVI), subtraction often enhances random
noise

Hall et al. (1995), (2003),
(2007), Collins and
Woodcock (1996), Royle
and Lathrop (2002), DeRose
et al. (2011)

Image regression
Predicts new digital values for the post-
damage image using pre-damage values
as model predictors. Creates a change
image by differencing the regressed
image from the original pre-damage
image

Reduces differences caused by alternate
atmospheric conditions, sensor calibration,
or phenology

Dependent upon appropriate and (or) accurate
regression functions for each band or ratio
used as response variable

Heikkilä et al. (2002), Davi
et al. (2006)

Change vector analysis
Generates a spectral change vector that

includes both the direction of change
and its magnitude

Any number and variety of bands can be
analysed simultaneously

Identifying appropriate change thresholds can
be difficult

Townsend et al. (2004)

Logistic regression
Creates a dichotomous classification (e.g.,
defoliated or nondefoliated) based on
one or more bitemporal change metrics

Can incorporate many inputs into a single
classification output

Relatively lengthy feature selection process Fraser and Latifovic (2005),
Wulder et al. (2006c)
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Table 3. Continued

Description Advantages Disadvantages Examples

(III) Classification
Post-classification comparison
Individually classifies images from
different dates into independent thematic
maps, then compares the classifications

Minimises impacts of atmospheric, sensor,
and environmental differences

Requires complete training data set for each
image date. Errors from individual image
classifications are propagated to the final
change map

Hudak et al. (1993), Bochenek
et al. (1997), Kharuk et al.
(2003)

Multi-date image classification
Combines images from two or more dates

into a single file for classification and
identification of changes. May include
image transforms such as principle
component analysis

Simple, quick; reduced classification
procedures. Atmospheric correct not
necessary. Use of principal component
analysis reduces redundant image data.

When the method is supervised, it requires
many training samples. When the method is
unsupervised, labelling change classes is
challenging. Principle component analysis
results is scene dependent, making it difficult
to label change for different image dates

Muchoney and Haack (1994),
Hall et al. (1995), Meddens
et al. (2013)

Discriminative machine-learning models
Use a large number of image-derived

variables to discriminate between
different damage levels

Can incorporate many inputs into a single
classification output. Does not require
assumptions on the statistical distribution of
the data.

Require a large diversity of training samples.
Non-ensemble methods are prone to
overfitting variations that are unrelated to
the damage level and thus are less reliable

Kantola et al. (2010),
Townsend et al. (2012),
Meddens et al. (2014)

(IV) Spectral mixture analysis
Analysis of mixtures of different materials

within a pixel based on pure spectra
(endmembers). Fraction images,
representing the proportion of each
endmember in different dates, are then
compared for changes

Fractions can be linked to biophysical
properties (e.g., severity of defoliation);
provides a complexity of results, yet is still
repeatable

Very complex; requires accurate spectral
measurements and often lengthy, detailed
field work. Ability to derive pure
endmembers is key to pixel unmixing in an
environment where forest type and damage
can be highly variable. Loses usefulness
with increasing spatial resolution

Radeloff et al. (1999)

(V) Time series analysis
Exploits multiple image dates to derive

time series of damage-sensitive spectral
attributes that are then analysed for
changes or anomalies

Enables the detection of gradual changes or
subtle deviations from normal seasonal
cycle. Interesting for early detection of
outbreaks

Requires more preprocessing and more work
in general than bitemporal methods

Meigs et al. (2011), Thomas
et al. (2011), Zhu et al.
(2012)

* Sources: Coppin et al. (2004), Lu et al. (2004), Hussain et al. (2013).
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Table 4. Remote sensing studies applied to two bark beetles.

Study area Species Sensor
Image data: single
versus multi-date Analysis method*

Damage
classification: class
or continuous References

Mountain pine beetle
Central British Columbia Lodgepole pine Landsat TM 12 September 1999 AC; supervised classification

(maximum likelihood)
Class data Franklin et al.

(2003)
Central British Columbia Lodgepole pine Landsat ETM+ 12 September 1999,

26 June 2000,
16 August 2001

AC; supervised classification
(discriminant function); EWDI

Class data Skakun et al.
(2003)

Central British Columbia Ponderosa pine
Lodgepole pine

Airborne
Multispectral
Video

Multiple dates 2002, 2003 Fuzzy set theory to integrate airborne
remote sensing and GIS data sets

Class data:
susceptibility

Bone et al. (2005)

Central British Columbia Lodgepole pine IKONOS
multispectral

16 October 2002 No AC; unsupervised classification Class data White et al. (2005)

Northeastern British
Columbia

Lodgepole pine QuickBird
multispectral

29 May 2005 No AC; supervised classification; RGI Class data Coops et al.
(2006a)

Northeastern British
Columbia

Lodgepole pine Landsat TM and
ETM+

16 August 2001
29 July 2003

AC; supervised classification (logistic
regression); EWDI

Both Coops et al.
(2006b)

Southeastern British
Columbia

Lodgepole pine SPOT-5 10m
multispectral

22 July 2004 No AC; supervised classification
(logistic regression)

Both White et al. (2006)

Western Montana, USA Lodgepole pine Landsat ETM+ 26 August 1999,
18 August 2002

AC; supervised classification (logistic
regression); EWDI

Both Wulder et al.
(2006c)

South-central British
Columbia

Lodgepole pine Hyperion
QuickBird
multispectral

19 August 2005 (Hyperion)
20 July 2005
(Quickbird)

AC; supervised classification; RGI
(QuickBird)
Moisture stress index (Hyperion)

Class data White et al. (2007)

North-central British
Columbia

Lodgepole pine Landsat TM and
ETM+

Multi-date from 1992 to
2006 (eight images)

AC; supervised classification (decision
tree); NDMI

Class data Goodwin et al.
(2008)

South-central British
Columbia

Lodgepole pine QuickBird Multi-date from 2003 to
2006 (four images)

AC; supervised classification; RGI Class data Wulder et al.
(2008c)

Southeastern British
Columbia

Lodgepole pine Landsat TM/ETM+ 24 September 2001
15 August 2007

AC; supervised classification; EWDI
and threshold

Class data Coops et al.
(2009b)

Central Idaho, USA White pine QuickBird 13 July 2005 AC; supervised classification
(maximum likelihood)

Class data Hicke and Logan
(2009)

Rocky Mountains, British
Columbia, Alberta

Lodgepole pine Digital 20 cm colour
aerial imagery:
Canon EOSD-1Ds
Mark II camera

Mid-August 2006
Mid-September 2007
Mid-July 2008

Image interpretation of Green-Red
ratios (G:R ratios)

Tree counts
G:R ratios

Wulder et al.
(2009a)
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Table 4. Continued

Study area Species Sensor
Image data: single
versus multi-date Analysis method*

Damage
classification: class
or continuous References

Southeastern Wyoming,
USA

Lodgepole pine GeoEye-1 28 August 2009 No AC; supervised classification
(maximum likelihood)

Class data Dennison et al.
(2010)

North-central British
Columbia

Lodgepole pine Landsat TM/ETM+ Multidate from 1992 to 2006
(eight images)

AC; supervised classification (mixed
linear modelling)

Continuous Goodwin et al.
(2010)

North-central Colorado,
USA

Lodgepole pine Vexcel Ultracam
(airborne, 30 cm)

13 August 2008 No AC; supervised classification
(maximum likelihood)

Class data Meddens et al.
(2011)

Eastern Oregon, USA Lodgepole pine Landsat TM/ETM+ One cloud-free summer
observation per year,
1984–2007

AC; trajectory-based analysis
(LandTrendr)

Continuous Meigs et al. (2011)

Central Idaho, USA Lodgepole pine Vexcel Ultracam
(airborne, 20 cm)

Unspecified single date No AC; supervised classification
(combination of thresholds and
maximum likelihood)

Class data Bright et al. (2012)

North-central Colorado,
USA

Lodgepole pine Landsat TM/ETM+ Single date:
2 August 2008
Multi-date from 1996 to
2011 (20 images)

AC; supervised classification
(maximum likelihood) for single
date. Time series of spectral indices
for multi-date.

Class data Meddens et al.
(2013)

North-central Colorado,
USA

Lodgepole pine Landsat TM/ETM+ Multi-date from 1996 to
2011 (20 images)

AC; linear regression and a generalised
additive model

Continuous Meddens et al.
(2014)

Spruce beetle
Utah, USA Engelmann spruce Landsat TM 17 September 1991

14 October 1995
25 October 1999

No AC; DI based on tasselled cap
transformation; DI image
differencing

Two class data
(infested and not
infested)

DeRose et al.
(2011)

Alaska, USA White and Sitka
spruce

Quickbird 20 October 2003
26 May 2006

No AC; visual inspection Two class data
(alive and dead)

Makoto et al.
(2013)

Notes: * “AC” indicates that atmospheric correction procedures were employed.
DI, disturbance index; EWDI, enhanced wetness difference index; NDMI, normalised difference moisture index; RGI, red–green index; USA, United States of America.
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Table 5. Remote sensing studies applied to seven insect defoliators (updated from Hall et al. 2007).

Study area Species Sensor
Image data (single
versus multi-date) Analysis method*

Damage
assessment (class
or continuous)

Reference (current
or cumulative
defoliation)

Eastern spruce budworm
New Brunswick Balsam fir; white

spruce
Airborne
Multispectral
Scanner

3 July 1981 Radiometric correction, trends of
intensity by defoliation level

Class data Leckie (1987)
(Current and
cumulative
defoliation)

Nova Scotia Balsam fir Airborne MEIS,
20 cm pixel

28 August 1984 No AC; spectral feature selection,
regression

Class data,
continuous

Leckie et al. (1992)
(Cumulative
defoliation)

Newfoundland Balsam fir SPOT HRV MLA 27 August 1991 No AC; vegetation indices,
discriminant function

Class data Franklin and Raske
(1994)
(Current
defoliation)

Québec Balsam fir, Landsat TM 22 July 1986 AC; image segmentation
Numeric interpretation key

Class data Chalifoux et al.
(1998)
(Current
defoliation)

Prince Edward Island Balsam fir, white
spruce, and
black spruce

Landsat TM;
SPOT HRVIR

15 June 1992;
18 July 2004;
19 August 2004

AC; correlation analysis between
different spectral indices and
cumulative defoliation

Continuous Franklin et al.
(2008)
(Cumulative
defoliation)

Québec Balsam fir, white
spruce, and
black spruce

Landsat TM
SPOT HRVIR

12 July 2004,
27 August 2008

AC; topographic normalisation, model
using difference of infrared simple
ratio between pre- and post-
defoliation image

Continuous Hall et al. (2009)
(Cumulative
defoliation)

Western spruce budworm
Western
Oregon, USA

Engelmann
spruce,
subalpine fir

Airborne
Multispectral
Video

September, October 1994 Raw digital numbers used in analysis Class data Franklin et al.
(1995)
(Current
defoliation)

Western
Oregon, USA

Engelmann
spruce,
subalpine fir

Landsat TM 31 August 1988
30 September 1993

No AC; raw digital numbers Class data Franklin et al.
(1995)
(Current
defoliation)
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Table 5. Continued

Study area Species Sensor
Image data (single
versus multi-date) Analysis method*

Damage
assessment (class
or continuous)

Reference (current
or cumulative
defoliation)

New Mexico, USA Engelmann spruce Landsat TM, ETM+ 10 images, from 8 June
1998 to 30 September
2006

No AC; SWIR/NIR index, temporal
trend analysis of forest inventory plots

Class data (based
on the index)

Vogelmann et al.
(2009)
(not specified)

Jack pine budworm
Wisconsin, USA Jack pine Landsat TM 21 June 1984 NoAC; supervised; classification to map

moderate, severe, and dead classes
Class data Hopkins et al.

(1988)
Saskatchewan Jack pine Landsat TM 20 July 1984;

11 August 1986;
30 August 1987

AC; unsupervised classification Class data Hall et al. (1995)

Saskatchewan Jack pine 1:5000 air photos August 1988 Photo interpretation Class data Hall et al. (1998)
Northern Wisconsin, USA Jack pine Landsat TM 14 June 1987;

10 May 1992;
1 August 1993

AC; spectral mixture analysis Continuous
(budworm
numbers)

Radeloff et al.
(1999)

Ontario Jack pine MEIS (airborne) 21 July 1992 No AC; supervised classification Class data (six
decolouration
classes)

Leckie et al. (2005)

Hemlock looper
Newfoundland Balsam fir SPOT HRV MLA 29 August 1987 No AC; supervised classification Class data Franklin (1989)
Newfoundland Balsam fir Landsat TM 6 August 1990 No AC; correlation and discriminant

analysis
Class data Luther et al. (1991)

Québec Balsam fir, eastern
hemlock

SPOT Vegetation 10-day composites: 1–10
to 21–30 June

AC; multiple logistic regression Class data Fraser and
Latifovic (2005)

Forest tent caterpillar
Alberta Trembling aspen Landsat MSS 6 June 1977;

8 June 1988
No AC Class data Hall et al. (1984)

Large aspen tortrix
Alberta Trembling aspen Landsat TM 21 July 1999;

19 July 2001;
12 July 2002;
15 July 2003;
10 July 2004

AC; modelling of changes in LAI as
predictor of defoliation

Continuous Hall et al. (2003,
2007)
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Table 5. Continued

Study area Species Sensor
Image data (single
versus multi-date) Analysis method*

Damage
assessment (class
or continuous)

Reference (current
or cumulative
defoliation)

Gypsy moth
Michigan, USA Oak Landsat TM; SPOT 29 June 1988;

27 June 1988
No AC; supervised and unsupervised Class data Joria and Ahearn

(1991)
Virginia, USA Oak SPOT HRV-XS

SPOT HRV-XS
15 June 1987;
4 July 1988

No AC; several methods, including
principal components, image
differencing, and various
classifications

Class data Muchoney and
Haack (1994)

Ohio, USA Oak Landsat TM, ETM+ 11 June 2001;
28 June2001;
21 July 2001

AC; infrared simple ratio and image
differencing

Class data Hurley et al.
(2004)

Maryland and
Pennsylvania, USA

Oak Landsat TM, ETM+ 4 August 1999;
22 August 2000;
24 July 2001

AC; tasselled cap transformation,
change vector analysis

Continuous via
frass deposition

Townsend et al.
(2004)

Pennsylvania and West
Virginia, USA

Oak MODIS 14 May 2000;
10 June 2000;
6 July 2001

Continuous De Beurs and
Townsend
(2008)

Mid-Appalachian highland
(four USA states)

Oak MODIS Time series of MODIS
NDVI 2000–2006

No AC; Savitzky-Golay filter, %
change in max. annual NDVI during
defoliation season, image
thresholding

Two classes
(defoliated
versus
nondefoliated)

Spruce et al.
(2011)

Maryland, USA Oak, aspen Landsat TM, ETM+ 16 images, from 6
September 1997 to 28
August 2008

AC; regression of various Vis Continuous Townsend et al.
(2012)

Northern Wisconsin, USA Aspen, oak, maple Landsat TM 2 June 2006;
12 August 2006

No AC; images transformed to Kauth-
Thomas tasselled cap transform to
generate a disturbance index

Two classes
(defoliated
versus
nondefoliated)

Thayn (2013)

Notes: *AC, atmospheric correction procedures were employed.
DI, disturbance index; LAI, leaf area index; SWIR/NIR, shortwave infrared – near infrared; VI, vegetation index; USA, United States of America.
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low-altitude sampling of forest insect damage
(Heller et. al. 1959a); and the interpretation of
aerial photography for detecting southern pine
beetle (Dendroctonus frontalis Zimmermann)
damage (Heller et al. 1959b). Subsequent work
included using colour and panchromatic aerial
photographs to survey mortality caused by
Douglas-fir beetle (Dendroctonus pseudotsugae
Hopkins) (Wear et al. 1964); surveying the
amount of Douglas-fir beetle mortality from
1:8000 large-scale aerial photographs (Wert and
Roettgering 1968); detecting conifer damage using
near-infrared film (Murtha and Hamilton 1969);
assessing insect damage from high-altitude colour
infrared photographs (Ciesla 1974); evaluate
small-scale (1:137 000) colour aerial photos for
forest pest surveys (Harris 1974); and quantifying
gypsy moth defoliation from colour and colour
infrared photography (Talerico et al. 1978), to list
but a few. Along with these early studies, Murtha
(1969) began developing the conceptual founda-
tion for aerial photograph interpretation of forest
damage. This work led to a key publication that
served as the fundamental guide for air photograph
interpretation of forest damage (Murtha 1972).
These reports contributed to the fundamental
theory for remote sensing damage assessment
based on aerial photographs, and the need to under-
stand how physiological and morphological
damage to trees from forest pests are manifested in
terms of changes to the spectral reflectance
patterns of forest vegetation (Murtha 1976, 1978;
Puritch 1981).

The launch of the Earth Resources Technology
Satellite (ERTS-1, later renamed Landsat 1) in
1972 marked the beginning of the Landsat
satellite collection of EO data, which has been of
primary interest in studies of forest insect damage.
Early studies include: the mapping of hemlock
looper damage from ERTS-1 imagery (Beaubien
and Jobin 1974); an evaluation of Landsat data for
forest pest detection (Harris et al. 1978); and use
of pre-outbreak and post-outbreak Landsat ima-
gery to detect gypsy moth defoliation (Dottavio
and Williams 1983). A compilation of papers
describing the early use of EO data for monitoring
forest insect damage was presented in a landmark
symposium on remote sensing for vegetation
damage assessment organised by the American
Society of Photogrammetry held in Seattle,
Washington, United States of America, in 1978

(Heller 1978; Murtha 1978; Williams and Stauffer
1978). Over the years since, remote sensing of
insect damage has demonstrated considerable
potential but with variable reported success
(Leckie and Ostaff 1988; Riley 1989; Franklin
2001; Hall et al. 2007; Rullan-Silva et al. 2013),
which can be attributed to several factors. First,
there is no single, most suitable way to inventory
and monitor pest damage using remote sensing, as
the manifestation of damage is host and pest
specific (Murtha 1976). Second, the optimal
timing of when damage is most visible is often
narrow, which can challenge the acquisition of
cloud-free satellite data. Third, forest damage is
typically mapped into a few discrete, subjectively
derived damage classes specifying light, moder-
ate, and severe damage, which oversimplifies the
reality that damage occurs as a continuum. All
these factors complicate the association of
remote sensing observations to field and aerial
assessments of forest condition. As a result,
despite the apparent high potential for use of
remote sensing to map insect damage, it remains a
technology that has seen relatively little opera-
tional use (Peterson et al. 1999; Franklin 2001;
Hall et al. 2007; Hicke et al. 2012).

Our review of the literature on the use of remote
sensing for bark beetle damage and insect
defoliation suggests that for a specific pest
damage problem (e.g., spruce budworm defolia-
tion), no consistent approach has been employed
(Tables 4 and 5). The mountain pine beetle has
received more attention than defoliators, and
methods employed depend highly on the objec-
tive of the analysis and data sources available. To
summarise insights into research findings and
advances, a review of papers, mostly satellite-
based plus a few airborne, were selected to
illustrate applications of remote sensing to this
subject (Tables 4 and 5).

Bark beetles. There are many studies that have
employed a range of remotely sensed data
sources to detect and monitor damage caused by
the mountain pine beetle, particularly in Canada,
and less so for spruce beetle (Table 4). Research
into methods for large-area mapping of mountain
pine beetle red-attack damage historically focus-
sed on the use of aerial photography (see Wulder
et al. 2006a for a detailed review). However, the
recent extensive outbreak of mountain pine
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beetle in western North America, which started
in the late 1990s, prompted considerable
Canadian research into the use of satellite remote
sensing to map epidemic levels of red-attack
damage over large areas (Franklin et al. 2003;
Skakun et al. 2003; White et al. 2006; Wulder
et al. 2006c; Coops et al. 2009b). Franklin et al.
(2003) used a single date of Landsat TM
imagery to map areas of red-attack with an over-
all accuracy of 72%. Skakun et al. (2003)
used multiple dates of Landsat TM and ETM+
imagery and the enhanced wetness difference
index (EWDI) to map red-attack damage
severity. The EWDI is calculated by subtracting
the tasseled cap wetness index (Crist and
Cicone 1984) from two images, which are
preferably acquired two years apart. With this
approach, it was found that areas with
severe damage (represented in the GIS reference
data as scattered points, each with 30–50
red-attack trees in their surroundings) were
mapped with greater accuracy (producer’s
accuracy = 78%; user’s accuracy = 81%) than
areas with moderate damage (10–29 red-attack
trees per GIS point; producer’s accuracy = 68%;
user’s accuracy = 76%). Producer’s accuracy
represents a measure of omission error that
describes the probability of a reference pixel
being correctly classified whereas user’s accu-
racy indicates commission error that describes
the probability a pixel classified on the image
actually represents that category on the ground
(Congalton and Green 2009). Wulder et al.
(2006c) used the EWDI in a logistic regression
approach to map red-attack damage in a mixed
forest environment with variable terrain. Slope
and solar radiation were also incorporated into
the logistic model and resulted in a producer’s
accuracy of 83% (user’s accuracy = 88%) for
detection of red attack. While operational
objectives would govern which level of accuracy
is required for pest management decisions, these
studies do illustrate the degree to which
red-attack damage can be mapped using various
methods with single or multiple date Landsat
TM/ETM+ images.

With free and open access to the Landsat archive
since 2008, research has increasingly explored the
use of a time series of Landsat data to detect and
map damage caused by mountain pine beetle
(Goodwin et al. 2008, 2010; Meigs et al. 2011;

Meddens et al. 2013). Time series analysis
allows identification of the year in which mortal-
ity occurred, a critical piece of information for
salvage harvesting and fire risk modelling, among
others. Using eight Landsat images acquired
between 1992 and 2006, Goodwin et al. (2008)
used the normalised difference moisture index
(NDMI; Wilson and Sader 2002) to identify
red-attack damage over a 1.5 million ha area in
north-central British Columbia. Detailed helicop-
ter survey data from 1996, 2003, and 2004 were
used for validation, and red-attack detection
accuracies were 49% in 1996, 79% in 2003, and
78% in 2004. Meigs et al. (2011) used the
LandTrendr algorithm (Kennedy et al. 2010) over
the Cascade Range in Oregon, United States of
America to characterise mortality induced by bark
beetle, finding a statistically significant relation-
ship between field-based measures of severity
(total basal area killed) and Landsat spectral
change (accuracy of red-attack detection not
reported). Meddens et al. (2013) explicitly
compared the performance of single-date and
multitemporal approaches over a study area in
northcentral Colorado and southern Wyoming,
United States of America, and found that both
had comparable accuracies, but concluded that
trajectory-based methods were more effective for
mapping intermediate levels of mortality, whereas
single-date methods were more effective at
mapping high levels of mortality. Producer’s
accuracies for red attack ranged from 83% to
88% for single-date methods and 85–87%
for multidate methods. Therefore, single date
methods can be combined with multitemporal
methods to enhance accuracy of both high and
low levels of damage.

While large area maps of mountain pine beetle
red-attack damage derived from Landsat imagery
provide essential strategic-level information
(Wulder et al. 2006d), higher spatial resolution
satellite imagery provides detailed information
over specific areas that are of value to direct
mitigation efforts. White et al. (2005) used
IKONOS 4-m multispectral data to map low
(between 1% and 5% of the stand is infested)
and medium (between 5% and 20% of the stand
is infested) levels of red-attack damage in
central interior British Columbia forest stands
with producer’s accuracies for red attack of 71%
and 92%, respectively. Coops et al. (2006a)
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used 2.5-m QuickBird imagery and the red–green
index (RGI) in northeastern British Columbia to
map red-attack damage and found a significant
relationship between the number of red-attack
pixels and number of field-surveyed red-attack
tree crowns (R2 = 0.48, P< 0.001, standard error
= 2.8 crowns) (accuracy of red-attack detection
not reported). Also in British Columbia, Wulder
et al. (2008c) used multitemporal QuickBird
imagery to retrospectively reconstruct the gradual
increase in mortality from 2003 to 2006 with
producer’s accuracies for red-attack detection
ranging from 89% to 93%. Hicke and Logan
(2009) used QuickBird imagery and the RGI to
map red-attack damage in stands dominated by
whitebark pine with a producer’s accuracy for
red-attack detection of 84%. Dennison et al.
(2010) used GeoEye-1 data, which has a 0.5-m
spatial resolution, to map both red-attack and
grey-attack damage and reported a strong relation-
ship between field-measured tree-crown area and
image-derived crown area for red attack
(R2 = 0.77) and grey attack (R2 = 0.70).

At the scale of individual trees, very high
spatial resolution digital aerial imagery with a
spatial resolution of < 1m can be an important
source of information for dealing with the
mountain pine beetle problem (Bater et al. 2010;
Wulder et al. 2012b). Information derived from
digital aerial imagery has been used to initialise
stand-level models (Bone et al. 2006; Coggins
et al. 2008), characterise mountain pine beetle
expansion factors (Coggins et al. 2010), and
assess the impacts of mitigation efforts (Bone
et al. 2007; Wulder et al. 2008a; Coggins et al.
2011). Over central British Columbia, multiple
dates of airborne multispectral video data were
integrated with GIS data such as tree species
information to identify and map susceptible areas
using fuzzy set theory (Bone et al. 2005). Multiple
dates of digital airborne imagery at 20-cm spatial
resolution from a Canon digital camera (Tokyo,
Japan) were interpreted to generate tree counts to
determine green:red ratios over two specific study
sites of the Rocky Mountains located in British
Columbia and Alberta, Canada (Wulder et al.
2009a). Meddens et al. (2011) used 30-cm digital
aerial imagery to map tree-level red-attack and
grey-attack damage with accuracies of 91% for
red attack and 78% for grey attack in north-central
Colorado. The authors resampled the image pixel

size from 30 cm to 2.4m, to more closely match
the size of individual tree crowns in the study area,
and thereby reduced errors resulting from confu-
sion with shaded parts of tree crowns and other
image elements. Accuracies for the 2.4-m data
were 88% for red attack and 89% for grey attack.
Also in the United States of America in central
Idaho, Bright et al. (2012) resampled 30-cm data
to 2.4m and reported accuracies of 79% for red
attack and 87% for grey attack. Results from these
studies demonstrate that while high spatial
resolution images can provide local estimates of
mountain pine beetle damage, they are not
conducive for mapping large areas because of
their small image footprint (Table 2). A potential
application of these data is to employ a multi-
temporal, multiscale approach by combining
results from both airborne and satellite remote
sensing imagery.

For remote sensing of mountain pine beetle
damage to be successful, it is important to
consider how fast the green-attack stage transi-
tions to the red-attack stage. Fade rates for foliage
of trees infested with mountain pine beetle are
variable and depend on factors such as tree health,
as well as local climate and phenology (Safranyik
et al. 1974). This nonlinearity of foliar fade rates
is considered a relevant factor for detecting
mountain pine beetle damage with remotely
sensed data (Wulder et al. 2006a).

While remotely sensed data are valuable for
mapping red-attack damage, this represents mor-
tality that occurred in the previous year and
therefore does not provide timely information to
aid proactive mitigation efforts (although current
or green attack is often spatially correlated with
red attack and will often be found in proximity to
previous mortality). As a result, there is interest in
developing the capability to detect green attack
with remotely sensed data. Wulder et al. (2009b)
detailed the many factors that preclude the
operational detection of green attack, most of
which were actually unrelated to the ability of
remotely sensed instruments to detect the subtle
spectral response associated with green attack. In
an operational context, field-based green attack
surveys are often undertaken to identify infested
trees that may be felled and destroyed, hence
preventing the development adult beetles (Carroll
et al. 2006). Of interest was whether remote
sensing surveys could provide a comparable
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identification of green-attack trees that would be
cheaper, faster, and more effective than current,
field-based operational practices. The challenges
associated with such surveys are significant as they
must also be able to detect single and small groups
of green attack trees from remote observation, scale
across large areas, and be timely to support
mitigation activities. To achieve this, remote
sensing surveys must use sensors that have both a
high spatial and high spectral resolution, and be
able to cover large areas of seemingly healthy
forests economically. There are no spaceborne
sensors that currently meet these requirements,
and airborne sensors, with all the logistical vagaries
associated with aircraft acquisitions, require further
investigation. Regardless of sensor used, errors of
commission for green-attack detection would need
to be low, as the cost of deploying ground crews for
mitigation purposes across large geographic areas
that comprise the leading edge of the outbreak is
very high. A possible solution is a sequential
approach of integrating remote detection, valida-
tion, and subsequent mitigation that could improve
efficiencies compared to relying on field or remote
sensing approaches alone.

Logistical issues aside, the science itself is not
sufficiently compelling to indicate that green attack
can be reliably detected remotely. There are few
published studies that have attempted to establish
the capability for remote green-attack detection (i.e.,
using an airborne or spaceborne instrument) over
large areas. Studies to date have either used ground-
based spectra (Murtha and Wiart 1989a, 1989b;
Cheng et al. 2010) or have lacked the rigorous
validation common to red-attack studies. Sprinstin
et al. (2011) used a Landsat ETM+ image from
1999 and calculated a temperature condition index
from the thermal band at 60-m spatial resolution
(resampled to 30m) and a moisture condition index
from Landsat bands 4 and 5, representing the
near infrared and middle infrared portions of
the electromagnetic spectrum, respectively. The
authors compared the index values to the aerial
overview survey data from 2000, assuming that
areas delineated as red attack in 2000 were green
attack in 1999. Their results suggest these indices
were able to differentiate between affected and
unaffected areas in the green attack stage although
the lack of detailed ground survey data limited the
ability to conduct an accuracy assessment. A more
recent study using RapidEye and TerraSAR-X data

(independently and simultaneously) to detect green
attack with a minimum mapping unit of 78.5m2

obtained accuracies for green-attack detection
ranged from 13% for TerraSAR-X only to 67%
for RapidEye only (Oritz et al. 2013). When these
data sources were combined, accuracy for green-
attack detection was 73%. It should be noted that
pheromone dispensers were used in this study “to
ensure presence of bark beetle green attack at the
study site”. These studies confirm the challenges
associated with pursuing green attack detection
remotely.

The remote sensing literature on spruce beetle
is more limited (Table 4). In a retrospective study
of a large spruce beetle outbreak in Utah, DeRose
et al. (2011) mapped Engelmann spruce mortality
through time using a tasseled cap disturbance
index (DI = brightness–(greenness +wetness);
Healey et al. 2005) derived from four Landsat
images (acquired in 1991, 1995, 1999, and 2003,
respectively) with overall accuracy ranging from
59% to 71%. Mortality was estimated using tree
cores extracted from beetle-killed spruce trees
located on each of 131 field plots surveyed after
the outbreak. In another retrospective study of a
spruce beetle outbreak in Alaska, Makoto et al.
(2013) were able to reliably elucidate (9.4%
commission error and 7.1% omission error)
whether GPS-located snags from a post-fire field
survey corresponded to infested trees that died
before the fire by visually inspecting them in a
pre-fire, pan-sharpened (0.6-m spatial resolution)
Quickbird image, demonstrating the feasibility of
using multispectral satellite imagery to detect tree-
level mortality induced by spruce beetle. In a
recent study, Hart and Veblen (2015) combined
use of aerial imagery to produce a tree-scale
map of grey-stage spruce beetle damage
with multi-date Landsat data. Spruce beetle
mortality was characterised by high values
of a disturbance index and low values of the
normalised difference vegetation index (NDVI),
resulting in overall accuracy and user’s accuracy
for grey stands > 88%. As with mountain
pine beetle, the combined use of multiple
dates, data sources, and scales seems to be the
most promising approach to mapping spruce
beetle damage.

Defoliators. With the exception of the gypsy
moth, there are relatively few recent papers about
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remote sensing of specific insect defoliators from
satellite data (Table 5). A range of airborne and
satellite data have been investigated for mapping
current and cumulative spruce budworm defolia-
tion (Table 5). Leckie (1987) looked at current
and cumulative defoliation in a mixed fir and
spruce forest and identified factors that would
affect the classification of defoliation from air-
borne multispectral imagery. These factors inclu-
ded atmospheric effects, sun–object–sensor
geometry, topography, small spectral differences
between defoliation levels, spectral variability due
to stand characteristics, and confusion of defolia-
tion classes with other forest types. Leckie et al.
(1992) used 40-cm airborne multispectral electro-
optical imaging scanner (MEIS-II) data to predict
cumulative defoliation of individual balsam fir
trees. There was a linear relationship between
visual estimates of defoliation and spectral fea-
tures for trees with > 20% defoliation that became
nonlinear over the entire defoliation range from
healthy to dead trees. Of the empirical models
evaluated, accuracy was highest at 92% for
four classes (i.e., 0–25%, 26–50%, 51–75%, and 76–
100%). Such an application was considered most
suitable for sample plot or site-specific surveys.
Using a single-date SPOT high resolution visi-

ble (HRV) multispectral linear array image,
Franklin and Raske (1994) mapped four spruce
budworm current defoliation classes with an
overall accuracy of 66%. This result was better
than for sketch maps, which were only 48–54%
accurate when compared with field data. After
studying the effects of age and height class in the
results, these authors suggested that stand inven-
tory data, when available, would improve
discrimination of defoliation classes by account-
ing for effects of stand structure. Chalifoux et al.
(1998) used 329 training polygons from a
pre-existing forest inventory to develop an inter-
pretation key for deciding whether a given forest
polygon was damaged by spruce budworm
current defoliation and if so, to what level of
severity (three classes: healthy, defoliated, and
heavy mortality). The key was based on the
average reflectance of the training polygons in the
near infrared and shortwave infrared, derived
from Landsat TM bands 4 and 5, respectively.
They applied the key to 107 validation polygons
from a different part of the scene, obtaining an
overall accuracy of 76%. An interesting

observation by these authors is that stands with
heavy mortality showed a higher reflectance in the
near infrared than healthy stands, likely due to
broadleaf shrubs in the understorey. Franklin et al.
(2008) visually estimated in situ cumulative
defoliation by spruce budworm in 10 × 10m plots
within 35 stands (in turn selected by stratified
random sampling from within aerial survey sketch
polygons) from susceptible tree species. They
correlated the field defoliation estimates with
several spectral indices, both single-date and
bi-temporal, from both SPOT and Landsat TM,
and found that the NDMI (Wilson and Sader
2002) was the best performing for single date
(r = 0.88 for SPOT and 0.81 for Landsat),
whereas EWDI (see previous section on bark
beetles) was the best for bitemporal (r = 0.83).
Hall et al. (2009) went further by developing a
non-linear spruce budworm cumulative defolia-
tion severity model that used the difference in
pre-outbreak and post-outbreak satellite images as
a predictor. To render the model output in the
same format of aerial surveys, the continuous
model estimates of defoliation were classified into
light, moderate, and severe defoliation to match
those used by the provincial agency. The majority
of these studies investigated the detection, corre-
lation, or modelling of cumulative spruce
budworm defoliation with single or pre-outbreak
and post-outbreak images from both severity class
and continuous defoliation severity perspectives.
Regarding western spruce budworm, Franklin

et al. (1995) employed aerial video imagery whose
pixel resolution was ~1 and 2m2 for training and
assessing the accuracy of a multitemporal Landsat
TM classification, which was used as an indicator
of western spruce budworm current defoliation
(four classes). An overall accuracy of 78% was
achieved with a combination of spectral values and
image texture. Vogelmann et al. (2009) studied a
long time series of Landsat TM imagery (1986–
2006) and consistently observed both gradual and
marked increases in the ratio of shortwave infrared/
near infrared in stands repeatedly encompassed
within aerial sketch polygons from consecutive
years, demonstrating that spatial patterns of forest
damage are inherently variable. The maps derived
from the image analyses were considered similar to
those from aerial surveys.
The tendency of remote sensing studies of

spruce budworm to focus on cumulative
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defoliation is in part due to its the application
being more feasible than the narrow time frame
for detection of the red-brown foliage indicator of
current defoliation. Being able to map current
defoliation would generate an outcome more
similar to aerial surveys, whereas mapping
cumulative defoliation would result in a map that
would be more conducive for assessment of
damage impact. As a result, there are benefits for
continuing research to map both forms of spruce
budworm defoliation.
Jack pine budworm and hemlock looper are two

other pests for which remote sensing literature is
also scant (Table 5). The earliest study seems to be
that by Hopkins et al. (1988), who employed a
supervised maximum likelihood algorithm with a
single-date Landsat 5 TM image from which
moderate, severe, and dead defoliation classes
were classified with high accuracy. Hall et al.
(1995) mapped jack pine budworm top kill using
before and after Landsat TM imagery and only
found small spectral differences between different
severity levels, with overall accuracies ranging
from 70% to 73% with three classes which were
partly explained by the influence of the under-
storey in the spectral response of mature jack pine
stands. A spectral mixture analysis approach was
employed with Landsat TM imagery acquired at
pre-defoliation and peak-defoliation time periods,
from which actual jack pine budworm defoliation
was determined with high accuracy in pure
stands of jack pine and in mixed stands with oak
(Quercus Linnaeus; Fagaceae) as a deciduous
component (Radeloff et al. 1999). Leckie et al.
(2005) used 2.5-m spatial resolution multispectral
imagery for mapping current-year jack pine
budworm defoliation (expressed as red dis-
colouration in tree crowns) and obtained accuracy
results of 84% across four classes. As for hemlock
looper, Franklin (1989) undertook a supervised
classification of SPOT 20m multispectral ima-
gery acquired when defoliation was in the red and
brown stages, achieving good results (90%
accuracy with two defoliation classes). Similar
results were obtained by Luther et al. (1991) with
Landsat TM. Even with 1-km SPOT vegetation
data it is possible to detect broad areas heavily
defoliated by hemlock looper, as demonstrated by
Fraser and Latifovic (2005).
Aspen defoliators have not received the atten-

tion they deserve given their potential to cause

significant impacts on forest health, especially
in east-central Canada (Cooke et al. 2012). In
western Canada, Hall et al. (1983) used a multi-
temporal colour composite (pre-defoliation
Landsat multispectral scanner near infrared band
displayed as red; peak-defoliation Landsat multi-
spectral scanner near infrared band displayed as
green; and pre-defoliation Landsat multispectral
scanner red band displayed as blue) to delineate
training areas for a subsequent classification based
on bands selected by discriminant analysis, but
lacked ground data to assess the results (Hall et al.
1984). In a subsequent study in Alberta, Hall et al.
(2003) estimated defoliation as an exponential
function of leaf area index (LAI) with an R2 of
0.77, using Landsat TM images from the
peak-defoliation period between 1999 and 2004.
Later on, Hall et al. (2007) extended the time
series over a four-year time period from 2001 to
2004, which was corroborated through a percent
change in damage area trend between aerial sur-
vey and that derived from Landsat TM. In a
separate study of aspen defoliation caused by
Bruce spanworm (Operophtera bruceata (Hulst)
(Lepidoptera: Geometridae)) using single-date,
high spatial resolution data from the compact
airborne spectrographic imager (CASI), empirical
relationships were developed from field estimates
of LAI and ocularly estimated percent defoliation
(Moskal and Franklin 2004). Spectral response
and image texture were strongly related to LAI
and aspen defoliation, but the relationships were
influenced by the scale effect observed from pixel
sizes of 60, 100, and 300 cm. This collection of
studies corroborates that aspen defoliation can be
detected from airborne and satellite data using
both single- and multi-date image acquisitions.
Of all defoliators, gypsy moth is arguably the

most studied in the remote sensing literature based
on work that has been undertaken in the United
States of America (Table 5). Summarising these
studies provides a perspective as to its potential
for application in Canada. Successful remote
sensing application depends on the availability of
cloud-free imagery in the temporal window
between peak defoliation (mid-June) and refolia-
tion (mid-August). Joria and Ahearn (1991)
demonstrated the use of both 30-m pixel Landsat
and 20-m SPOT images to map gypsy moth
defoliation into three classes (healthy, moderate,
and severe), and found slightly better accuracies
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from Landsat data than from SPOT data.
Muchoney and Haack (1994) reported that image
differencing was the most efficient technique of
several they compared for gypsy moth defoliation
(74% overall accuracy). Hurley et al. (2004)
improved mapping of gypsy moth defoliation by
incorporating a third Landsat image in late July
that represented post-attack refoliation, in addi-
tion to a pre-defoliation and peak defoliation
images. Townsend et al. (2004) employed change
vector analysis of Landsat TM images to char-
acterise gypsy moth defoliation across three years
and identified a relationship between severity of
defoliation and dissolved nitrogen concentrations
that resulted from deposition of caterpillar frass.
De Beurs and Townsend (2008) tested separately
the change in five MODIS-derived vegetation
indices (VI) as a surrogate for defoliation
(i.e., defoliation (%) = (VI_before – VI_during)/
VI_before) as estimated by ground observations,
and evaluated three temporal resolutions (daily,
and both eight-day and 16-day composites), and
concluded that daily MODIS data are preferable
to the composites and can be used with confidence
to monitor insect defoliation for larger patches
(> 0.6 km2). They also found that nonstandard
indices such as the normalised difference infrared
index for MODIS bands 6 and 7 (NDII6 =
(B2–B6)/(B2 +B6); and NDII7 = (B2–B7)/
(B2 +B7)) perform significantly better than NDVI
or enhanced vegetation index (EVI, Liu and Huete
1995). The superiority of the normalised differ-
ence infrared index over NDVI for mapping
gypsy moth defoliation was also corroborated for
Landsat data (NDII = (B4–B5)/(B4 +B5)) by
Townsend et al. (2012). Spruce et al. (2011)
produced MODIS-based gypsy moth defoliation
maps across a 6.2 × 106 ha region in the
eastern United States of America that showed
reasonable agreement (88% overall accuracy)
compared with reference data. In more recent
work, Thayn (2013) derived a modified dis-
turbance index to pre-peak and peak gypsy moth
defoliation Landsat TM images and obtained
better accuracies with the new index (77% versus
69% with the conventional disturbance index).
These studies demonstrate that gypsy moth
defoliation has been mapped to varying degrees
of accuracy from EO images over sites in the
United States of America that were predominately
occupied by oak (Quercus).

Based on this collection of remote sensing
studies on defoliators, it can be said that while
approaches and degree of success vary, defolia-
tion can be observed from airborne and satellite
data using both single-date and multi-date image
acquisitions.

Emerging remote sensing technologies
Two areas of emerging remote sensing tech-

nologies that will likely have an important role in
the future application and assessment of forest
pest damage include airborne laser scanner and
UAV. A brief introduction to the technology
precedes a review of studies focussed on its
application.

Airborne laser scanner. ALS is a relatively new
remote sensing technique wherein a laser instru-
ment mounted on an aircraft emits narrow pulses
(3–10 ns) of collimated infrared light (1040–
1060 nm) that are deflected across the flight path
by a rotating mirror to survey contiguous strips
of terrain (Baltsavias 1999). Each individual
pulse is scattered by the canopy and (or) ground,
and a portion of its photons travels back to the
instrument detector. The detector may record the
backscattered energy continuously as a full
waveform, or it may be quantised into one or
several returns. In the latter case, the elapsed
time between pulse emission and return detec-
tion is converted into a range measurement
(hence the name LiDAR, light detection and
ranging) that, combined with precise measure-
ments of the location of the plane and pulse aim,
allows the determination of the x, y, and z
position of the target that generated the return.
This way a dense point cloud is created
(typically at least 1 point/m2) that reflects the
terrain and the biomass above it. Since the
foliage interacts with the laser pulses and may
contribute to some of the recorded returns, it
should be possible to derive information about
defoliation based on the structure of the LiDAR
point cloud.

This approach was first demonstrated in a study
by Solberg et al. (2006) of a 21 km2 Scots pine
area in southeast Norway that suffered a
severe European pine sawfly (Neodiprion sertifer
(Geoffroy) (Hymenoptera: Diprionidae)) attack in
2005. Airborne laser scanning data were gathered
before and after the period during which the larvae
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fed on needles. Effective leaf area index (LAIe, an
index that includes the areas of foliage, branches, and
trunk and can be computed from the gap fraction
derived from either ground (proportion of clear sky
pixels in hemispherical digital photographs) or
airborne (proportion of ground ALS returns)
measurements), was measured in 20 plots from
both the ground and estimated from ALS data.
Strong linear relationships (R2>0.9) between the
LiDAR-derived LAIe and the field-derived LAIe
were computed for both dates, with the change in
LAIe being used as an indicator of defoliation.
Further improvements to the method were made by
how field-derived LAIe was derived (Hanssen and
Solberg 2007), and by how the LiDAR data are
processed (Solberg 2010).

In Canada, Coops et al. (2009a) were among
the first to apply LiDAR to forest pest damage.
They studied a 400-m-wide and 200-km-long
forest transect in central British Columbia that
included a wide range of mountain pine beetle
infestation levels. They established 17 square
plots (35 or 50m side, depending on stand
density) along the transect, in which they
measured a total of 667 trees (316 grey attack,
214 red attack, and 237 green attack) in addition
to other stand-level forest attributes. A winter
ALS acquisition at 0.7 ground returns/m2 was
obtained concurrently with 20-cm, colour aerial
photography, where the latter was used to
manually delineate the crown of the surveyed
trees. They found that the density of LiDAR
returns from tree crowns was impacted by the
health status of the tree, with a larger number of
returns from green-attack and early-attack phases
and a significantly smaller number of returns from
grey-attack crowns. At the stand level, they
found a number of significant relationships
between plot-level indicators of infestation and
LiDAR-derived structural metrics (e.g., propor-
tion of grey-attack crowns, r2 = 0.76).

Vastaranta et al. (2013) mapped a 34 km2 Scots
pine forest infested by common pine sawfly
(Diprion pini (Linnaeus) (Hymenoptera:
Diprionidae)) into two defoliation classes
(< 20% and ⩾ 20%) using a single 20 pulses/m2

ALS acquisition and 108 forest-inventory plots of
8-m radius, obtaining an overall accuracy of 84%.
Working with the same data set but studying
individual trees instead of plots, Kantola et al.
(2010) achieved an overall accuracy of 88%

classifying individual trees as healthy or defo-
liated (same 20% defoliation threshold), based on
136 training trees and 135 validation trees whose
degree of defoliation was assessed from the
ground. This study was further extended to
assess up to five defoliation classes while
simulating the effect of smaller pulse densities
(from 20 to 2 pulses/m2). Changing pulse density
did not have an impact on the accuracy of
estimating defoliation, but accuracy did decrease
as the number of classes increased (71% for five
classes) (Kantola et al. 2013). These few studies
illustrate the approach and results from using
active remote sensing based on ALS data for
detection of insect damage, with further investiga-
tions necessary in Canadian conditions to deter-
mine its operational potential. While the areal
extent surveyed in these case studies was
relatively small, ALS is not designed to replace
large area aerial survey mapping. Rather, it offers
localised observations that are conducive for
sampling, model calibration, assessments over
specific areas of interest, and map validation.

Unmanned aerial vehicles. Another remote
sensing technology that may have potential for
application to forest insect damage monitoring
and assessment is that of UAV (i.e., drones;
see the following reviews: Watts et al. 2012;
Colomina and Molina 2014; Nex and Remon-
dino 2014; Salamí, et al. 2014; Whitehead and
Hugenholtz 2014; Pajares 2015). A UAV is an
airborne platform comprising a battery-powered
model aircraft with fixed or rotary wings that
typically carries a digital camera but it may carry
other sensors such as a mini-LiDAR. The UAV
is radio-controlled by a ground pilot, and can be
preprogrammed for automated flight and sensor
operations before launch. Typical UAVs used
in remote sensing are relatively small, with a
maximum dimension of up to 2m and a max-
imum payload (i.e., the mass of the camera or
sensor they carry) from a few hundred grams to
over 10 kg. Fixed-wing UAVs sport longer flight
duration and speed, which results in larger area
coverage than rotary-wing UAVs, but take-off
and landing can be tricky. In contrast, rotary-
wing UAVs can take off and land from almost
anywhere, and have greater maneuverability and
flexibility regarding payload options; but they
have shorter duration and are difficult to control
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in high (> 30 km/hour) winds (Whitehead and
Hugenholtz 2014).

With a UAV, it is possible to capture
GPS-referenced, above-canopy digital photo-
graphs that can then be stitched together to
produce three-dimensional information from
unstructured aerial images (Mancini et al. 2013).
The images can then be imported into a GIS to
delineate and visually assess damage at the
individual tree level in areas up to 100 ha. While
current technology would allow for larger spatial
coverage and autonomous remote acquisitions
tens of kilometres away from the launch site,
aviation safety concerns constrain operations to
maintain unaided visual line of sight at all times,
so that the ground pilot has the ability to take on
manual control of the UAV if necessary. There are
new rules in Canada that can grant exemptions
from a special flight operations certificate for
UAVs under 25 kg, with some conditions
(Transport Canada 2014). One of those conditions
is that the ground pilot must be trained and
considered competent and proficient to operate
the specific UAV system in the proposed area of
operation, meaning that forest health field
programmes wanting to take advantage of this
technology will need to have field crew members
that are UAV trained.

While there is considerable interest, we could
not find any peer-reviewed published applications
of UAV technology specific to forest pest damage
in Canada. Agricultural applications have been
pursued more actively than forestry applications
(Mcfadyen et al. 2014). There is, however, a
precursor study in Europe, dealing with red band
needle blight (Mycosphaerella pini Rostrup ex
Munk; Mycosphaerellaceae) infection in Scots
pine (Pinus sylvestris Linnaeus) (Smigaj et al.
2015). This disease on pine trees also occurs in
Canada (https://tidcf.nrcan.gc.ca/en/diseases/
factsheet/1000003). Flying a fixed-wing UAV at
a height of 122m with a thermal camera (spectral
range 7.5–13 μm) that yielded 25-cm pixels and a
swath of 100m, these authors were able to detect
a small temperature increase related to the
disease progression (R = 0.53), indicating that
UAV-borne thermal cameras might be able to
detect sub-degree temperature differences
induced by disease onset.

Despite challenges associated with the cameras
used, small image footprint, and variable

illumination, we perceive it is a technology that
will and is receiving increasing attention for forest
pest application. Its primary advantage in providing
images with an immediate above-ground canopy
perspective suggests possible roles could include
acquiring images of stand health condition,
calibrating aerial survey ratings, scaling pest
damage from field observations to satellite images,
and visualising response of stand efficacy treat-
ments for pest control.

Validating maps of insect damage

“How accurate is this map?” is a legitimate
question users may ask about any given map of
insect damage, whether derived from aerial
survey or from remote sensing. No single metric
can fully answer this question because there are
different factors (e.g., weather, resources,
equipment, methods, etc.) at play influencing the
output of any given mapping project. Regardless
of how it is reported, map validation (i.e.,
checking whether the map meets specifications
and fulfills its purpose) comprises elements such
as objective, data collection, method application,
and analysis, and should take into account the
issues that influence how the map was produced.
These elements need to be tempered with the level
of accuracy required for a given application
(Wulder et al. 2006b). Since the factors that
influence accuracy vary notably between maps of
insect damage derived from aerial survey and
remote sensing, we address them separately.

Validating aerial survey maps
The accuracy of an aerial survey is largely

governed by factors that affect damage estimation
and geographic positioning (MacLean and
MacKinnon 1996; Wulder et al. 2006b).
Concerns with this technique include the
subjectivity of observer assessments, the spatial
precision with which delineations may be com-
pleted, observer’s knowledge and experience, and
the ability to delineate pest damage in its correct
map location (MacLean and MacKinnon 1996;
Ciesla 2000). Potential sources of error include
the timing of aerial surveys, weather conditions
during flight, experience and preferences of
observers (e.g., those who tend to lump damaged
areas into larger polygons versus those who tend
to split them), the magnitude and variability of
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damage on the landscape, and the difficulty of
discerning damage patterns that vary by pest and
host tree (Candau et al. 1998; Taylor and
MacLean 2008; Backsen and Howell 2013).
Consistency among observers can also be
challenging: a high degree of variation has been
reported for duplicated aerial surveys indepen-
dently conducted in the same area and time
(McConnell 1995). There may also be errors from
incomplete coverage, as it is often infeasible
to fly over all affected areas within a given year
(de Beurs and Townsend 2008). Weather, aircraft
availability, jurisdictional requirements, and
resources (e.g., budget, trained personnel) will
govern the proportion of area surveyed and
whether data gaps will occur in the required
spatial coverage. Because of these difficulties,
accuracy assessment is not practical nor routinely
undertaken in operational aerial surveys. In the
manual for aerial overview survey standards for
British Columbia for example, factors such as
knowing the pest damage and accurately estimat-
ing damage are identified as factors affecting
credibility, but there are no defined procedures for
regularly undertaking accuracy assessment
(Resources Inventory Committee 2000).
The positioning accuracy of aerial surveys

traditionally relied on the ability of the observer to
keep track of the aircraft position on the map and
to correctly relate features seen on the ground to
the map (Schrader-Patton 2003). More recently,
digital capture systems in the form of tablets
linked to a GPS have replaced conventional ana-
logue aerial surveys, as they result in more rapid
and consistent mapping of the aerial extent of
pest conditions (United States Department of
Agriculture 2005). The GPS chipset in these
tablets provides a centred view of the relevant
portion of the map at all times during the aerial
survey, while on-screen digitisation removes the
need for transferring line work from topographic
maps (Schrader-Patton 2003). Given these tech-
nological advances, aerial surveys are expected to
continue to be the method of choice for mapping
forest health conditions, at least until consistent
and reliable maps from other sources (e.g., remote
sensing) are available.
There is increasing interest in quantitatively

assessing the spatial and categorical accuracies of
aerial survey data according to Johnson and Ross
(2008). In their study about bark beetles aerial

surveys in the United States of America, these
authors collected 257 plots for validation and
created an error matrix to quantify errors in the
aerial survey data, obtaining accuracies between
61% and 79%. According to these authors, not
only does the accuracy assessment enable
quantification errors to be included in the meta-
data, but it can also improve training programmes
by focussing on the more error-prone aspects
(Johnson and Ross 2008). While there is indeed
value in assessing the accuracy of aerial surveys,
the critical question is how to undertake such
assessments. The practical reality is that such
field-intensive data collections are seldom
included in the survey budget as they are not
economically viable over large landscapes.
Several research studies in Canada and the

United States of America have attempted to
quantify the accuracy of pest damage ratings (e.g.,
thematic or categorical accuracy) from aerial
surveys. Early work explored supplementation
with oblique aerial photographs, as it provides
post-survey evidence of stand conditions at the
time of mapping (Harris and Dawson 1979). In
New Brunswick, MacLean and MacKinnon
(1996) reported 56% of spruce budworm
defoliated areas were correctly identified when
compared with ground-based binocular estimates
of current defoliation using aerial survey ratings
and four broad classes of severity. The largest
error was in discriminating nil from light defolia-
tion. Thus, when nil and light defoliation were
combined, 82% of plots were correctly classified
by aerial sketch mapping. Harris and Dawson
(1979) compared sketch-mapping with oblique
aerial photography (taken in the same flight and
later interpreted), and concluded that damage area
estimation can be improved by using air photo-
graphs to refine the sketch in the office, but that
the gains in accuracy should be weighed against
the cost of obtaining the photographs and
interpreting them. Johnson and Ross (2008) in the
United States Department of Agriculture Forest
Service’s Rocky Mountain Region compared
aerial survey to ground reference results with a
spatial tolerance of 50 and 500m for a range of
forest pests with reported accuracies ranging from
61% to 79%, respectively. These results suggest
that a wider spatial tolerance to accommodate the
aerial sketchmapper’s delineation of a boundary
would translate to a higher accuracy measure of
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classified damage severity. In New Brunswick,
Taylor andMacLean (2008) assessed aerial sketch
map survey ratings of current spruce budworm
defoliation in field plots from 1985 to 1993 and
reported 85% correct classification in two broad
categories: nil–light damage (0–30%) and
moderate–severe damage (31–100%). In a study
of conifer mortality induced by mountain pine
beetle in South Dakota, United States of America,
there was a statistically significant difference
between aerial survey and photograph interpreta-
tion, with a trend to no significant difference when
a buffer was considered (Backsen and Howell
2013). Substantial differences in average size of
polygons, total number of polygons, and total
area mapped were also observed. These studies
provide an indication of aerial survey thematic
map accuracy, with considerable variation in
reported accuracies that was highly influenced by
the number of damage categories considered. The
broader the class width and the smaller the
number of classes, the higher the reported accu-
racy, but this comes at the expense of greater
variation within a given class. Because accuracy
will likely vary between classes, a single value of
accuracy to a map as a measure of the actual
overall quality of the map is not a sufficient
metric.
Aerial survey data have been used as a source

of validation data alone or in combination with
other data sources for remote sensing studies in
British Columbia (Franklin et al. 2003), Québec
(Fraser et al. 2005) and NewMexico (Vogelmann
et al. 2009). However, there is consensus that
aerial surveys are not directly suitable as reference
data for calibrating or validating remote sensing
insect damage maps (de Beurs and Townsend
2008; Neigh et al. 2014). Aerial survey maps are
inconsistent in assigning levels of forest damage,
incomplete in spatial coverage, subjective in its
derivation, and are prone to overestimating
damage within delineated areas (MacLean and
MacKinnon 1996; Johnson and Ross 2008).
Nevertheless, they can provide a useful approx-
imation to stratify the landscape for field sampling
and satellite image acquisition purposes, and to
corroborate whether remote sensing results
spatially resemble those obtained from aerial
survey (Hall et al. 2007). Understanding the
advantages and limitations associated with aerial
survey is fundamental towards recognising their

accuracy, reliability, and suitability for damage
assessment and reporting.

Validating maps of pest damage derived
from remote sensing
There is a considerable body of literature con-

cerning the assessment of accuracy for a product
derived from remote sensing imagery (Foody
2002; Congalton and Green 2009; Stehman 2009;
Olofsson et al. 2014). In past Canadian studies
that have reported the accuracy of a derived insect
damage map, the confusion matrix – that is, a
cross-tabulation of a sample of predicted values
(in the map) versus observed values (typically in
the field) of defoliation level (or whatever other
attribute the map represents) – has served as the
foundation from which a number of accuracy
metrics were derived (e.g., Franklin and Raske
1994; Skakun et al. 2003; Thomas et al. 2011).
A fundamental requirement before embarking
on such a map assessment is to establish the
objective that defines the level of accuracy
required for a given application because not all
applications require the same level of accuracy
(Wulder et al. 2006b). This requirement subse-
quently tempers the level of effort to be expended
and thus, how the accuracy assessment would
proceed. To assist those embarking on an accu-
racy assessment exercise, a framework has been
presented in the literature that following a clear
definition of the above objective, entails three
components: (1) sampling design, or the protocol
used to determine the number, location, spatial
support (i.e., size and shape), and nature (e.g.,
aerial photographs or field plots) of the sampling
units used in the assessment; (2) response design,
or the protocol for assigning a value to the
response variable (e.g., defoliation) in each
sampling unit; and (3) analysis, or the protocol
for deriving accuracy metrics from the set of
sampling units (Stehman and Czaplewski 1998;
Wulder et al. 2006b). The accuracy assessment of
three sample studies, all from the United States of
America on insect damage was summarised to
illustrate the application of this framework
(Table 6).
The sampling design should be probability

based, meaning that all spatial units in the
map corresponding to areas of interest (i.e., the
population to be assessed, be it pixels or polygons)
must have a known, greater than zero likelihood of
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Table 6. Details on the accuracy assessment undertaken in three sample studies of forest pest damage mapping.

Pest, host, and
location Response variable Sample design Response design Analysis method Reference

Mountain pine
beetle,
lodgepole pine,
Arapahoe NF,
Colorado

Land cover class (three
mortality classes, plus
three non-forest land
cover classes) in 2.4m
pixels covering a
9 × 10 km area

331 randomly selected pixels out of
662 pixels (2.4m per side) located
within 36 randomly placed
circular field plots of 11.28m
radius measured in June 2008
(input imagery is from August
2008)

Plot photo-interpreted using 30 cm
aerial photos. Ground calls on tree
condition were used to calibrate
photo-interpretation. Reference
2.4m pixels are selected among
those where the majority class
occupies > 50% of the pixel

Average confusion matrix of
repeating (10 times) a maximum
likelihood classification using a
random split (50% training, 50%
assessment) of reference pixels
(90.0% overall accuracy)

Meddens et al.
(2011)

Mountain pine
beetle,
lodgepole pine,
Wyoming and
Colorado

Land cover class
(undisturbed forest,
red stage, herbaceous
and other), in 30m
pixels covering a
185 × 180 km area

1368 randomly selected 30m pixels
(342 per class) extracted from a
9 × 10 km reference area
coincident with the Meddens et al.
(2011) map. Landsat image also
acquired in August 2008

The 2.4m pixels from the Meddens
et al. (2011) map were reclassified
to the modified four-class legend,
and the majority class assigned to
each 30m pixel. Selectable pixels
are those where the majority class
occupies > 70% of the pixel

Confusion matrix of a maximum
likelihood classification that was
trained with a separate set of
sampling units from the same
reference area (91.0% overall
accuracy)

Meddens et al.
(2013)

Gypsy moth, oak
and aspen,
Central
Appalachian
ecoregion

Proportion of foliage
remaining in 30m
cells across two
28 × 10 km study areas
100 km apart

53 purposely located field plots, each
consisting of five variable-radius
subplots located at the centre and
corners of a 1800m2 square,
remeasured around the same time
(2000s) of the Landsat imagery
used in the study

Total dry foliar biomass estimated as
an allometric function of basal
area, tree height, and DBH (A).
Loss of total dry foliar biomass
estimated as a function of frass fall
collected in 2m2 litter traps (five
per plot) (B). Proportion of foliage
remaining in the Landsat pixel
containing the central subplot is
measured as (A – B)/A

Cross-validation by year (i.e., drop
all data from each year
successively, calibrate the model
using the remaining four years,
and calculate RMSE (14.9%) and
other estimation statistics for the
year dropped)

Townsend et al.
(2012)
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being selected as sampling units. Otherwise the
conclusions drawn from the sample cannot be
validly extrapolated to non-sampled locations
(Stehman 2001). For example, Meddens et al.
(2013) performed a single-date and multi-date
classification for detecting bark beetle tree mortal-
ity within a Landsat scene (~30000 km2), and
undertook an accuracy assessment based on pixels
randomly selected from a 94-km2 area for which a
reference mortality map was available (Table 6).
A possible question could be whether the reported
91% accuracy applies to areas outside the extent of
the reference map as it requires an assumption that
the conditions within the reference area are repre-
sentative of the Landsat scene being evaluated. To
answer this possible question, the metadata
accompanying the mortality map could include an
explanation of why the selected samples were
considered representative of the entire (pixel)
population. While having such text in the metadata
will not make the sampling design probability-
based, the users would at least be aware of the
limitation. The same applies to situations where the
sample units were selected purposely instead of
randomly (e.g., to enhance variability in the input
data for model-based inference), such as the
53 plots in Townsend et al. (2012) (Table 6).
Purposeful selection is warranted for model build-
ing, but it has the drawback that the model-fitting
error statistics derived from such a sample do not
provide reliable measures of accuracy for a map
derived from that model. Two approaches exist to
split reference data into training and validation. One
approach is to randomly split the sample data set
into two non-overlapping subsets, training and
validation, as in Meddens et al. (2013) but this is
only possible if there is a sufficiently large enough
sample to support creation of model calibration
and validation data sets (Table 6). The second
approach is to do this repeatedly using a n-fold
cross-validation procedure, as was employed by
Townsend et al. (2012). Regardless of the splitting
method, it is recommended to ensure the training
and validation units are sufficiently far from each
other as to avoid spatial autocorrelation (i.e., the
tendency that sites close to each other are more
similar than those farther away), which would
diminish the independence of both subsets (Telford
and Birks 2005).
The response design includes all steps, proce-

dures, and materials leading to the assignment

of a reference value for the response variable
(e.g., per cent defoliation) in each of the selected
sampling units (Olofsson et al. 2014). These
reference values, however, are themselves subject
to uncertainty, resulting in a need to account
for potential errors (Olofsson et al. 2014).
For example, to determine the response variable
(proportion of remaining foliage) in a series of
defoliated field plots, Townsend et al. (2012)
(Table 6) used a number of tree measurements
for indirectly estimating dry foliar biomass,
and used frass fall as a proxy for consumed
foliage. Frass was collected in several litter traps
per plot, totalling some 10m2/plot, which were
deemed representative of the total frass within
the corresponding 900-m2 Landsat pixel. The
within-plot variance of collected frass (not
reported) may have been useful to compute the
standard error of the consumed foliage estimate.
Reference data should ideally be synchronous
with the remote sensing data so that both reflect
the same status quo (i.e., health condition);
otherwise the temporal mismatch could be a
source of reference data error (Olofsson et al.
2014). The width of the temporal window defin-
ing synchronicity depends on the particular pest.
For example, forest damage caused by aspen
defoliators is detectable over a shorter time period
than that caused by bark beetles, since trembling
aspen is able to reflush foliage following larval
feeding. In contrast, mortality induced by bark
beetle is apparent for a longer time period, there-
fore extending the temporal window for mapping
and validation.
The analysis component involves computing

the accuracy statistics. For categorical and ordinal
(i.e., damage intervals) variables, user accuracy
(i.e., the complement of the commission error)
and producer accuracy (i.e., the complement of
the omission error) are derived for each class or
interval from confusion rates estimated from the
sampling units and presented in the confusion
matrix. Other common metrics are overall
accuracy (proportion of sampling units correctly
classified) and the Kappa statistic, although there
is a recent recommendation to replace the latter
with two new indices, quantity disagreement and
allocation disagreement (Pontius and Millones
2011). A common error in the computation of
these metrics is to assume that all the sampling
units have the same inclusion probability and thus
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have the same weights. This would actually
be the case if they had been selected by simple
random or systematic sampling, but in unequal
probability designs (e.g., stratified, probability
proportional to area), the inclusion probability of
each selected sampling unit must be used as
inverse weight in the estimation formulas.
Another common pitfall is the lack of reporting of
confidence intervals for the accuracy metrics. That
is, instead of reporting that the overall accuracy
of a given map, as estimated by a sample of
n randomly selected pixels, would range from
a to b 19 out of 20 times, the usual statement is
“this map has an overall accuracy of y”, which
conveys a false sense of confidence that the
reported value is the actual value. This deficiency
could be addressed by a requirement that “the
producer must defend in a statistically valid
manner that the overall accuracy of the map
exceeds 70% with a 95% confidence”, which
implicitly dictates the sampling effort required to
achieve that confidence.
While recommendations on good practices for

assessing the accuracy of remote sensing maps
exist (e.g., Olofsson et al. 2014), in terms of
practice there is opportunity for improvement
(Castilla 2016). Notwithstanding, accuracy
requirements could be less stringent for applica-
tions where users only need a broad indication of
damage, but this should be reflected in the
data quality section of the accompanying meta-
data. Properly-filled standard metadata are very
important, for without them, knowledge about the
nuances of the map and its creation would be lost
when staff changes or when it is externally
distributed, which could lead to map misuse and
ultimately to poor decisions based on less-
reliable-than-assumed data (Batcheller 2008).

Discussion: lessons learned and
future opportunities

From this review and our own experience,
we learned some lessons regarding (1) detecting
damage; (2) assessing damage; and (3) considera-
tions for integrated monitoring. Here we discuss
these three aspects, provide perspectives regarding
new developments and what they may offer to
future mapping and monitoring of forest pest
damage, and conclude by summarising the main
lessons learned.

Detecting damage
Three primary factors relevant to detecting pest

damage include knowing how it is manifested,
when it occurs, and at what spatial scale is it
visible. Knowledge of the causal agent can be
important to detecting damaged trees as it
provides information about its effects on the host
tree in terms of changes in morphology, physiol-
ogy, or both, and about how that may be
manifested on the image (Murtha 1978). One
problem is that different stressors can result in the
same physiological response, or the response can
be different depending on the original condition of
the vegetation and the duration of the stress
(Franklin 2001). Hence, knowledge of the char-
acteristics of trees when they are healthy has long
been considered the key towards understanding
and interpreting changes due to pest damage that
may be observed in remote sensing data (Puritch
1981).
Insect damage symptoms observable by remote

sensing may include foliage reddening, chlorosis
(yellowing), and partial or total loss of foliage
(Murtha 1972). For example, the degree of red
discolouration caused by jack pine budworm
defoliation is a visible indicator of damage
severity used during aerial surveys (Volney
1988). When it is part of the symptoms, the
discolouration is also likely the stage at which the
greatest spectral change occurs relative to healthy
trees (Hall et al. 1995). For bark beetles, damage
is typically manifested as a delayed change in
colour and loss of foliage during the year(s) after
the attack (Safranyik 1995; Shore et al. 2006). For
defoliators, significant foliage loss, measured as a
reduction in leaf area, results in increases in
visible red, reduction of near infrared, and a
corresponding increase in the shortwave infrared
reflectance (Rullan-Silva et al. 2013).
The second detection factor is timing, that is,

when and over what time period will damage most
likely be visible. For bark beetles, damage is most
visible within one year following a successful
attack, when the tree foliage fades to yellow and
red. For example, ~90% of trees successfully
attacked by mountain pine beetle enter the
red-attack stage one year after the attack; once
they lose all needles, they enter the grey-attack
stage, which often occurs within three years of the
attack (Wulder et al. 2006a). Insect defoliator
damage is most visible near the culmination of
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larval feeding, resulting in either maximum
foliage loss or foliage colour change (e.g., red
colouration associated with spruce budworm
defoliation) that varies by defoliators (Table 1).
The variable timing calls for a pest-specific
approach that explains why annual detection
cannot take place within a single time window for
all pests.
The third detection factor, spatial scale, requires

that the spatial resolution of the imagery be
selected according to the nature of the infestation
and the information needs in question (Wulder
et al. 2006a). Decametric imagery (10–99m
spatial resolution) is more appropriate for
mapping larger infestations at epidemic popula-
tion levels. Metric imagery (1–9m spatial resolu-
tion) is more appropriate for mapping spatially
dispersed infestations at the endemic or incipient
level where only small groups of trees are infes-
ted. Submetric imagery (< 1m spatial resolution)
can play an important role in supplying much-
needed calibration and validation data (Wulder
et al. 2012b), and is directly useful if individual
tree sanitation is the target application. There is a
cost component to imagery whereby metric and
submetric resolution images are not suited for
large area application in other than sampling for
localised assessments and calibration/validation
purposes due to their small spatial footprint
(Table 2). In order to successfully monitor an
infestation in an operational context, multi-scale,
multi-sensor data are recommended (Wulder et al.
2008a), whereby low to high spatial resolution
imagery, aerial and ground surveys can be com-
bined to provide information that supports pest
management and policy (Wulder et al. 2006b).
This recommendation while perhaps ideal, does
need to be tempered by a balance between funding
availability and information need when deriving
the most cost-effective approach to the pest
detection problem at hand. In summary, under-
standing the life cycle of the different pests, their
damage patterns, and when and at what spatial
scales damage is most visible are the fundamental
prerequisites for successful detection.

Assessing damage
Assessing damage involves the assignment of a

severity class or a quantitative estimate to each
spatial unit (polygon or pixel) in which damage
was detected. Aerial surveys invariably use

severity classes, while remote sensing yields
continuous relative estimates that need to be
anchored to ground observations. Of relevance
when compiling national statistics from aerial
surveys in Canada is that the thresholds for each
severity class vary by provincial jurisdiction
(Canadian Council of Forest Ministers 2012b),
and this would result in spatial inconsistencies,
even in areas where survey effort is high. Also,
there are monitoring gaps, particularly at northern
latitudes, that occur mostly in unmanaged forests
that would similarly result in uncertainties. These
differences and gaps reflect provincial and
territorial forest management policies and the
availability of financial, aircraft and human
resources (Canadian Council of Forest Ministers
2012b). Aerial surveys are designed to map the
broad areal extent of pest damage, and thus they
tend to overestimate affected areas compared with
remote sensing, which will map damage where it
has occurred and thus is indicative of net areas of
damage. To more closely approximate net areas of
damage, provincial jurisdictions such as Alberta
(A. McGill, Alberta Environment and Sustainable
Resource Development, personal communica-
tion) and Québec (L. Morneau, Québec Ministère
des Forêts, de la Faune et des Parcs, personal
communication) has overlaid their aerial survey
maps with forest inventory polygons to filter out
non-susceptible forest types, water, agriculture,
and other non-forest features that may occur
within the survey polygon. Doing so can
significantly reduce the errors of commission: in
the example of Figure 1, by 53% for spruce bud-
worm (Fig. 1A), and by 70% for forest tent
caterpillar (Fig. 1B). While these examples should
not be considered generalisable in terms of
magnitude, the approach of mapping broad and
“netting down” (i.e., the process of reducing a
broad delineation to more closely approximate the
area actually damaged) the area with a GIS ana-
lysis indeed reduces overestimation of damage
extent. In addition, this process is more efficient
than attempting to achieve the same result by
mapping with too much detail during the aerial
survey. While this approach is a step towards
improving accuracy, it cannot address some
uncertainties inherent to aerial surveys. Indeed,
there are physical and logistical limitations in
manually delineating damaged areas, even with
the availability of computer tablets and GPS
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Fig. 1. Net down of aerial survey based on a GIS overlay with forest inventory polygons for damage caused by
(A) spruce budworm and (B) forest tent caterpillar.
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positioning, which may lead to both omission and
commission errors, as can be observed in
Figure 2. Another potential source of error is the
implicit assumption that all susceptible forest
stands within an aerial survey polygon would
have been damaged to the same degree. Regard-
less, it seems preferable to map broadly followed
by a netting-down process using a post-flight GIS
analysis.
Assigning a severity class can be problematic in

mixed stands. Figure 3 exemplifies severe spruce
budworm mortality in a mixed spruce–aspen
canopy. Given that there are both living and dead
trees, the general rating may warrant a “severe”
class because of the conifer mortality even if not
all trees have sustained damage (e.g., trembling
aspen). Remote sensing would also be challen-
ging, since the spectral response of mixed pixels
will vary depending on the objects that fall within
their footprint (Congalton 2010), which will be
governed by the pixel size and the spatial dis-
tribution pattern (scattered versus clumped) of
damaged trees.
There are two strategies to assessing damage

using remote sensing. Many past studies have
focussed on acquiring single-date or pre-outbreak

and post-outbreak images from which damage is
detected and assessed (Tables 4 and 5). Under this
strategy, image collection needs to coincide with
the dates when damage is most conducive for
discriminating damage levels, which is analogous
to how aerial surveys are conducted. This is a
viable approach for using remote sensing to
monitor specific areas (e.g., Hall et al. 2007;
Townsend et al. 2012), as it takes advantage of
prior knowledge (e.g., past aerial surveys) to focus
image acquisition, and automating the image
processing can be undertaken if needed to oper-
ationalise the mapping application. Most of the
studies summarised in Tables 4 and 5 employed
this approach and are suited for mapping of
known outbreaks or for focussed detection (e.g.,
where an outbreak has just started or is suspected
to occur).
The second strategy is designed to detect trends

over dense, long-term series of satellite imagery.
It was precipitated by the free, open access
data policy for Landsat data in 2008, which
encouraged the development of long-term conti-
nuous monitoring for tracking land cover dynamics
(Wulder et al. 2012a). The Landsat ecosystem dis-
turbance adaptive processing system (LEDAPS)

Fig. 2. Example aerial survey delineation of aspen defoliation.
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project, for example, created a spatially complete
record of stand-clearing disturbances and recovery
to study ecosystem disturbance patterns across
North America (Masek et al. 2008). LandTrendr
(Landsat-based detection of trends in disturbance
and recovery) was created as an approach to extract
spectral trajectories of changes in land cover from
annual Landsat time series (Kennedy et al. 2010).
Huang et al. (2010) developed a highly automated
vegetation change tracker to process dense Landsat
time series stacks from which disturbances such as
harvest, fire, and urban development could be
mapped. More recently, Hansen et al. (2013) pro-
duced globalmaps of forest depletions from2000 to
2012 that further demonstrate the potential for
automated processing of large volumes of Landsat
30-m satellite imagery. The application of these
time-series approaches to pest damage assessment
is a research opportunity whereby spectral trajec-
tories could be associated to different magnitudes
and types of pest damage. In addition to being
suited for mapping of known outbreaks or focussed
detection, it may also detect changes in imagery that
may highlight new outbreaks whose locations were
previously unknown.
A typical field survey averages a measure of

insect damage (e.g., defoliation, mortality) within

a fixed-area plot according to predefined percent
intervals, and record the GPS coordinates of the
plot centre (e.g., Royle and Lathrop 2002; Hall
et al. 2003, 2007). A problem with moving field
surveys towards a more continuous scale is that
in situ, visual assessment of defoliation is sub-
jective (less so for mortality), and observer bias
will depend on individual expertise (e.g., Wulff
2002; Mizoue and Dobbertin 2004). As a result,
agencies employ training, periodic field calibra-
tion, and quality checks to minimise errors and to
ensure consistency. Branch sample assessments
such as the Fettes method (Fettes 1950) require
more time than ocular assessments, but have
resulted in higher correlations with remote
sensing measures of spectral response (Hall et al.
2009). Attention to field data collection protocols
is therefore a relevant component to remote
sensing assessment of pest damage.

Aerial survey and remote sensing:
considerations for integrated mapping and
monitoring of insect damage
Aerial survey is the primary tool for mapping

the location and severity of forest pest damage,
and it will likely continue to be relied upon by the
forest health community. These surveys are used

Fig. 3. Example photograph of how spruce budworm defoliation creates challenges in rating damage of mixed
stands when subsequently associated to a remote sensing image. Source: Alain Dupont, Société de protection des
forêts contre les insectes et maladies.
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for a wide range of purposes that aside for
reporting on provincial and national pest condi-
tions, are also used to support pest management
and control efforts, forest health research and
others (Westfall and Ebata 2014). Aerial surveys
provide input to pest management decisions and
are used in both jurisdictional and national annual
reporting requirements. In addition, the legacy of
long-term annual surveys provides the opportu-
nity to derive trends that reveal the coarse-scale
dynamics of pest conditions.
The National Forest Pest Strategy (NFPS) was

created to foster a proactive, risk-based approach
to forest pest management, of which monitoring
data serve as an essential foundation (Canadian
Council of Forest Ministers 2012b). To realise
NFPS goals, an assessment of forest health mon-
itoring was undertaken in Canada to highlight
compatibilities and differences in survey methods,
and to identify monitoring gaps (Canadian
Council of Forest Ministers 2012b). The problem
of monitoring gaps is particularly relevant for
northern latitudes, where more complete monitor-
ing would entail costs and increases in capacity and
capability beyond what is currently available
(Canadian Council of Forest Ministers 2012b). In a
survey of research needs, among the highly ranked
topics were “spatial and temporal analysis of pest
data to enable detection of changes in pest beha-
viour and distribution due to climate change, ana-
lysis of regional and national population trends, and
quantification of losses” (Hodge 2014). Addressing
the data gaps and these research needs, at least in
part, provides a rationale for using remote sensing
for forest pest monitoring.
Our review confirms that aerial survey and

remote sensing maps of pest damage are not
directly equivalent in terms of areas delineated.
The reduction of aerial survey delineated areas
through a post-GIS overlay with forest inventory
or land cover data, however, is an attempt to
derive a more spatially precise estimate of pest
damage. While this approach is already being
employed in Canada, it is not universally applied
to all forest pests, nor in all provincial and terri-
torial jurisdictions. To create a monitoring system
that integrates aerial survey and remote sensing
will require the harmonisation of pest damage
areas between these methods, and the willingness
to incorporate remote sensing to fill data gaps for
achieving more complete reporting where needed.

What is the management context for forest
health information within which remote sensing
can help? There are four prospective roles that
current data and methods could play. First, remote
sensing could have a complementary role in
mapping damage on an annual basis, which
would require the development of a system that
integrates both aerial surveys and remote sensing.
Second, remote sensing could be further pursued
as the vehicle to address identified data gaps
(Canadian Council of Forest Ministers 2012b).
Third, remote sensing could be used for special
purpose studies requiring pest damage data of
finer resolution for addressing questions of impact
on ecology, management, and carbon. Fourth,
remote sensing could support retrospective
analyses and predictive modelling, such as those
undertaken to estimate trends in the progression of
the recent mountain pine beetle outbreak in
western North America (Wulder et al. 2006b,
2009c; Robertson et al. 2007; Chen 2014;
Meddens and Hicke 2014).
There are at least two factors that challenge the

viability of remote sensing for providing useful
pest damage information. The first factor pertains
to the biological manifestation of damage, which
must be sufficient for remote sensing detection.
For example, detecting mountain pine beetle
green attack is considered operationally infeasible
(Wulder et al. 2009b). With defoliators, the
optimal timing for collection of remote sensing
data when foliage loss is at its maximum can be
very short (Table 1), with new and upcoming
sensors expected to increase the opportunities for
acquiring data (Table 2). Understanding pest
biology with respect to the manifestation of
damage and the timing when it is most visible is
necessary because this governs what remote
sensing sensors are most suitable, when data
should be collected, and what analysis approach
should be used. Research efforts at generating
continuous time series, pixel compositing and
combining data from similar sensors may help
address the remote sensing viability question
(Roy et al. 2014; White et al. 2014).
The second factor pertains to the information

needs of forest health managers, which vary
depending on the stage of the pest outbreak. In the
early phases of detection, where populations are
mostly endemic, remote sensing, traditionally, has
not been able to play a prominent role relative to
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population monitoring. However population
monitoring is prohibitively expensive for early
detection of pest damage over large areas, parti-
cularly in remote areas where ground access is
limited. Remote sensing is likely to play an
increasingly important role in change detection,
especially at high altitudes and latitudes, where
population monitoring costs are higher and where
disturbance frequencies are most likely to rise
under climate change (Gray 2013). As the
outbreak progresses and peaks, there are serious
limits to the accuracy of predictions derived from
population models (Cooke et al. 2007), and
remote sensing is likely to play an increasingly
important role for continually revising forecasts,
particularly those done at very large scales. As
continued annual defoliation results in cumulative
mortality, the forest pest manager’s context
changes from pest population management to
salvage logging, and the goals shift from detecting
defoliation to quantifying mortality. Remote
sensing products thus need to be adjusted to pro-
duce the information needed at the given phase of
the outbreak. All of these potential applications
are constrained by the logistics of timing, avail-
ability of resources, and data.

Future outlook
In addition to the development of integrated

monitoring systems that combine aerial survey
and remote sensing for mapping and monitoring
forest pest damage, we speculate about how
ongoing and upcoming technological advances
could evolve into future remote sensing of forest
pest damage. While the costs associated with
these advances are always a consideration, we
identified seven areas that can be grouped into
analysis approaches, field measurements and
sensor developments:
Analysis approaches:

(1) Innovative time series approaches to
pixel-based change detection are being
developed as a result of the opening of
the Landsat archive (Roy et al. 2014).
Examples include new cloud and shadow
masking methods, mosaicking, and
temporal compositing approaches to gener-
ate the pixels of the highest quality for
analysis (Roy et al. 2014;White et al. 2014).
For example, the continuous monitoring of

forest disturbance algorithm (CMFDA; Zhu
et al. 2012) estimates sigmoidal models for
each pixel and spectral band of multi-year
time series of satellite multispectral observa-
tions. Once fitted for every single pixel of the
area of interest, CMFDA can accurately detect
any nonseasonal change that deviates from
model predictions after three consecutive clear
observations, which may enable the early
detection and tracking of insects outbreaks as
new images become available. Testing of this
approach for pest damage would be necessary
to verify its application potential.

(2) Two areas in change detection research that
offer potential for forest pest application
include object-based change detection and
data fusion from multitemporal images.
Rather than using individual pixels as
analysis units, object-based change detec-
tion uses image objects, that is, a group of
connected pixels that are more similar
between themselves than when compared
with their surroundings (Chen et al. 2012).
This is advantageous when the objects of
interest (e.g., tree crowns) are much larger
than the pixels, as is the case in imagery of
submetric resolution, especially because
information regarding the spatial context
and mutual relations between image objects
can be exploited in the analysis (Hussain
et al. 2013). The second area, image fusion,
involves the integration of multi-source,
multi-resolution information to improve the
change detection process (Zhang 2010;
Du et al. 2013). Given that differences in
insect damage severity can be subtle, incor-
porating other source data that identifies the
host tree species and removing other areas not
relevant to forest change could improve
detection and mapping of pest damage. The
absence of current studies of object-based
change detection and image fusion suggest its
application for assessing pest damage could
be an area of future research.

Field measurements:

(3) Field methods are being subject to further
automation and sophistication. Inexpensive
wireless sensor networks (Chen et al. 2013)
are being deployed to detect and monitor
insect pest infestation using a variety of
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sensors, from acoustic recorders to detect
feeding larvae of wood-boring beetles
(e.g., Chesmore and Schofield 2010) to
chemiresistors that detect semiochemicals
emitted by the pests or their hosts (e.g.,
Weerakoon et al. 2012). Plot-level defolia-
tion estimates could be obtained using
ground-based, zenithal digital hemispherical
photography, which is customarily used to
derive leaf area index and other biophysical
parameters using semi-automated algo-
rithms embedded in both commercial and
free software (Chianucci and Cutini 2012);
or even from photogrammetric point clouds
(see 6 below) derived from hand-held
cameras (Liang et al. 2014). Repeated
photograph acquisitions in the same plots
would allow an accurate estimate of defolia-
tion (e.g., Kubo et al. 2012), and these
measurements would enable a better linkage
with remote sensing data.

Sensor developments:

(4) New spaceborne sensors will augment our
capacity to detect, assess, and track damage.
Of particular relevance is the recent launch
of the first satellite of the European Sentinel-
2 constellation, which will provide, free of
charge, weekly optical observations at 20-m
spatial resolution (10m for some of the
spectral bands) along 290-km swaths
(Drusch et al. 2012), and thus will consider-
ably enhance the provision of high spatio-
temporal resolution data for forest health
monitoring. The combination of Landsat 8
and Sentinel-2, for example, results in up to
eight image acquisitions within a month that
greatly increases the potential for acquiring
cloud-free images to track disturbances (Zhu
et al. 2012).

(5) There is tremendous growth in LiDAR data
acquisition capabilities from ground,
airborne, and spaceborne platforms (Harpold
et al. 2015). Data from these sensors will
require advancements in processing and
analysis, linkages to in situ observations,
and integration with other remote sensing
data as a basis to advance applications
(Harpold et al. 2015). Some of these
advances, including increased data coverage
and quality, as well as the use of multispectral

or hyperspectral lasers with full-waveform are
now in development (Hakala et al. 2012;
Harpold et al. 2015). Repeat multispectral
laser scanning has the potential to monitor the
changes in the structure and physiology of the
tree canopy (Hakala et al. 2015) that could be
applicable to measurement of insect damage
if the costs associated with repeat data
acquisition and processing are considered
justifiable relative to the information derived.
Multispectral waveform LiDAR offers a
particular advantage in being able to char-
acterise both vegetation structure and reflec-
tive properties (Hovi and Korpela 2014),
which would also be conducive to studies of
tree and forest condition. As a result,
advances in these sensors will offer increased
capabilities in structural and spectral sensitiv-
ities to changes in forest foliage and biomass
that will no doubt result in increased future
application to assessments of forest insect
damage.

(6) There is potential to quantify defoliation
using UAV photogrammetric point clouds
from repeated acquisitions before, during,
and after defoliation, especially for pests
where the pattern of defoliation starts from
the tree tops and outside of tree crowns
inwards such as spruce budworm and jack
pine budworm. These point clouds are a sort
of three-dimensional model of the canopy;
can be derived from overlapping photo-
graphs taken from consumer-grade cameras
using the “structure from motion” computer
vision approach (Snavely et al. 2008); and
have a much lower cost in data acquisition
and processing than LiDAR point clouds.
They could be a suitable substitute when the
focus is on the outer envelope of the forest
canopy, which is where the majority of
points from these clouds are located (White
et al. 2014). Future UAV systems will be
designed to make autonomous decisions
regarding where and how they should fly
to complete a preprogrammed task, and how
they can complete the task most efficiently.
Hence they will augment the capacity of the
field crews to expediently collect data to
calibrate and validate aerial surveys and
remote sensing-based assessments of pest
condition.
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(7) We anticipate that new synergies will evolve
from the integration of technologies. UAVs
will carry LiDAR and hyperspectral sensors
(e.g., Wallace et al. 2012; Zarco-Tejada
et al. 2012) that will improve measurements
of canopy condition that could then be
associated with pest damage. New smart-
phone applications that take advantage of
the phone’s GPS, camera, and microphone
capacities will change the efficiency and
mechanism with how data capture will be
undertaken and this is anticipated to change
the collection of biological data and poten-
tially reduce the cost of monitoring pro-
grammes (August et al. 2015). Integrated
information systems (e.g., Fang et al. 2014)
that combine data from disparate sources,
communicate and act upon the sensors
through the Internet (Gubbi et al. 2013),
and share data and analytics through the
Internet will expand both the way insect
pests are monitored and our knowledge
about them.

Summary of lessons learnt
Aerial survey is the dominant tool for

monitoring insect disturbances, because it is rela-
tively cost effective in meeting a specific client
need. It has provided a long-term legacy of forest
health information in Canada and is likely to
continue into the foreseeable future. There is a
growing demand, however, for pest information
of lower cost, greater extent and increased
precision in terms of delineation and severity
(Bernier et al. 2012). Remote sensing is a potential
solution to address these demands, resolve data
gaps and augment aerial surveys by increasing
the precision and detail of the information in an
integrated forest pest monitoring system. The
multitude of remote sensing studies and our direct
experience provides several lessons that could help
focus how the integration of remote sensing into a
pest monitoring system could be achieved. The
summary of lessons learned and recommendations
include:

(1) Fundamental to the detection of damage is
understanding how damage manifests, when
will it be visible, and at what spatial scale.
Since this varies by pest, detection requires
knowledge of the pest–host–image triangle.

For example, forest tent caterpillar damage
is characterised as foliage loss that is only
detectable in remote sensing image acquisi-
tions for a limited time because of the ability
of trembling aspen to re-flush following
defoliation.

(2) Aerial surveys and remote sensing maps of
pest damage are not necessarily substituta-
ble but they are complementary. Some
provincial jurisdictions, in a movement
towards more closely approximating net
areas of impact, are overlaying aerial survey
maps with forest inventory data to remove
non-susceptible forest types. While this
approach improves the aerial survey, it is
still based on the assumption that all areas
within a susceptible forest type suffered the
same level of damage assigned in the aerial
survey polygon. Remote sensing would
further refine these areas by only mapping
damage where it occurred and by providing
more precise estimates of severity.

(3) The discrete severity classes used in aerial or
field surveys, while relevant for operational
monitoring and reporting needs, are limiting
when used as reference data for calibration
against continuous spectral data from
remote sensing imagery. Since field infor-
mation is necessary to anchor remote
sensing assessments and for validation,
capturing severity data on a more contin-
uous scale is encouraged. Greater attention
to field data collection protocols, including
controlling for subjectivity, is necessary for
deriving valid remote sensing assessments.

(4) Mixedwood stands are challenging to assess
because a given defoliator will typically
only attack a particular host tree species.
That host tree species may also be unevenly
distributed within the stand, and this results
in mixed pixels that contain both non-
susceptible and susceptible trees, where the
latter may have sustained different levels of
damage. Addressing this problem requires
methods and models specific to mixedwood
stands from which to calibrate remote sensing
spectral response to damage.

(5) Defining the information need according to
spatial extent will help to determine which
of two strategies to implement when using
remote sensing to assess pest damage.
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The first strategy employs image pairs,
typically two images representing pre-
outbreak and post-outbreak, from which
changes are detected, or in some cases a
single date image depending upon the
clarity of the pest damage pattern. While
this strategy is viable for monitoring specific
areas, an alternative is emerging based on
time series analysis of image stacks from
multiple dates where the temporal profile of
individual pixels is extracted and analysed.
The second strategy is based on the increasing
availability of freely available data from more
satellites than just Landsat. This enables the
concept of a continuous time series approach
with pixel substitution strategies to generate
cloud free mosaics that promises to dispel the
difficulty of acquiring image data at the time
when the application warrants (White et al.
2014). Regardless of strategy, there is a need
to translate pixel change to changes in pest
damage that are useful for a forest health
manager.

(6) There are four roles that remote sensing
could serve in a management context:
contributing to annual mapping; filling data
gaps; providing data for special purpose
studies of pest impacts; and supporting both
retrospective analyses and predictive mod-
eling. As with any tool, there are practical
realities that limit when remote sensing is a
viable solution; understanding these is a
prerequisite for successful application. Inte-
grating remote sensing into forest health
monitoring programmes will help to address
the increasing demand to map and monitor
at finer levels of both spatial detail and
magnitude of damage.

A list of new innovations underway in the
field of remote sensing was presented, from which
we speculated about what these advances may
offer to future forest health assessment.
New technologies regarding satellite sensors,
airborne LiDAR, UAV, and methods of analysis
will no doubt play a role in future forest health
monitoring programmes. While much of the
knowledge and tools to develop a more integrated
pest monitoring system are available today,
technological innovation will continue to push the
limits of what we can do tomorrow.
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