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Abstract

In the framework of patterns in random texts, the Markov chain embedding techniques
consist of turning the occurrences of a pattern over an order-m Markov sequence into
those of a subset of states into an order-1 Markov chain. In this paper we use the
theory of language and automata to provide space-optimal Markov chain embedding
using the new notion of pattern Markov chains (PMCs), and we give explicit constructive
algorithms to build the PMC associated to any given pattern problem. The interest of
PMCs is then illustrated through the exact computation of P-values whose complexity
is discussed and compared to other classical asymptotic approximations. Finally, we
consider two illustrative examples of highly degenerated pattern problems (structured
motifs and PROSITE signatures), which further illustrate the usefulness of our approach.
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1. Introduction

The theory concerning pattern and motif occurrence in random strings has been of interest
since the 1950s. Computational molecular biology has been a major area of application for this
theory since the late 1980s. A variety of methods have been suggested in the literature for treating
exact distribution properties associated with pattern occurrence. For example, combinatorial
and classical probabilistic methods have been used by Guibas and Odlyzko (1981), Chrys-
saphinou and Papastavridis (1990), Robin and Daudin (1999), (2001), and Stefanov (2003);
Markov chain embeddings have been used by Fu (1996), Chadjiconstantinidis et al. (2000),
Antzoulakos (2001), and Fu and Chang (2002); Markov renewal embeddings have been used by
Biggins and Cannings (1987); exponential families with either Markov chain or Markov renewal
embeddings have been used by Stefanov and Pakes (1997), (1999), and Stefanov (2000); and
martingale techniques have been used by Li (1980) and Glaz et al. (2006).

An overview of some of these methods has been provided by Reinert et al. (2000). None
of the available methods is uniformly superior as far as computation of relevant distributions
is concerned. Furthermore, it has been noted that the computational effort is substantial for
all of the available methods when the pattern cardinality (i.e. the number of strings the pattern
contains) becomes relatively large. Taking inspiration from pattern matching theory, Nicodeme
et al. (2002) first proposed overcoming this problem using deterministic finite automata (DFAs)
in order to obtain a moment generating function of pattern counts through the Chomsky
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and Schützenberger algorithm. A similar approach using exponential families has also been
proposed by Crochemore and Stefanov (2003).

The purpose of this paper is to push forward the connection between patterns and automata by
introducing an optimal Markov chain embedding through the notion of pattern Markov chains
(PMCs) (Section 2). We then illustrate how this new tool can be used to perform efficient,
exact, and approximate pattern computations (Section 3), and the paper ends with two highly
degenerated biological pattern applications where our method proves its practical usefulness
(Section 4).

2. PMCs

2.1. Automata and languages

In this section we first introduce some classical definitions and results from the well-known
theory of languages and automata; see Hopcroft et al. (2001).

We consider a finite alphabet A = {a1, . . . , ak} whose elements are called letters. A word
(or sequence) over A is a sequence of letters, and a language over A is a set of words. We
denote by ε the empty word. For example, abbaba is a word over the binary alphabet A = {a, b}
and L = {ab, abbaba, bbbbb} is a language over A.

The product L1L2 of two languages is the language {w1w2, w1 ∈ L1, w2 ∈ L2}, where
w1w2 is the concatenation (or product) of w1 and w2. If L is a language, Ln = {w1 · · · wn with
w1, . . . , wn ∈ L}, and the star closure of L is defined by L∗ = ⋃

n�0L
n. Hence, the language

A∗ is the set of all possible words over A. For example, we have {ab}{abbaba, bbbbb} =
{ababbaba, abbbbbb}, {ab}3 = {ababab}, and {ab}∗ = {ε, ab, abab, . . .}.

A regular language is either the empty word, a single letter, or obtained from the union,
product, or star closure of regular languages. The language A∗ is regular. Any finite language
is regular.

Definition 1. If A is a finite alphabet, Q is a finite set of states, s ∈ Q is a starting state, F ⊂ Q
is a subset of the final states, and δ : Q×A → Q is a transition function, then (A, Q, s, F , δ) is
a deterministic finite automaton (DFA). For all a = a1 · · · ad−1ad ∈ Ad , d � 2, and q ∈ Q, we
recursively define δ(q, a1 · · · ad−1ad) = δ(δ(q, a1 · · · ad−1), ad). A word w ∈ Ah is accepted
(or recognized) by the DFA if δ(s, w) ∈ F . The set of all words accepted by a DFA is called
its language. See Figure 1 for a graphical representation of a DFA.

We can now give the most important result of this subsection, which is a simple application
of the classical Kleene theorem and Rabin and Scott theorem; see Hopcroft et al. (2001).

Theorem 1. For any rational language L, there exists a unique (up to a unique isomorphism)
smallest DFA whose language is L.

2.2. Connection with patterns

We define the pattern over the finite alphabet A to be any finite language over the same
alphabet such that no element is included in another element (this last condition is used to
simplify many definitions and results in avoiding degenerate cases). For any pattern W , any
DFA that recognizes the regular language A∗W is said to be associated with W . According to
Theorem 1, there exists a unique (up to unique isomorphism) smallest DFA associated with a
given pattern. For example, if we work with the binary alphabet A = {a, b} then the smallest
DFA associated with the pattern W1 = abA1aaA1ab has L = 12 states and F = 1 final state.
A graphical representation of this DFA is given in Figure 1.
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Figure 1: Graphical representation of the DFA (A, Q, s, F , δ)withA = {a, b}, Q = {0, 1, 2, . . . , 10, 11},
s = 0, F = {11}, and δ(0, a) = 1, δ(0, b) = 0, δ(1, a) = 1, δ(1, b) = 2, δ(2, a) = 3, δ(2, b) = 4,
δ(3, a) = 5, δ(3, b) = 1, δ(4, a) = 5, δ(4, b) = 0, δ(5, a) = 6, δ(5, b) = 2, δ(6, a) = 7, δ(6, b) = 8,
δ(7, a) = 9, δ(7, b) = 2, δ(8, a) = 10, δ(8, b) = 4, δ(9, a) = 1, δ(9, b) = 11, δ(10, a) = 5, δ(10, b) =
11, δ(11, a) = 3, and δ(11, b) = 4. This DFA is the smallest one that recognizes the language L = AW1

with A = {a, b} and W1 = abA1aaA1ab, and hence |W1| = 4.

It is well known from pattern matching theory (Cormen et al. (1990), Crochemore and Han-
cart (1997)) that such a DFA provides a simple way to find all occurrences of the corresponding
pattern in a sequence. In the following we will see how to exploit this remarkable property to
study the distribution of patterns.

We should note that in the special case where our pattern contains only one word there is an
easy way to build its smallest associated DFA.

Proposition 1. If W = {w = w1 · · · wh} is a single word of length h then its smallest associated
DFA is of size L = h + 1 and defined by Q = {ε, w1, w1w2, . . . , w}, the set of all prefixes of
w, s = ε, F = {w}, and, for all q ∈ Q and a ∈ A, δ(q, a) is simply defined as the longest
suffix of qa (concatenation of q and a) in Q.

In the case of a general pattern a similar method can produce an associated DFA (consider
the case where Q is the union of all pattern prefixes), but it would not necessarily be the smallest
one. In order to be more efficient in the DFA design, we should instead use the classical and
well-known algorithms provided by the theory of languages and automata (regular expression
to FSA, determinization, and epsilon removal).

For example, let us consider the pattern Wk = abAkaaAkab, k � 1, over the binary alphabet
A = {a, b}. Table 1 shows that the number of final states is (often dramatically) smaller than
the cardinality of the pattern. The pattern W1 is recognized by the DFA of Figure 1, W2 is
recognized by the DFA of Figure 2, and W11, a pattern with a cardinality of several millions, is
recognized by a DFA having only a few thousand states.

Assuming from now on that a DFA (smallest or not) associated with our pattern has been
built, we can give the main result of this subsection.

Theorem 2. If X = X1X2 · · · Xi · · · is an independent and identically distributed (i.i.d.)
sequence on A, if W is a pattern, and if (A, Q, s, F , δ) is an associated DFA, then the sequence
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Table 1: Characteristics of the smallest DFA that recognizes the language L = AWk with A = {a, b}
and Wk = abAkaaAkab. The pattern cardinality is |Wk | = 2k × 2k = 4k , L is the total number of states,

and F is the number of final states.

k |Wk | L F

1 4 12 1
2 16 27 3
3 64 57 6
4 256 122 13
5 1 024 262 28
6 4 096 562 60
7 16 384 1 207 129
8 65 536 2 592 277
9 262 144 5 567 595

10 1048 576 11 957 1278
11 4194 304 25 682 2745

0
b

a

a

b

b

a

b
a

a
b a

b

a
b

a

b

b

a

b
a

b

a

b

a

b

a

a b

ba

a

b

a

b
b a

b

a

b
a b

a

b

ab
a

b

a

ba

b

a

b

a

1

24

3

4

25 9

26

21

2

5 6

7

8

10

11

12

1314

15

16
17

1819

20

22

23

Figure 2: Graphical representation of the smallest DFA associated with W2 = abA2aaA2ab.
This DFA has L = 27 states and F = 3 final states.

Y = Y0Y1Y2 · · · Yi defined by

Y0 = s and Yi = δ(Yi−1, Xi) for all i � 1

is an order-1 Markov chain with transition matrix

�(p, q) =
{

P(X1 = a) if δ(p, a) = q,

0 if q /∈ δ(p, A),

and such that occurrences of W in X correspond to occurrences of a subset of letters in Y

(here F ). A Markov chain having these properties is called a PMC. Moreover, if the DFA is
optimal (i.e. has the smallest number of states) then the resulting PMC has the same property.

Proof. By definition, the sequence Y is obviously an order-1 Markov chain. Moreover, if
an occurrence of W ends at position i in X, the sequence X1 · · · Xi ends with an occurrence of
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the pattern and is therefore an element of A∗W , and is thus accepted by the DFA, which means
that Yi ∈ F and the first part of the theorem is proved.

Let us now assume that there exists a set Q, a subset F ⊂ Q, and a function G : A∗ → Q∗
such that

(i) for all x ∈ A∗, we let y = G(x); for all 0 � i � |x|, W ends at position i in x, which is
equivalent to yi ∈ F ;

(ii) if X is i.i.d. then Y = G(X) is an order-1 Markov chain.

For all x ∈ A∗ and a ∈ A, we denote by �(x, a) the state in position |xa| in f (xa), and we
recursively define the function G̃ : A∗ → Q∗ by G̃(ε) = G(ε) and G̃(xa) = G̃(x)�(x, a).
We now define �̃(G̃(x), a) = �(x, a) on the quotient space (A∗)R, where xRx′ is equivalent
to G̃(x) = G̃(x′).

Thanks to (ii), there exists δ : Q×A → Q such that �̃(yq, a) = δ(q, a) for all yq ∈ G̃(A∗)
and a ∈ A. Hence, (A, Q, s = G̃(ε)0, F , δ) is a DFA associated with W and the second part
of the theorem is proved.

We should note that the transition matrix of a PMC is sparse (only k × L nonzero terms
among L2, where k is the alphabet size) and that we have a natural decomposition of this
transition matrix into � = P +Q, where Q contains all transitions toward counting states and
P contains all transitions toward regular states.

Example 1. Let us consider the pattern W1 = abA1aaA1ab over the binary alphabet A =
{a, b}. Its smallest associated DFA is represented in Figure 1. If X is the original sequence, we
build the PMC Y as follows (final states are given in bold).

X = − a b a a a b b a a a a b b a a b a b a b
Y = 0 1 2 3 5 6 8 4 5 6 7 9 11 4 5 6 8 10 11 3 2

We see two occurrences of W1: one ending in position 12 (abbaaaab) and one ending in position
18 (abbaabab, overlapping the previous occurrence). The transition matrix of Y is given by

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µb µa 0 0 0 0 0 0 0 0 0 0
0 µa µb 0 0 0 0 0 0 0 0 0
0 0 0 µa µb 0 0 0 0 0 0 0
0 0 µb 0 µa 0 0 0 0 0 0 0
µb 0 0 0 0 µa 0 0 0 0 0 0
0 0 µb 0 0 0 µa 0 0 0 0 0
0 0 0 0 0 0 0 µa µb 0 0 0
0 0 µb 0 0 0 0 0 0 µa 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 µb 0 0 0 0 0 µa 0
0 µa 0 0 0 0 0 0 0 0 0 µ∗

b
0 0 0 0 0 µa 0 0 0 0 0 µ∗

b
0 0 0 µa µb 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where transitions with the superscript ‘∗’ belong to Q and µ· = P(X1 = ·).
As explained in the introduction, Nicodeme et al. (2002) proposed using the pattern’s DFA

to obtain the pattern generating function through the Chomsky and Schützenberger algorithm,
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and derived from it exact results and asymptotic moments. More recently, Crochemore and
Stefanov (2003) used the pattern’s automaton conjointly with exponential family results with
the same aim. Instead of focusing on the generating function only (as done in these papers),
here we propose a more straightforward and practical approach in which we exploit our new
PMC to improve a wide range of classical pattern methods.

2.3. Extensions

The methods we have presented until now are valid only for overlapping occurrences of a
pattern in an i.i.d. sequence. Here we propose to extend our results to Markov sequences or to
renewal occurrences.

2.3.1. Markov chains. In order to extend our results to Markov chain sequences, we first need
to introduce the following definition.

Definition 2. A DFA (A, Q, F , s, δ) in which there exist q ∈ Q and a, b ∈ Am such that
a �= b and δ(q, a) = δ(q, b) is called m-ambiguous. A DFA which is not m-ambiguous is
called m-unambiguous.

Please note that the m-ambiguity presented here is different from the classical notion of
ambiguity for DFAs (meaning that there exist two different paths to recognize the same language
element).

For any DFA (A, Q, s, F , δ) we define, for all q ∈ Q and for all m � 1, the following
notation:

δ−m(q) = {a ∈ Am, there exists p ∈ Q, δ(p, a) = q}
and �−1(q) = {p ∈ Q, there exists a ∈ A, δ(p, a) = q}.

Hence, such a DFA is m-unambiguous if all the δ−m(q) are singletons.

Theorem 3. If X = X1 · · · Xn is an order-m Markov sequence, m � 1, on A, if W is a pattern,
and if (A, Q, s, F , δ) is an m-unambiguous DFA whose language is A∗W , then the sequence
Y = Ym · · · Yn defined by

Y0 = s and Yi = δ(Yi−1, Xi) for all 1 � i � n

is an order-1 Markov chain with transition matrix

�(p, q) =
{

P(Xm+1 = b | X1 · · · Xm = δ−m(p)) if δ(p, b) = q,

0 if q /∈ δ(p, A),

and such that occurrences of W in X correspond to occurrences of a subset of letters in Y .
Therefore, Y is a PMC.

Proof. The proof is very similar to the i.i.d. case (Theorem 2) except that the m-unambiguity
is obviously required to ensure that all the δ−m(p) are singletons.

Using this theorem, it is possible to apply all preceding methods to Markovian sequences.
But the key question is of course, is it possible to build an m-unambiguous pattern DFA and if
so, how?

Nicodeme et al. (2002, Algorithm 6) showed that this could be achieved starting from a DFA
associated with the pattern by duplicating states until all the ambiguities are removed. This,
of course, is exactly what we need to do. However, in this paper we want to propose a more
explicit approach with Algorithm 1.
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As suggested by Nicodeme et al. (2002), Algorithm 1 simply duplicates states for which
there exists an m-ambiguity while preserving the DFA’s ability to recognize its language. As
only the necessary states are duplicated, this algorithm also preserves the optimality of the
produced DFA.

Algorithm 1. Build an m-unambiguous DFA that recognizes W from an (m−1)-unambiguous
DFA (empty condition if m = 1) having the same property, as follows. Let us note that we still
have Dq = δ−m(q) and Gq = �−1(q) at the end of the algorithm.

Require: A = (A, Q, s, F , δ) is an (m − 1)-unambiguous DFA that recognizes

W.

1: Initialization:

2: Q0 = Q for all q ∈ Q, Dq = δ−m(q), and Gq = �−1(q)

3: Main loop:

4: for all q ∈ Q0 do

5: while |Dq | > 1 do

6: take a = a1 · · · am ∈ Dq

7: add a new state qa to Q

8: if q ∈ F then add qa to F

9: define Dqa = {a} and Gqa = ∅

10: for all b ∈ A do δ(qa, b) = δ(q, b) and add qa to Gδ(q,b)

11: for all p ∈ Gq

12: if δ(p, am) = q and δ−(m−1)(p) = a1 · · · am−1 (empty condition if m = 1)
then

13: δ(p, am) = qa and add p to Gqa

14: for all p ∈ Gq, if q /∈ δ(p, A) then remove q from Gq

15: remove a from Dq

In order to achieve m-unambiguity we could hence successively remove 1-ambiguity, then
2-ambiguity, and so on until we finally remove m-ambiguity having used a total ofm applications
of Algorithm 1. For example, we can use this approach to transform the 2-ambiguous DFA
of Figure 1 (δ−2(1) = {aa, ba}) into the 2-unambiguous DFA of Figure 3; in the process,
Algorithm 1 replaces state 1 by states 1 and 12.

2.3.2. Renewal occurrences. We first recall that a renewal occurrence (also called a nonoverlap
occurrence) of a given pattern is an occurrence which does not overlap any previously counted
occurrence. For example, X = abababbaba contains three overlapping occurrences of aba but
only two renewal occurrences (as the second occurrence overlaps the first one).

Adapting pattern methods to such kinds of occurrences usually requires a lot of work, but with
our approach (as already pointed by Nicodeme et al. (2002)), we only need a small modification
to our DFA.

Proposition 2. If (A, Q, s, F , δ) is a DFA which accepts L = A∗W then

δ(f, a) = δ(s, a) for all f ∈ F and for all a ∈ A

will transform the DFA to accept only the texts ending with a renewal (i.e. nonoverlapping)
occurrence of W .

Proof. This is trivial since restarting the DFA from s after each occurrence means that the
past is not taken into account.
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Figure 3: Graphical representation of the smallest 2-unambiguous DFA associated with W1 =
abA1aaA1ab and A = {a, b}. This DFA has been built from the DFA of Figure 1 using Algorithm 1.
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Figure 4: Graphical representation of a renewal DFA associated with W1 = abA1aaA1ab and
A = {a, b}. This DFA has been built from the DFA of Figure 1 using Proposition 2.

An application of Proposition 2 to the DFA of Figure 3 gives the DFA of Figure 4.

Once this transformation has been carried out, all previous results will hold for renewal
occurrences using our modified DFA. We should note that when doing so, the pattern self-
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overlapping matrix is obviously null and, hence, makes compound Poisson approximations
easier to use as they are only simple Poisson approximations.

We can also extend the notion of renewal occurrences to the notion of d-renewal occurrences
for which we have to wait d steps after a given occurrence to accept another one (thus, renewal
occurrences and 0-renewal occurrences are exactly the same). In order to consider d-renewal
occurrences of a pattern W we simply need to count the renewal occurrences of WAd .

3. Using PMCs

3.1. Exact distribution

DFAs have been used by Nicodeme et al. (2002) and Crochemore and Stefanov (2003) to
obtain moment generating functions of the number of occurrences of any pattern in a random
sequence. With the help of efficient numerical algorithms (e.g. fast Taylor expansions), it
is therefore possible to compute moments or P-values. However, the computational cost of
the generating function itself could be important and, as a consequence, more straightforward
approaches (like direct moment computations) are often more efficient. In this subsection we
consider a more direct approach by showing how we can use PMCs efficiently to compute
exact P-values. Our approach firstly consists of producing, through a PMC, an optimal Markov
chain embedding of the problem and then using recurrence relations which exploit the sparse
structure of the transition matrix to perform the computations.

The technique of Markov chain embedding (also called finite Markov chain embedding
(FMCI)) has been used for pattern problems by Fu and Koutras (1994), Lou (1996), and Fu
and Lou (2003). If many embedded Markov chains can be built for a given problem, the
design of a space-efficient one is of course of critical interest for practical applications. Here
we propose to solve this problem by showing the very simple connection that exists between
PMCs and FMCIs.

Let W be a pattern, and let (A, Q, s, F , δ) be an associated (smallest or not) DFA. We
denote by Y the corresponding PMC with transition matrix � = P + Q, where Q contains all
transitions toward final states and P contains all transitions toward regular states.

Definition 3. For any c ∈ N, we define the FMCI Z by

Zj =
{

(Yj , Nj ) if Nj < c,

f if Nj � c,

where Nj is the number of pattern occurrences in X1 · · · Xj .

Proposition 3. Ordering the cL + 1 states of Z as {(1, 0), . . . , (L, 0), (1, 1), . . . , (L, 1), . . . ,

(1, c − 1), . . . , (L, c − 1), f }, the corresponding transition matrix is given by

� =
(

R v

0 1

)
,

where R (dimension cL × cL) and v (dimension cL × 1) are defined by blocks of size L:

Ri,j =

⎧⎪⎨
⎪⎩

P if i = j ,

Q if i + 1 = j ,

0 otherwise,

and vi ≡ 0 for 1 � i < c and vc = �Q,

where �Q is the column vector resulting from the sum of Q.
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Proof. The proof is straightforward since transitions in P will not increment the number of
occurrences while transitions in Q will increment them by one.

Example 2. If c = 2, we obtain the following transition matrix:

� =
⎛
⎝ P Q 0

0 P �Q

0 0 1

⎞
⎠ .

As proposed in Nuel (2006a), it is therefore possible to obtain the P-values we are looking
for, through efficient recurrence relations.

Theorem 4. For all n � 1 and 1 � i � k, we have

P(Nn < c | X1 = i) = (un−1)i and P(Nn � c | X1 = i) =
n−2∑
j=0

(vj )i ,

where ( )i denotes the ith component of a vector. For x = u or x = v, we have the size-L-block
decomposition

xj = (x
j

(c−1), . . . , x
j
0 )′ for all j � 0,

and we have the recurrence relations

x
j+1
0 = P x

j
0 and x

j+1
i = Px

j
i + Qx

j
i−1 for all i � 1,

with u0 a column vector of 1s and v0 = v.

3.2. Asymptotic approximations

Thanks to Markov embedding, it is possible to obtain the exact distribution of a pattern count
very efficiently. However, the complexity involved in this computation is linear in the sequence
length n and the number of observed occurrences, Nobs (see Table 2). In many practical
situations this complexity cost may be prohibitive, therefore, justifying the development of
faster approximations. A review of such approximations and the practical means to their
efficient implementation was proposed in Nuel (2006b).

Table 2 summarizes the time and memory complexities for all these approaches. Let us
first point out that the alphabet size k and the cardinality L of the PMC state space are critical
parameters for all the approaches since k × L, the number of nonzero terms in the transition
matrix of the PMC, is the complexity of a sparse product of this matrix with a vector.

Table 2: Order of magnitude of memory and time complexities for the different statistical approaches.
Here k is the alphabet size, L is the number of states of the associated DFA, F is the number of final

states, n is the sequence length, and Nobs is the observed number of occurrences.

Method Memory complexity Time complexity

Exact k × L + Nobs × L k × L × Nobs × n

Gaussian k × L + F × L k × L + F × L × log n + F 2

Binomial/Poisson k × L k × L + F + log Nobs

Geometric Poisson k × L + F 2 k × L + F 2 + Nobs

Compound Poisson k × L + F 2 + Nobs k × L + F 2 + N2
obs

Large deviations k × L k × L
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Unlike with the exact approach, we have to assume both homogeneity and ergodicity of the
underlying Markov sequence in order to obtain these approximations. It is then possible to
compute exact first-order and second-order moments of the pattern count with a constant Nobs
complexity and only a logarithm n complexity, thus resulting in a computational improvement
over the Markov embedding approach. We should, however, note that the number of final states
F appears in both the memory and the time complexity in a linear or quadratic form.

As binomial and Poisson approximations require only first-order moments, the resulting
complexities of both these methods are reduced. The length n of the sequence completely
vanishes from the time complexity. Thanks to incomplete beta (binomial) or incomplete gamma
(Poisson) functions, it is therefore possible to compute approximate P-values with a log(Nobs)

complexity.

If we now turn to compound Poisson approximations, the complexity O(F 2) both in time
and space is required to study the overlapping structure of the pattern. In general, the resulting
computation of P-values then requires a quadratic complexity in Nobs (which can be a prohibitive
cost for frequent patterns), but in the particular case when the compound Poisson is reduced
to a simple geometric Poisson, the complexity is only linear in Nobs thanks to the recurrence
formulae given in Nuel (2007).

Finally, large deviation approximations display the smallest complexities as they only rely
on sparse products to solve eigenproblems related to the transition matrix of the PMC (which
can be carried out efficiently with the Arnoldi class algorithm; see Lehoucq et al. (1998)).
However, it is necessary to emphasize that in practice the large deviation approaches are slower
than other approximations (but also more reliable for exceptional patterns).

4. Applications

In this section we propose to illustrate the interest of PMCs through two examples of highly
degenerated biological patterns.

4.1. Structured motifs

Here we consider an important class of DNA patterns (i.e. over the alphabetA = {a,c,g,t})
occurring in the regulatory regions of genes (Marsan and Sagot (2000)). These patterns consist
of a sequence of two or more strings, each occurrence of which is separated by a specific
number of letters. For example, the structured pattern ttgacaA16:18tataata is composed
of two strings separated by at least 16 and at most 18 letters. Robin et al. (2002) first gave a
Poisson approximation to the problem, and more recently, Stefanov et al. (2007) proposed exact
methods to compute the exact distribution of this kind of pattern. In order to demonstrate the
efficiency of our new PMC approach, we consider here the same dataset used in both (kindly
provided by the authors).

This dataset is composed of a set of 131 sequences of length 100 located in the upstream
region of 131 genes of the bacterium Bacillus subtilis. We also consider a set of 71 structured
motifs which are good promoter candidates. These motifs are all of the form w1A

d1:d2w2,
where w1 and w2 are two strings and d1 and d2, d1 � d2, are two integers.

For technical considerations, Stefanov et al. (2007) excluded occurrences of the structured
motif where w1 or w2 occur more than once (for example, in segment Ad1:d2 ). As explained by
the authors, this slightly differs from the usual definition, but the two countings (either usual
structured motifs or restricted motifs) are obviously closely related.
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Assuming that the 131 sequences (note that in Stefanov et al. (2007) a typographical error
indicated that the dataset contained 130 sequences and not the 131 sequences which they used
in all their subsequent binomial computations) are generated according to a homogeneous
Markov model whose parameters are estimated from the dataset, we consider the random
variables (Ni)1�i�131 and N ′

i , counts of the numbers of occurrences of the pattern and restricted
pattern defined above in the ith sequence, respectively. Hence, we consider N = ∑131

i=1 Ni and
M = ∑131

i=1 1Ni�1 (as well as their restricted versions, N ′ and M ′).
Table 3 lists the 15 most significant structured motifs among the 71 that have been tested. The

Ps(M
′ � obs) column is the same as the last column of Table 5 of Stefanov et al. (2007) except

for two structured motifs whose numbers of occurrences have somehow been miscounted by
the authors (ttgacaA16:18atataat and gttgacaA16:18tataata, which appear in the
sequences rpmH, TrnS, and veG, and rpmH and f82129, respectively, were only observed twice
and once, respectively, by Stefanov et al. (2007)).

As M and M ′ are different countings, it is not surprising to see differences between columns
4 and 5 of Table 3, but as expected, these differences are small.

Our new method also allows us to consider the sum of counts, N , rather than the number
of sequences, M , where the motif is present. In the particular case of the patterns considered
in our example, there is not much difference between the two statistics. However, differences
should be more important when considering either smaller patterns or longer sequences. For
example, the pattern W = atat appears in 88 sequences of the dataset, but its total number
of occurrences is 111; the corresponding P-values are

P(M � 88) = 1.66 × 10−2 and P(N � 111) = 3.50 × 10−4.

Even if the cardinality of each of these structured motifs,

|W | = 416 + 417 + 418 = 90 194 313 216 � 9 × 1010,

Table 3: The 15 most significant structured motifs. Here W indicates the motif, L is the number of
states and F is the number of final states of the smallest 1-unambiguous associated DFA, obs is the
number of observed occurrences in the dataset, and the subscript ‘s’ indicates that the probability is

computed assuming stationarity.

W L(F) obs Ps(M
′ � obs) Ps(M � obs) P(M � obs) P(N � obs)

ttgacttA16:18ataataa 2571(80) 3 5.77 × 10−10 7.10 × 10−10 7.08 × 10−10 7.53 × 10−10

ttgacaA16:18atataat 1527(55) 3 – 9.45 × 10−9 9.43 × 10−6 9.60 × 10−9

tgacttA16:18ataataa 2386(80) 3 1.00 × 10−8 1.29 × 10−8 1.29 × 10−8 1.33 × 10−8

gttgacaA16:18tataata 1014(28) 2 – 1.50 × 10−7 1.50 × 10−7 1.51 × 10−7

ttgacttA16:18atactaa 2551(60) 2 1.37 × 10−7 1.52 × 10−7 1.52 × 10−7 1.53 × 10−7

tgacttA16:18atactaa 2366(60) 2 9.18 × 10−7 1.05 × 10−6 1.05 × 10−6 1.06 × 10−6

ttgacaA16:18tataatg 1399(34) 2 2.18 × 10−6 2.50 × 10−6 2.50 × 10−6 2.51 × 10−6

ttgacaA16:18tatatta 1435(43) 2 4.75 × 10−6 5.48 × 10−6 5.47 × 10−6 5.50 × 10−6

ttgactA16:18tatact 2537(106) 2 4.81 × 10−6 5.71 × 10−6 5.71 × 10−6 5.75 × 10−6

ttgacaA16:18tataata 1408(43) 2 5.23 × 10−6 6.93 × 10−6 6.92 × 10−6 7.02 × 10−6

tgactttA16:18taataa 1505(55) 2 1.12 × 10−5 1.30 × 10−5 1.30 × 10−5 1.30 × 10−5

gactttA16:18taataa 1386(55) 2 9.52 × 10−5 1.08 × 10−4 1.08 × 10−4 1.08 × 10−4

gttgacaA16:18atataat 1066(35) 1 5.63 × 10−4 6.10 × 10−4 6.10 × 10−4 6.10 × 10−4

ttgacacA16:18ataataa 979(28) 1 6.39 × 10−4 6.99 × 10−4 6.98 × 10−4 6.98 × 10−4

gttgacA16:18ctataat 1392(43) 1 6.39 × 10−4 6.84 × 10−4 6.84 × 10−4 6.84 × 10−4
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is huge, we can see that the size of the smallest associated DFA is far smaller, with an order
of magnitude of 1000. This of course allows our PMC approach to be very efficient both in
terms of memory usage and running time. For example, computing the 71 P-values of the type
Ps(M � obs) requires a total of 25 seconds on an Intel 2.6 GHz P4® workstation, while the
computations of Ps(M

′ � obs) with the previous method requires 3277 seconds on an IBM F80
computer. Therefore, our approach is more than 100 times faster than the previous one, which
is a dramatic improvement.

It is nevertheless important to point out that the computations performed in Stefanov et
al. (2007) were not designed for numerical performance. Moreover, Stefanov et al. (2007)
considered the problem to be that of two competing patterns rather than a single (highly
degenerated) problem, which results in a marginal increase of complexity with the gap length,
while the single-pattern approach presented here is geometrically dependent on this parameter.

We should note that it is possible to adapt the PMC framework to a competing-pattern
problem by splitting the subset of final states into

F = F1 ∪ F2,

where F1 and F2 contain the final states associated with the patterns w1 and w2, respectively.
Then, if we consider the corresponding decomposition of the transition matrix

� = P + Q1 + Q2,

it is possible to obtain the distribution of a structured pattern in a very straightforward way:

P(w1A
dw2 starts in i) = µmP i−m︸ ︷︷ ︸

up to i

× P |w1|−2Q1︸ ︷︷ ︸
w1

× P d︸︷︷︸
gap

× P |w2|−1Q2︸ ︷︷ ︸
w2

×eT
F2

.

If we consider, for example, w1 = ttgaca, w2 = atataat, and 16 � d � 18, the smallest
1-unambiguous DFA that allows us to count both w1 and w2 has L = 16 states (while the DFA
associated with the full structured motif has L = 1527 states), and we obtain

P(w1A
16:18w2) �

17∑
d=16

100∑
i=1

P(w1A
dw2 starts in i) = 3.06 × 10−5,

which is very close to the exact solution (3.02 × 10−5 in Stefanov et al. (2007)) despite the fact
that important dependencies are not taken into account here.

This alternative approach obviously needs more work in order to deal rigorously with the
problem, but it already seems appealing since it combines the interests of both the existing
method and the new method. Indeed, most of the complex combinatorial aspects of the problem
are embedded in the PMC (whose state space is greatly reduced) and, as in Stefanov et al. (2007),
dealing with larger gaps is not a problem.

Finally, let us add that our PMC approach to structured motifs has several natural extensions
which are likely to be difficult to obtain with previous approaches:

• structured motifs with degenerated patterns (possibly of variable lengths) instead of
simple words;

• structured motifs with more than two patterns;

• heterogeneous background models.
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In order to illustrate this last point, we propose to consider the following heterogeneous
Markov model over A = {a,c,g,t}: the starting distribution µ1 (maximum likelihood
estimate using the dataset) is given by

µ1 = ( 50
131

17
131

23
131

41
131

)
,

and the heterogeneous (and arbitrary) transition matrix is given by

πi (a, b) = P(Xi = b | Xi−1 = a)

= (100 − i)

98
π0(a, b) + (i − 2)

98
π1(a, b) for all a, b ∈ A and for all 2 � i � 100,

where

π0 =

⎛
⎜⎜⎝

0.5 0.1 0.1 0.3
0.2 0.2 0.3 0.4
0.4 0.3 0.2 0.1
0.3 0.2 0.3 0.2

⎞
⎟⎟⎠ and π1 =

⎛
⎜⎜⎝

0.1 0.4 0.4 0.1
0.4 0.3 0.1 0.2
0.6 0.2 0.1 0.1
0.3 0.2 0.1 0.4

⎞
⎟⎟⎠ .

Using the PMC framework, it is then easy to compute the exact probability to observe at
least one occurrence of a structured pattern in a random sequence drawn either according to a
homogeneous model or according to the heterogeneous model defined above:

P(N(ttgacttA16:18ataataa) � 1)

=

⎧⎪⎨
⎪⎩

6.863712 × 10−6 with the homogeneous transitions π0,

8.795492 × 10−8 with the homogeneous transitions π1,

1.549870 × 10−6 with the heterogeneous transitions.

4.2. PROSITE signatures

Another interesting family of biological patterns are the signatures of the PROSITE database
(Hulo et al. (2006)). This database contains protein consensus patterns for many functional
families. As proteins are simple sequences of amino acids (size k = 20 alphabet), the PROSITE
signatures are often highly degenerated. For example, the cyclic nucleotide-binding domain
signature 2 (entry PS00889 of the PROSITE database) is [LIVMF]-G-E-x-[GAS]-[LIVM]-
x(5,11)-R-[STAQ]-A-x-[LIVMA]-x-[STACV] (‘x’ means ‘any amino acid’, ‘[GAS]’ means
‘any of those inside the brackets’, and ‘x(5,11)’ is a gap of length between 5 and 11). The
cardinality of this pattern is 1022, which is huge, but we can see in Table 4 that the characteristics
of the smallest associated m-unambiguous DFA are far smaller. Of course the number of states
grows quickly with m but, fortunately, protein sequences are usually modeled with low-order
Markov chains (m � 2).

Table 4: Characteristics of the smallest m-unambiguous DFA associated with the cyclic nucleotide-
binding domain signature 2 (entry PS00889): [LIVMF]-G-E-x-[GAS]-[LIVM]-x(5,11)-R-[STAQ]-A-x-
[LIVMA]-x-[STACV] (cardinality � 1022). Here L denotes the number of states and F denotes the

number of final states.

m L F

0 329 30
1 1 393 78
2 10 688 633
3 134 746 3045
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Table 5: The 27 PROSITE signatures (out of 1332) that appear at least once in the transmembrane
dataset. These signatures are ordered by increasing exact P-values computed in reference to an order-
(m = 0) Markov model whose parameters are estimated from the dataset. Here L and F are the
numbers of states and final states, respectively, of the smallest DFA that recognizes the pattern, Nobs is
the number of observed occurrences in the transmembrane dataset, and P(N � Nobs) is the P-value of the
observation. The indicated time is the overall running time to build the DFA, count the occurrences, and
perform the exact P-value computation using an Intel 2.6 GHz P4 workstation. A significance threshold

of 3.8 × 10−5 (5% threshold with Bonferroni correction) is represented by a solid line.

Signature L F Nobs P(N � Nobs) Time (s)

PS01243 1 656 10 2 6.6 × 10−14 48.4
PS01270 270 2 1 5.8 × 10−11 3.4
PS00556 50 1 2 7.5 × 10−11 1.4
PS01114 12 1 2 9.5 × 10−11 0.4
PS01188 14 1 2 1.3 × 10−9 0.3
PS01218 261 2 2 2.5 × 10−8 6.4
PS01133 8840 136 1 3.0 × 10−8 168.0
PS01214 11 1 1 3.4 × 10−6 0.2
PS01246 1332 40 1 3.4 × 10−6 20.3
PS00008 64 32 1141 4.9 × 10−6 1961.6
PS00294 9 3 387 3.2 × 10−5 56.5

PS01221 427 14 1 1.5 × 10−4 4.9
PS00004 7 2 129 1.8 × 10−4 12.3
PS01128 2587 63 1 9.0 × 10−4 44.9
PS01309 59 2 1 1.1 × 10−3 0.7
PS00006 12 4 1034 8.1 × 10−3 406.5
PS00016 4 1 16 2.9 × 10−2 1.1
PS00009 5 1 53 5.7 × 10−2 4.6
PS00217 1152 40 1 6.7 × 10−2 14.2
PS00133 40 3 1 1.1 × 10−1 0.6
PS00007 72 19 102 1.4 × 10−1 104.6
PS00001 9 3 398 3.6 × 10−1 58.8
PS00029 20 480 4096 15 4.8 × 10−1 5173.3
PS00430 17 2 1 7.4 × 10−1 0.2
PS00017 60 4 2 9.2 × 10−1 1.5
PS00005 6 2 955 9.4 × 10−1 240.2
PS00342 5 2 1073 1.0 × 10−0 548.8

Now we consider the 1332 signatures of the PROSITE database (release 19.23) and a dataset
consisting of 280 proteins from the SWISS-PROT database (Gasteiger et al. (2001)), which
belongs to the transmembrane type (according to their annotations) with a total length of 84 192
amino acids. We use the dataset to estimate an independent homogeneous model (order-(m = 0)
Markov model), and want to point out significant overrepresented PROSITE signatures in our
transmembrane sequences.

The 27 signatures that appear at least once in the transmembrane dataset are listed in Table 5.
For example, we can see that the signature PS00007 (Tyrosine kinase phosphorylation site)
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appears 102 times in the dataset but that the corresponding P-value (0.14) is insignificant.
The signature definition is [RK]-x(2)-[DE]-x(3)-Y or [RK]-x(3)-[DE]-x(2)-Y, which gives a
cardinality of 25.6 million, but the numbers of states and final states of the smallest unambiguous
associated DFA are only L = 72 and F = 19, respectively. The computational time is also
given in Table 5, and we can see that it highly depends on the combinatorial complexity of the
considered signature, ranging from a couple of seconds for the simplest ones to more than one
hour for the most complicated one.

Nicodeme et al. (2002) used a DFA approach to compute exact order-1 moments and order-2
moments through formal computations and generating functions in the independent case. Using
the extension of their method which we have presented here, we are able to do much more with
a dramatic improvement in terms of efficiency.

Signatures PS00008 and PS00294 are especially interesting because they have a high number
of occurrences in the dataset. The first one is annotated in the PROSITE database as an
N-myristoylation site and the second one as a Prenyl group binding site. It could be interesting
to further investigate the biological relevance of this site for transmembrane proteins.

5. Conclusion

In this paper we pushed the idea of using DFAs to produce moment generating functions of
random pattern = occurrences to the next level. By introducing the formal notion of a PMC
(proposed along with explicit construction algorithms), we provided an optimal way to perform
Markov chain embedding for a wide range of pattern problems.

In order to illustrate the usefulness of the notion of a PMC we explained in detail how we
could use it to compute the exact distribution of a pattern using only basic sparse linear algebra
and straightforward recurrences. We also compared the numerical complexity of this approach
to those of various classical asymptotic approximations (Gaussian, binomial, Poisson, and large
deviation) for which the PMC framework brought both effectiveness and simplicity.

We finally considered practical applications of these results by considering two examples
of highly degenerated pattern problems. The first one concerned structured motifs whose
distributions have already been studied by Robin et al. (2002) and Stefanov et al. (2007).

Despite the fact that our general approach did not consider the problem from the competing-
patterns point of view (like the previous approaches did), it was nevertheless able to perform
the computation up to 100 times faster than the previous (unoptimized) ones. However, it is
clear that this approach will not be able to deal with longer gaps without significant additional
computational effort. The counterpart of this drawback is a more flexible method allowing,
for example, one to take into account several occurrences in the same sequence or to consider
heterogeneous models.

As in Nicodeme et al. (2002), we also considered signatures from the PROSITE database. As
these signatures are often built from poorly conserved protein sequences, many of them present
high combinatorial complexity. As a consequence, 12% of the PROSITE patterns considered by
Nicodeme et al. (2002) were not tractable, the largest automaton successfully processed having
946 states. In the present study, however, our more straightforward Markov chain embedding
approach allowed us to treat all signatures, with our largest automaton having 20 480 states,
which dramatically outperformed the previous method.

Finally, let us add that all these results are already implemented in the Statistic for Patterns
package (SPatt, freely available at http://stat.genopole.cnrs.fr/spatt).
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