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Abstract

For certain algebraic Hecke characters χ of an imaginary quadratic field F we define
an Eisenstein ideal in a p-adic Hecke algebra acting on cuspidal automorphic forms of
GL2/F . By finding congruences between Eisenstein cohomology classes (in the sense of
G. Harder) and cuspidal classes we prove a lower bound for the index of the Eisenstein
ideal in the Hecke algebra in terms of the special L-value L(0, χ). We further prove that
its index is bounded from above by the p-valuation of the order of the Selmer group of
the p-adic Galois character associated to χ−1. This uses the work of R. Taylor et al. on
attaching Galois representations to cuspforms of GL2/F . Together these results imply
a lower bound for the size of the Selmer group in terms of L(0, χ), coinciding with the
value given by the Bloch–Kato conjecture.

1. Introduction

The aim of this work is to demonstrate the use of Eisenstein cohomology, as developed by
Harder [Har87], in constructing elements of Selmer groups for Hecke characters of an imaginary
quadratic field F . The strategy of first finding congruences between Eisenstein series and
cuspforms and then using the Galois representations attached to the cuspforms to prove lower
bounds on the size of Selmer groups goes back to Ribet [Rib76], and has been applied and
generalized by Wiles [Wil90] in his proof of the Iwasawa main conjecture for characters over
totally real fields, and more recently by Skinner and Urban [SU02] and Belläıche and Chenevier
[BC04] amongst others. These all used integral structures coming from algebraic geometry for
the congruences. In our case the symmetric space associated to GL2/F is not hermitian and we
therefore use the integral structure arising from Betti cohomology. This alternative, more general
approach was outlined for GL2/Q in [HP92].

In [Har87] Harder constructed Eisenstein cohomology as a complement to the cuspidal
cohomology for the groups GL2 over number fields and proved that this decomposition respects
the rational structure of group cohomology. The case that is interesting for congruences is
when this decomposition is not integral, i.e., when there exists an Eisenstein class with integral
restriction to the boundary that has a denominator. In [Ber08] such classes were constructed
for imaginary quadratic fields and their denominator was bounded from below by the special
L-value of a Hecke character. In § 4 we give a general set-up in which cohomological congruences
between Eisenstein and cuspidal classes can be proven (Proposition 9) and then apply this to the
classes constructed in [Ber08]. The result can be expressed as a lower bound for the index of the
Eisenstein ideal of the title in a Hecke algebra in terms of the special L-value. The main obstacle
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to obtaining a congruence from the results in [Ber08] is the occurrence of torsion in higher degree
cohomology, which is not very well understood (see the discussion in § 4.4). However, we manage
to solve this ‘torsion problem’ for unramified characters in § 5.

The other main ingredient are the Galois representations associated to cohomological cuspidal
automorphic forms, constructed by Taylor et al. in [Tay94, HST93] by means of a lifting to
the symplectic group. Assuming the existence of congruences between an Eisenstein series and
cuspforms we use these representations in § 3 to construct elements in the Selmer group of a
Galois character. In fact, we prove that its size is bounded from below by the index of the
Eisenstein ideal.

These two results are combined in § 6 to prove a lower bound on the size of Selmer groups of
Hecke characters of an imaginary quadratic field in terms of a special L-value, coinciding with
the value given by the Bloch–Kato conjecture.

To give a more precise account, let p > 3 be a prime unramified in the extension F/Q and
let p be a prime of F dividing (p). Fix embeddings F ↪→ F p ↪→C. Let φ1, φ2 : F ∗\A∗F →C∗ be
two Hecke characters of infinity type z and z−1, respectively, with conductors coprime to (p).
Let R be the ring of integers in a sufficiently large finite extension of Fp. Let T be the R-algebra
generated by Hecke operators acting on cuspidal automorphic forms of GL2/F . For φ= (φ1, φ2)
we define in § 3 an Eisenstein ideal Iφ in T. Following previous work of Wiles [Wil86, Wil90]
and Urban [Urb01] we construct elements in the Selmer group of χpε, where χp is the p-adic
Galois characters associated to χ := φ1/φ2 and ε is the p-adic cyclotomic character. We obtain
a lower bound on the size of the Selmer group in terms of that of the congruence module
T/Iφ. A complication that arises in the application of Taylor’s theorem is that we need to work
with cuspforms with cyclotomic central character. This is achieved by a twisting argument (see
Lemma 8).

To prove the lower bound on the congruence module in terms of the special L-value (the first
step described above), we use the Eisenstein cohomology class Eis(φ) constructed in [Ber08] in
the cohomology of a symmetric space S associated to GL2/F . The class is an eigenvector for
the Hecke operators at almost all places with eigenvalues corresponding to the generators of
Iφ, and its restriction to the boundary of the Borel–Serre compactification of S is integral. The
main result of [Ber08], which we recall in § 5, is that the denominator δ of Eis(φ) ∈H1(S, F p)
is bounded from below by Lalg(0, χ). As mentioned above, Proposition 9 gives a general set-up
for cohomological congruences. It implies the existence of a cuspidal cohomology class congruent
to δ · Eis(φ) modulo the L-value supposing that there exists an integral cohomology class with
the same restriction to the boundary as Eis(φ). The latter can be replaced by the assumption
that H2

c (S,R)torsion = 0, and this result is given in Theorem 13. In § 5 we prove that the original
hypothesis is satisfied for unramified χ, avoiding the issue of torsion freeness. We achieve this by
a careful analysis of the restriction map to the boundary ∂S of the Borel–Serre compactification.
Starting with a group cohomological result for SL2(O) due to Serre [Ser70] (which we extend to
all maximal arithmetic subgroups of SL2(F )), we define an involution on H1(∂S,R) such that
the restriction map

H1(S,R)
res
�H1(∂S,R)−

surjects onto the −1-eigenspace. We apply the resulting criterion to res(Eis(φ)) to deduce the
existence of a lift to H1(S,R).

Note that the restriction to constant coefficient systems and therefore weight 2 automorphic
forms is important only for § 5. It was applied throughout to simplify the exposition. In particular,
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the results of Theorems 10 and 13 extend (for split p) to characters χ with infinity type zm+2z−m

for m ∈N≥0. See [Ber08] for the necessary modifications and results.

Combining the two steps, we obtain in § 6 a lower bound for the size of the Selmer group of
χpε in terms of Lalg(0, χ) and relate this result to the Bloch–Kato conjecture. This conjecture
has been proven in our case (at least for class number 1) starting from the Main Conjecture of
Iwasawa theory for imaginary quadratic fields (see [Han97, Guo93]). Similar results have also
been obtained by Hida in [Hid82] for split primes p and χ= χc using congruences of classical
elliptic modular forms between CM (complex multiplication) and non-CM forms. We seem to
recover base changes of his congruences in this case (but see § 4.6 for a discussion when our
congruences do not arise from base change).

However, our method of constructing elements in Selmer groups using cohomological
congruences is very different and should be more widely applicable. The analytic theory of
Eisenstein cohomology has been developed for many groups, and rationality results are known,
for example, for GLn by the work of Franke and Schwermer [FS98]. Our hope is that the method
presented here generalizes to these higher rank groups.

To conclude, we want to mention two related results. In [Fel00] congruences involving degree
two Eisenstein cohomology classes for imaginary quadratic fields were constructed but only the
L-value of the quadratic character associated to F/Q was considered. The torsion problem we
encounter does not occur for degree two, but the treatment of the denominator of the Eisenstein
classes is more difficult. For cases of the Bloch–Kato conjecture when the Selmer groups are
infinite see [BC04]. Their method is similar to ours in that they use congruences; however, they
work with p-adic families on U(3) and do not use Eisenstein cohomology.

2. Notation and definitions

2.1 General notation

Let F/Q be an imaginary quadratic extension and dF its absolute discriminant. Denote the
class group by Cl(F ) and the ray class group modulo a fractional ideal m by Clm(F ). For a place
v of F let Fv be the completion of F at v. We write O for the ring of integers of F , Ov for
the closure of O in Fv, Pv for the maximal ideal of Ov, πv for a uniformizer of Fv, and Ô for∏
v finite Ov. We use the notation A,Af and AF ,AF,f for the adeles and finite adeles of Q and F ,

respectively, and write A∗ and A∗F for the respective group of ideles. We often identify elements
av of F ∗v for any place v with their image in A∗F under the canonical injective homomorphism
av 7→ (1, . . . , 1, av, 1 . . . , 1). Let p > 3 be a prime of Z that does not ramify in F , and let p⊂O
be a prime dividing (p). Let Σp be the set of places of F above p.

Denote by GF the absolute Galois group of F . For Σ a finite set of places of F let GΣ

be the Galois group of the maximal extension of F unramified at all places not in Σ. We fix
an embedding F ↪→ F v for each place v of F . Denote the corresponding decomposition and
inertia groups by Gv and Iv, respectively. Let gv =Gv/Iv be the Galois group of the maximal
unramified extension of Fv. For each finite place v we also fix an embedding F v ↪→C that is
compatible with the fixed embeddings iv : F ↪→ F v and i∞ : F ↪→C(= F∞). For a topological
GF -module (respectively Gv-module) M write H1(F, M) for the continuous Galois cohomology
group H1(GF , M), and H1(Fv, M) for H1(Gv, M).
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2.2 Hecke characters

A Hecke character of F is a continuous group homomorphism λ : F ∗\A∗F →C∗. Such a character
corresponds uniquely to a character on ideals prime to the conductor, which we also denote by λ.
Define the character λc by λc(x) = λ(x).

Lemma 1 [Ber05, Lemma 3.16]. If λ is an unramified Hecke character then λc = λ.

For Hecke characters λ of type (A0), i.e., with infinity type λ∞(z) = zmzn with m, n ∈ Z, we
define (following Weil) a p-adic Galois character

λp :GF → F
∗
p

associated to λ by the following rule. For a finite place v not dividing p or the conductor of λ,
put λp(Frobv) = ip(i−1

∞ (λ(πv))) where Frobv is the arithmetic Frobenius at v. It takes values in
the integer ring of a finite extension of Fp.

Let ε :GF → Z∗p be the p-adic cyclotomic character defined by the action of GF on the p-power
roots of unity: g.ξ = ξε(g) for ξ with ξp

m
= 1 for some m. Our convention is that the Hodge–Tate

weight of ε at p is 1 and we use the arithmetic Frobenius normalization for the Artin reciprocity
map rec which implies that ε(rec(u)) = NmOp/Zp(u)−1 for u ∈ O∗p.

Let λ a Hecke character of infinity type za(z/z)b with conductor prime to p. Write L(s, λ)
for the Hecke L-function of λ. Assume a, b ∈ Z and a > 0 and b≥ 0. Put

Lalg(0, λ) := Ω−a−2b

(
2π√
dF

)b
Γ(a+ b) · L(0, λ),

where Ω is a complex period. In most cases, this normalization is integral, i.e., lies in the integer
ring of a finite extension of Fp. See [Ber08, Theorem 3] for the exact statement. Put

Lint(0, λ) =

{
Lalg(0, λ) if valp(Lalg(0, λ))≥ 0,
1 otherwise.

2.3 Selmer groups

Let ρ :GF →R∗ be a continuous Galois character taking values in the ring of integers R of a
finite extension L of Fp. Write mR for its maximal ideal and put R∨ = L/R. Let Rρ, Lρ, and
Wρ = Lρ/Rρ =Rρ ⊗R R∨ be the free rank one modules on which GF acts via ρ.

Following Bloch and Kato [BK90] we define the following Selmer groups. Let

H1
f (Fv, Lρ) =

{
ker(H1(Fv, Lρ)→H1(Iv, Lρ)) for v - p,
ker(H1(Fv, Lρ)→H1(Fv, Bcris ⊗ Lρ)) for v | p,

where Bcris denotes Fontaine’s ring of p-adic periods. Put

H1
f (Fv, Wρ) = im(H1

f (Fv, Lρ)→H1(Fv, Wρ)).

For a finite set of places Σ of F define

SelΣ(F, ρ) = ker
(
H1(F, Wρ)→

∏
v/∈Σ

H1(Fv, Wρ)
H1
f (Fv, Wρ)

)
.

We write Sel(F, ρ) for Sel∅(F, ρ).
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If p splits in F/Q and ρ= λp for a Hecke character λ of infinity type zazb with a, b ∈ Z then
one can show (see [Hid82, Equation (1.6a)]) that

ρ(rec(u1, u2)) = ua1u
b
2 for (u1, u2) ∈ O∗p ×O∗p with (u1, u2)≡ (1, 1) mod fλOp × fλOp, (1)

where fλ is the conductor of λ. The character ρ is therefore ‘locally algebraic’ in the sense
of [Ser68], and a theorem of Tate [Ser68, ch. III, Appendix A7, Theorem 3] implies that the
local Galois representations ρ|Gp and ρ|Gp

are of Hodge–Tate type with weights −a and −b,
respectively. Following Greenberg [Gre89], we define in this ‘ordinary case’

F+
p Lρ =

{
Lρ if a < 0 (i.e., Hodge–Tate weight of ρ > 0),
{0} if a≥ 0 (i.e., Hodge–Tate weight of ρ≤ 0)

and

F+
p Lρ =

{
Lρ if b < 0,
{0} if b≥ 0.

In the ordinary case we haveH1
f (Fv, Lρ) = im(H1(Fv, F+

v Lρ)→H1(Fv, Lρ)) for v | p (see [Guo96,
p. 361], [Fla90, Lemma 2]).

Lemma 2. Let ρ be unramified at v - p. If ρ(Frobv) 6≡ ε(Frobv) mod p then

SelΣ(F, ρ) = SelΣ\{v}(F, ρ).

Proof. By definition SelΣ\{v}(F, ρ)⊂ SelΣ(F, ρ) for any v. For places v as in the lemma we have

H1
f (Fv, Wρ) = ker(H1(Fv, Wρ)→H1(Iv, Wρ)gv).

It is clear that H1(Iv, Wρ)gv = Homgv(Itame
v , Wρ) = Homgv(Itame

v , Wρ[mn
R]) for some n. By our

assumption, therefore, H1(Iv, Wρ)gv = 0 since Frobv acts on Itame
v by ε(Frobv). 2

2.4 Cuspidal automorphic representations
We refer to [Urb95, § 3.1] as a reference for the following. For Kf =

∏
v Kv ⊂GL2(AF,f ) a

compact open subgroup, denote by S2(Kf ) the space of cuspidal automorphic forms of GL2(F )
of weight 2, right-invariant under Kf . For ω a finite order Hecke character write S2(Kf , ω) for
the forms with central character ω. This is isomorphic as a GL2(AF,f )-module to

⊕
π
Kf
f

for automorphic representations π of a certain infinity type (see Theorem 3 below) with central
character ω. For g ∈GL2(AF,f ) we have the Hecke action of [KfgKf ] on S2(Kf ) and S2(Kf , ω).
For places v with Kv = GL2(Ov) we define Tv =

[
Kf

(
πv 0
0 1

)
Kf

]
.

2.5 Cohomology of symmetric space
Let G= ResF/QGL2/F and let B be the restriction of scalars of the Borel subgroup of upper
triangular matrices. For any Q-algebra R we consider a pair of characters φ= (φ1, φ2) of R∗ ×R∗
as characters of B(R) by defining φ

(
a b
0 d

)
= φ1(a)φ2(b). PutK∞ = U(2) ·C∗ ⊂G(R). For an open

compact subgroup Kf ⊂G(Af ) we define the adelic symmetric space

SKf =G(Q)\G(A)/K∞Kf .

Note that SKf has several connected components. In fact, strong approximation implies that the
fibers of the determinant map

SKf � π0(Kf ) := A∗F,f/det(Kf )F ∗
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are connected. Any γ ∈G(Af ) gives rise to an injection

G∞ ↪→G(A),
g∞ 7→ (g∞, γ)

and, after taking quotients, to a component Γγ\G∞/K∞→ SKf , where

Γγ :=G(Q) ∩ γKfγ
−1.

This component is the fiber over det(γ). Choosing a system of representatives for π0(Kf ) we
therefore have

SKf
∼=

∐
[det(γ)]∈π0(Kf )

Γγ\H3,

where G∞/K∞ has been identified with the three-dimensional hyperbolic space H3 = R>0 ×C.
We denote the Borel–Serre compactification of SKf by SKf and write ∂SKf for its boundary.

The Borel–Serre compactification SKf is given by the union of the compactifications of its
connected components. For any arithmetic subgroup Γ⊂G(Q), the boundary of the Borel–Serre
compactification of Γ\H3, denoted by ∂(Γ\H3), is homotopy equivalent to∐

[η]∈P1(F )/Γ

ΓBη\H3, (2)

where we identify P1(F ) =B(Q)\G(Q), take η ∈G(Q), and put ΓBη = Γ ∩ η−1B(Q)η.
For X ⊂ SKf and R an O-algebra we denote by H i(X, R) (respectively H i

c(X, R)) the ith
(Betti) cohomology group (respectively with compact support), and the interior cohomology,
i.e., the image of H i

c(X, R) in H i(X, R), by H i
! (X, R).

There is a Hecke action of double cosets [KfgKf ] for g ∈G(Af ) on these cohomology groups
(see [Urb98, § 1.4.4] for the definition). We put Tπv =

[
Kf

(
πv 0
0 1

)
Kf

]
and Sπv =

[
Kf

(
πv 0
0 πv

)
Kf

]
.

The connection between cohomology and cuspidal automorphic forms is given by the Eichler–
Shimura–Harder isomorphism (in this special case see [Urb98, Theorem 1.5.1]). For any compact
open subgroup Kf ⊂G(Af ) we have

S2(Kf ) ∼→H1
! (SKf ,C) (3)

and the isomorphism is Hecke-equivariant.
One knows (see, for example, [Ber08, Proposition 4]) that for any O[1/6]-algebra R there is

a natural R-functorial isomorphism

H1(Γ\H3, R)∼=H1(Γ, R), (4)

where the group cohomology H1(Γ, R) is just given by Hom(Γ, R).

2.6 Galois representations associated to cuspforms for imaginary quadratic fields
Combining the work of Taylor, Harris, and Soudry [HST93, Tay94] with results of Bump,
Friedberg and Hoffstein [BFH90] and Laumon [Lau97, Lau05] or Weissauer [Wei05], one can
show the following (see [BH07]).

Theorem 3. Given a cuspidal automorphic representation π of GL2(AF ) with π∞ isomorphic
to the principal series representation corresponding to(

t1 ∗
0 t2

)
7→
(
t1
|t1|

)(
|t2|
t2

)
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and cyclotomic central character ω (i.e. ωc = ω), let Σπ denote the set of places above p, the
primes where π or πc is ramified, and primes ramified in F/Q.

Then there exists a continuous Galois representation

ρπ :GF →GL2(F p)

such that if v /∈ Σπ, then ρπ is unramified at v and the characteristic polynomial of ρπ(Frobv)
is x2 − av(π)x+ ω(Pv)NmF/Q(Pv), where av(π) is the Hecke eigenvalue corresponding to Tv.
The image of the Galois representation lies in GL2(L) for a finite extension L of Fp and the
representation is absolutely irreducible. 2

Remarks.

(i) Taylor relates π to a low weight Siegel modular form via a theta lift and uses the
Galois representation attached to this form (via pseudorepresentations and the Galois
representations of cohomological Siegel modular forms) to find ρπ.

(ii) Taylor had some additional technical assumption in [Tay94] and only showed the equality
of Hecke and Frobenius polynomial outside a set of places of zero density. For this
strengthening of Taylor’s result see [BH07].

(iii) Conjecture 3.2 in [CD06] describes a conjectural extension of Taylor’s theorem for cuspforms
of general weight.

Urban studied in [Urb98] the case of ordinary automorphic representations π, and together
with results in [Urb05] on the Galois representations attached to ordinary Siegel modular forms,
shows the following theorem.

Theorem 4 [Urb05, Corollaire 2]. If π is unramified at p and ordinary at p, i.e., |ap(π)|p = 1,
then the Galois representation ρπ is ordinary at p, i.e.,

ρπ|Gp
∼=
(

Ψ1 ∗
0 Ψ2

)
,

where Ψ2|Ip = 1, and Ψ1|Ip = det(ρπ)|Ip = ε.

For p inert we will need a stronger statement (we refer the reader to [DFG04, § 1.1.2] for the
definition of a short crystalline Galois representation, and note that we assume p > 3).

Conjecture 5. If π is unramified at p then ρπ|Gp is crystalline and short.

3. Selmer group and Eisenstein ideal

In this section we define an Eisenstein ideal in a Hecke algebra acting on cuspidal automorphic
forms of GL2/F and show that its index gives a lower bound on the size of the Selmer group of
a Galois character.

Let φ1 and φ2 be two Hecke characters with infinity type z and z−1, respectively. Assume
that their conductors are coprime to (p). Let R be the ring of integers in the finite extension L
of Fp containing the values of the finite parts of φi and Lalg(0, φ1/φ2). Denote its maximal ideal
by mR. Let Σφ be the finite set of places dividing the conductors of the characters φi and their
complex conjugates and the places dividing pdF . Let Kf =

∏
v Kv ⊂G(Af ) be a compact open
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subgroup such that Kv = GL2(Ov) if v /∈ Σφ\Σp. In § 4.2 we will specify Kv at the other ‘bad’
places v ∈ Σφ\Σp. We will leave this open for now since we focus on the places dividing p in this
section.

Because of the condition on the central character in Theorem 3 we assume that there exists
a finite order Hecke character η unramified outside Σφ such that

(φ1φ2η
2)c = φ1φ2η

2. (5)

Denote by T the R-algebra generated by the Hecke operators Tv, v /∈ Σφ\Σp, acting on
S2(Kf , φ1φ2). Call the ideal Iφ ⊆T generated by

{Tv − φ1(Pv)Nm(Pv)− φ2(Pv) | v /∈ Σφ\Σp}

the Eisenstein ideal associated to φ= (φ1, φ2).
Using the notation of § 2.2, we define Galois characters

ρ1 = φ1,pε, ρ2 = φ2,p, ρ= ρ1 ⊗ ρ−1
2 .

Note that ρ depends only on the quotient φ1/φ2. Our first main result is the following inequality.

Theorem 6. Assuming Conjecture 5 if p is inert in F/Q, we have

valp(#SelΣφ\Σp(F, ρ))≥ valp(#(T/Iφ)).

Proof. We can assume that

T/Iφ 6= 0.

Let m⊂T be a maximal ideal containing Iφ. Localizing at m we write

S2(Kf , φ1φ2)m =
n⊕
i=1

V
Kf
πi,f ,

where Vπf denotes the representation space of the (finite part) of a cuspidal automorphic
representation π.

By twisting the cuspforms by the finite order character η of (5) we can ensure that their
central character is cyclotomic. Hence we can apply Theorem 3 to associate Galois representations
ρπi⊗η :GΣφ →GL2(Li) to each πi ⊗ η, i= 1, . . . , n, for some finite extensions Li/Fp. Taking all
of them together (and untwisting by η) we obtain a continuous, absolutely irreducible Galois
representation

ρT :=
n⊕
i=1

ρπi⊗η ⊗ η−1 :GΣφ →GL2(Tm ⊗R L).

Here we use the fact that Tm ⊗R L=
∏n
i=1 Li, which follows from the strong multiplicity one

theorem. We have an embedding

Tm ↪→
n∏
i=1

Li,

Tv 7→ ((av(πi)),

where av(πi) is the Tv-eigenvalue of πi. The coefficients of the characteristic polynomial char(ρT )
lie in Tm and by the Chebotarev density theorem

char(ρT )≡ char(ρ1 ⊕ ρ2) mod Iφ.
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For any finite free Tm ⊗ L-moduleM, any Tm-submodule L ⊂M that is finite over Tm and
such that L ⊗ L=M is called a Tm-lattice. Specializing to our situation [Urb01, Theorem 1.1]
we get the following.

Theorem 7 (Urban). Given a Galois representation ρT as above there exists a GΣφ-stable Tm-
lattice L ⊂ (Tm ⊗ L)2 such that GΣφ acts on L/IφL via the short exact sequence

0→Rρ1 ⊗R (N/Iφ)→L/IφL→Rρ2 ⊗R (Tm/Iφ)→ 0,

where N ⊂Tm ⊗ L is a Tm-lattice with valp(#Tm/Iφ)≤ valp(#N/IφN )<∞ and no quotient
of L is isomorphic to ρ1 := ρ1 mod mR.

Proof. Note that the R-algebra map R� Tm/Iφ is surjective and that L/IφL ∼= L ⊗R Tm/Iφ.
Hence this short exact sequence recovers the one in the statement of [Urb01, Theorem 1.1]. For
the statement about valp(#N/IφN ) see [Urb01, p. 519] and use the fact that any R-submodule
of Tm/Iφ or N/IφN is a Tm-submodule.

See [Ber05, § 7.3.2] for an alternative construction of such a lattice using arguments of Wiles
[Wil86, Wil90]. 2

Using the properties of the Galois representations attached to cuspforms listed in § 2.6 we
can now conclude the proof of Theorem 6 by similar arguments as in [Urb01]. To ease notation
we put T :=N/Iφ and Σ := Σφ.

Identifying Rρ with HomR(Rρ2 ,Rρ1) and writing s :Rρ2 ⊗Tm/Iφ→L⊗Tm/Iφ for the
section as Tm/Iφ-modules, we define a 1-cocycle c :GF →GΣ→Rρ ⊗ T by

c(g)(m) = the image of s(m)− g.s(g−1.m) in Rρ1 ⊗ T .

Consider the R-homomorphism

ϕ : HomR(T ,R∨)→H1(F, Wρ), ϕ(f) = the class of (1⊗ f) ◦ c.

We will show that:

(i) im(ϕ)⊂ SelΣ\Σp(F, ρ);

(ii) ker(ϕ) = 0.

From statement (i) it follows that

valp(#SelΣ\Σp(F, ρ))≥ valp(#im(ϕ)).

From statement (ii) it follows that

valp(#im(ϕ)) ≥ valp(#HomR(T ,R∨))
= valp(#T )
≥ valp(#Tm/Iφ).

To prove statement (ii) we use an argument explained to us by Chris Skinner (personal
communication). We first observe that, for any f ∈HomR(T ,R∨), ker(f) has finite index in
T since T is a finite R-module, and so f ∈HomR(T ,R∨[mn

R]) for some n. Suppose now that
f ∈ ker(ϕ). We claim that the class of c in H1(GΣ,Rρ ⊗R T /ker(f)) is zero. To see this, let
X =R∨/im(f) and observe that there is an exact sequence

H0(GΣ,Rρ ⊗R X)→H1(GΣ,Rρ ⊗R T /ker(f))→H1(GΣ,Rρ ⊗R R∨).
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Since f ∈ ker(ϕ) and the second arrow in the sequence comes from the inclusion T /ker(f) ↪→R∨
induced by f , the image in the right module of the class of c in the middle is zero. Our claim
follows therefore if the module on the left is trivial. But the dual of this module is a subquotient
of HomR(Rρ,R) on which GΣ acts trivially. By assumption, however, Rρ is a rank one module
on which GΣ acts non-trivially.

Suppose in addition that f is non-trivial, i.e., ker(f) ( T . Note that any R-submodule of T
is actually a Tm-submodule since R� Tm/Iφ. Hence there exists a Tm-module A with ker(f)⊂
A⊂ T such that T /A∼=R/mR. Since c represents the trivial class in H1(GΣ,Rρ ⊗R T /ker(f))
it follows that the Tm[GΣ]-extension

0→Rρ1 ⊗R R/mR ∼=Rρ1 ⊗R T /A→ (L/IφL)/(Rρ1 ⊗R A)→Rρ2 ⊗R (Tm/Iφ)→ 0

is split. But this would give a Tm[GΣ]-quotient of L isomorphic to ρ1, which contradicts one of
the properties of the lattice constructed by Urban. Hence ker(ϕ) is trivial.

For statement (i) we have to show that the local conditions of the Selmer group are satisfied.
Firstly, if v /∈ Σ then v - p and ρ is unramified at v, so we have

H1
f (Fv, Wρ) = ker(H1(Fv, Wρ)→H1(Iv, Wρ))

by [Rub00, Lemma 1.3.5(iv)]. Since the extension in Theorem 7 is unramified outside Σ the
image of ϕ maps to zero in H1(Iv, Wρ).

For the places v | p we divide them into the split and inert cases. For split p we claim that
we only have a non-trivial condition at p since H1

f (Fp, Wρ) =H1(Fp, Wρ)div =H1(Fp, Wρ). For
this we use the fact that ρ= ε on Ip by (1). Then we know by [NSW08, Proposition 7.3.10]

that H1(Fp, Wε) is divisible and W
Ip
ε = {1} since p > 3, so by applying the inflation-restriction

sequence for both Wρ and Wε we get

H1(Fp, Wρ)∼=H1(Ip, Wρ)gp ∼=H1(Fp, Wε).

At p it suffices to prove that the extension in Theorem 7 is split when considered as an
extension of Tm[Gp]-modules, because then the class in H1(Fp,Rρ ⊗ T ) determined by c is
the zero class. In this case the Hecke eigenvalues ap(πi)≡ p · φ1(p) + φ2(p) 6≡ 0 mod mR; hence
the cuspforms πi ⊗ η are ordinary at p, so Theorem 4 applies and ρT is ordinary. Observing that
the Hodge–Tate weights at p of ρ1 and ρ2 are 0 and 1, respectively, the splitting of the extension
as Tm[Gp]-modules follows from comparing the basis given by Theorem 7 with the one coming
from ordinarity.

For inert p we use the observation from the proof of statement (ii) that im(ϕ)⊂
H1(F, Wρ[mn

R]) for some n. Following [DFG04, p. 697] we define H1
f (Fp, Wρ[mn

R])⊂
H1(Fp, Wρ[mn

R]) to be the subset consisting of those cohomology classes which correspond to
extensions of R/mn

R[Gp]-modules

0→R∨ρ1 [mn
R]→E →R∨ρ2 [mn

R]→ 0

such that E is in the essential image of the functor V defined in [DFG04, § 1.1.2] (extended using
the Tate twist [DFG04, p. 711]). We will not need the precise definition of V, just that its essential
image is closed under taking subobjects, quotients and finite direct sums, and contains all short
crystalline Gp-representations. Conjecture 5 therefore implies that im(ϕ)⊂H1

f (Fp, Wρ[mn
R])
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(see [Klo09, Lemma 9.19]). Since by [DFG04, Proposition 2.2] and [Klo09, Proposition 9.20]

lim
−→
j

H1
f (Fp, Wρ[m

j
R])∼=H1

f (Fp, Wρ),

this proves that im(ϕ) satisfies the required local condition in this case, too. 2

The following lemma will later provide us with the finite order character η of (5) used in the
twisting above.

Lemma 8. If χ= φ1/φ2 satisfies χc = χ then there exists a finite order character η unramified
outside Σφ such that (φ1φ2η

2)c = φ1φ2η
2.

Proof. In the lemma in [Gre83, p. 81], Greenberg defines a Hecke character µG : F ∗\A∗F →C∗ of
infinity type z−1 such that µcG = µG and µG is ramified exactly at the primes ramified in F/Q.
We claim that there exists a finite order Hecke character µ unramified outside Σφ such that

χ′ := χµ2
G = µ/µc.

Given such a character µ we then define η = µG/µφ2 and one can check that φ1φ2η
2 = (µµc)−1.

Since χ′−1 = χ′ = χ′c we have that

χ′ ≡ 1 on NmF/Q(A∗F )⊂A∗Q ⊂A∗F .

Thus χ′ restricted to Q∗\A∗Q is either the quadratic character of F/Q or trivial. Since our finite
order character has trivial infinite component, χ′ has to be trivial on Q∗\A∗Q.

Looking at the exact sequence

1→ F ∗→A∗F → F ∗\A∗F → 1,

by Hilbert’s Theorem 90 (see, e.g., [NSW08, Theorem 6.2.1]) applied to F ∗ and Gal(F/Q) we find
that H0(Gal(F/Q), F ∗\A∗F ) = Q∗\A∗Q. Thus the kernel of x 7→ x/xc is given by Q∗\A∗Q. Since
we showed that χ′ vanishes on Q∗\A∗Q it therefore factors through A∗F →A, where A is the
subset of A∗F of elements of the form x/xc and the map is x 7→ x/xc. If y ∈A ∩ F ∗ then y has
trivial norm and so, by Hilbert’s Theorem 90, y = x/xc for some x ∈ F ∗. Thus the induced
character A→C∗ vanishes on A ∩ F ∗. This implies that there is a continuous finite order
character µ : F ∗\A∗F →C∗ which restricts to this character on A and χ′ = µ/µc (this argument
is taken from the proof of [Tay94, Lemma 1]).

By the following argument we can further conclude that the induced character vanishes
on A ∩

∏
v/∈Σφ

O∗v (recall our identification F ∗v ↪→A∗F from § 1.1) and therefore find µ on
F ∗\A∗F /

∏
v/∈Σφ

O∗v restricting to the character A→C∗. Writing UF,` =
∏
v|` O∗v for a prime `

in Q we have an injection

H1

(
Gal(F/Q),

∏
v/∈Σφ

O∗v
)
↪→

∏
`/∈Σφ

H1(Gal(F/Q), UF,`),

where ‘` /∈ Σφ’ denotes those ` ∈ Z such that v | `⇒ v /∈ Σφ. Here we use the fact that by our
definition of Σφ we know that v ∈ Σφ⇒ v ∈ Σφ. In fact, all these groups are trivial since all ` /∈ Σφ

are unramified in F/Q and so

H1(Gal(F/Q), UF,`)∼=H1(Gv,O∗v) = 1.

If y ∈A ∩
∏
v/∈Σφ

O∗v then y has trivial norm in
∏
v/∈Σφ

O∗v . But as shown, H1(Gal(F/Q),∏
v/∈Σφ

O∗v) is trivial so there exists x ∈
∏
v/∈Σφ

O∗v ∩A∗F such that y = x/xc. Since χ′ is unramified
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outside Σφ the image of y under the induced character therefore equals χ′(x) = 1, as claimed
above. 2

4. Bounding the Eisenstein ideal

In [Ber08] we constructed a class Eis(φ) in the cohomology of a symmetric space associated to
GL2/F that has integral non-zero restriction to the boundary of the Borel–Serre compactification,
and is an eigenvector for the Hecke operators at almost all places. By a result of Harder [Har87,
Corollary 4.2.1] one knows that Eis(φ) is rational. The main result of [Ber08] is a lower bound
on its denominator (defined in (6) below) in terms of the L-value of a Hecke character. In this
section we show that if there exists an integral cohomology class with the same restriction to the
boundary as Eis(φ) then there exists a congruence modulo the L-value between Eis(φ), multiplied
by its denominator, and a cuspidal cohomology class.

4.1 The Eisenstein cohomology set-up
Recall the notation and definitions introduced in § 2.5. Let R denote the ring of integers in
the finite extension L of Fp obtained by adjoining the values of the finite part of both φi and
Lalg(0, φ1/φ2). We write

H̃1(X,R) :=H1(X,R)free = im(H1(X,R)→H1(X, L))

for X = SKf or ∂SKf . For c ∈H1(SKf , L) define the denominator (ideal) by

δ(c) := {a ∈R : a · c ∈ H̃1(SKf ,R)}. (6)

We have the long exact sequence of relative cohomology (see, e.g., [Bre97, ch. II, § 12,
Equation (22)])

· · · →H1
c (SKf , R)→H1(SKf , R) res→H1(∂SKf , R)→H2

c (SKf , R)→ · · ·

for any R-algebra R.

4.1.1 The set-up. Suppose we are given a pair of Hecke characters φ= (φ1, φ2) as in § 3 and
a class Eis(φ) ∈H1(SKf , L) satisfying the following properties.

(E1) The image of Eis(φ) under res lies in H̃1(∂SKf ,R).

(E2) For all places v outside the conductors of the φi the class Eis(φ) is an eigenvector for the
Hecke operator

Tπv =
[
Kf

(
πv 0
0 1

)
Kf

]
with eigenvalue

φ2(Pv) + Nm(Pv)φ1(Pv).

(E3) The central character of Eis(φ) is given by φ1φ2, i.e., the Hecke operators

Sπv =
[
Kf

(
πv 0
0 πv

)
Kf

]
act on it by multiplication by (φ1φ2)(πv).

(E4) The denominator of Eis(φ) is bounded below by Lint(0, φ1/φ2), i.e.,

δ(Eis(φ))⊆ (Lint(0, φ1/φ2)).
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Suppose we are also given:

(H1) There exists cφ ∈ H̃1(SKf ,R) with

res(cφ) = res(Eis(φ)) ∈ H̃1(∂SKf ,R).

(H2) There exists an idempotent eω acting on H1(SKf ,C) such that Sπveω = (φ1φ2)(πv)eω for
v not dividing the conductors of the φi.

The following provides a bound on the congruence module introduced in the previous section.

Proposition 9. Given the above set-up there is an R-algebra surjection

T/Iφ �R/(Lint(0, φ1/φ2)).

Proof. Put H̃1
! (SKf ,R) =H1

! (SKf , L) ∩ H̃1(SKf ,R) and ω = φ1φ2. Under the Eichler–Shimura–
Harder isomorphism (see (3)) we have

eωH
1
! (SKf ,C)∼= S2(Kf , ω).

Hence the Hecke algebra T from § 3 is isomorphic to the R-subalgebra of

EndR(eωH̃1
! (SKf ,R))

generated by the Hecke operators Tπv for all primes v /∈ Σφ, and we will identify the two.

Note that for cφ ∈ H̃1(SKf ,R) given by (H1) we have

res(eωcφ) = eωres(cφ) = eωres(Eis(φ)) = res(Eis(φ))

since Sv(Eis(φ)) = ω(πv)Eis(φ) by (E3).

Without loss of generality, we can assume that δ(Eis(φ)) 6=R; there is nothing to prove
otherwise by (E4). Let δ be a generator of δ(Eis(φ)). Then δ · Eis(φ) is an element of an R-
basis of eωH̃1(SKf ,R). By construction, c0 := δ · (eωcφ − Eis(φ)) ∈ eωH1

! (SKf , L) is a nontrivial
element of an R-basis of eωH̃1

! (SKf ,R). Extend c0 to an R-basis c0, c1, . . . cd of eωH̃1
! (SKf ,R).

For each t ∈T write

t(c0) =
d∑
i=0

ai(t)ci, ai(t) ∈R.

Then

T→R/(δ), t 7→ a0(t) mod δ (7)

is an R-module surjection. We claim that it is a homomorphism of R-algebras with the
Eisenstein ideal Iφ contained in its kernel. To prove this it suffices to check that each
a0(Tπv − φ2(Pv)−Nm(Pv)φ1(Pv)), v /∈ Σφ is contained in δR. This is an easy calculation using
(E2). Since R/(δ) �R/(Lint(0, χ)) by (E4), this concludes the proof. 2

In the following sections, we will indicate how to produce the elements in the set-up of the
proposition. Under certain conditions on the characters φi, to be reviewed in § 4.2, we constructed
in [Ber08] a class Eis(φ) satisfying (E1)–(E4) using Harder’s Eisenstein cohomology. Assumption
(H2) is of a technical nature and will be discussed in § 4.3. We are interested in controlling the
central character via (H2) because of the restriction in Theorem 3. The most difficult ingredient
to procure is (H1), see § § 4.4 and 5.
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Remarks.

(i) As already remarked in the introduction, the constant cohomology coefficients above can
be replaced by coefficient systems arising from finite dimensional representations of GL2/F .
See [Ber08, § 2.4 and 3.1] for the necessary modifications.

(ii) Note also that except for the explicit Hecke operators we did not use any information specific
to GL2/F , i.e., SKf could be replaced by a symmetric space associated to a different group
G and φ by a tuple of automorphic forms on the Levi part of a parabolic subgroup of G.
Since the analytic theory of Eisenstein cohomology has been developed for a wide variety
of groups, and rationality results are known, for example, for GLn by the work of Franke
and Schwermer [FS98], we hope that these techniques generalize to these groups.

4.2 Construction of Eisenstein class
Following Harder we constructed in [Ber08] Eisenstein cohomology classes in the Betti
cohomology group H1(SKf ,C). Given a pair of Hecke characters φ= (φ1, φ2) with φ1,∞(z) = z

and φ2,∞(z) = z−1 these depend on a choice of a function Ψφf in the induced representation

V
Kf
φf ,C

= {Ψ :G(Af )→C |Ψ(bg) = φf (b)Ψ(g) ∀b ∈B(Af ),Ψ(gk) = Ψ(g) ∀k ∈Kf}.

In the notation of [Ber08] we take Kf =KS
f and Ψφf = Ψ0

φ. We recall the definition of the
compact open Kf . Denote by S the finite set of places where both φi are ramified, but φ1/φ2 is
unramified. Write Mi for the conductor of φi. For an ideal N in O and a finite place v of F put
Nv = NOv. We define

K1(N) =
{(

a b
c d

)
∈GL2(Ô), a− 1, c≡ 0 mod N

}
,

K1(Nv) =
{(

a b
c d

)
∈GL2(Ov), a− 1, c≡ 0 mod Nv

}
,

and
U1(Nv) = {k ∈GL2(Ov) : det(k)≡ 1 mod Nv}.

Now put

Kf :=
∏
v∈S

U1(M 1,v)
∏
v/∈S

K1((M 1M 2)v).

The exact definition of Ψφf will not be required in the following; we refer the interested reader
to [Ber08, § 3.2]. Let Eis(φ) be the cohomology class denoted by [Eis(Ψ0

(φ1,φ2)f
)] in [Ber08].

The rationality of Eis(φ), i.e., the fact that Eis(φ) ∈H1(SKf , L), was proven by Harder,
see [Ber08, Proposition 13]. Properties (E2) and (E3) are satisfied by construction, see [Ber08,
Lemma 9]. The integrality of the constant term (E1) is analyzed in [Ber08, Proposition 16]. The
main result of [Ber08] is the bound on the denominator (E4). The latter two require certain
conditions on the characters φ1 and φ2. However, since in the combination of Theorem 6 and
Proposition 9 the main object of interest is the character χ= φ1/φ2, we will from now on focus
on χ and view φ1 and φ2 as being auxiliary.

Theorem 10 [Ber08, Proposition 16, Theorem 29]. Let χ be a Hecke character of infinity type
z2 with conductor M coprime to (p). Assume in addition that either:

(i) p splits in F , χ has split conductor, and L(0, χ)/L(0, χ) ∈R; or

(ii) χc = χ, no ramified primes divide M and no inert primes congruent to −1 mod p divide M
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with multiplicity one, and

ωF/Q(M)
τ(χ̃)√
Nm(M)

= 1,

where ωF/Q is the quadratic Hecke character associated to the extension F/Q and τ(χ̃) the
Gauss sum of the unitary character χ̃ := χ/|χ|.

Then there exists a factorization χ= φ1/φ2 such that Eis(φ) satisfies (E1)–(E4). 2

Remarks.

(i) Berger [Ber08, Proposition 16] shows that L(0, χ)/L(0, χ) ∈ L.

(ii) By considering non-constant coefficient systems, Berger [Ber08] in fact proves this for
characters χ of infinity type zm+2z−m for m ∈N≥0 if p splits in F/Q.

4.3 Existence of an idempotent (H2)
Lemma 11. Let Kf be the compact open defined in § 4.2. If p - #ClM 1M 2(F ) then (H2) is
satisfied.

Proof. By [Urb98, § § 1.2 and 1.4.5] the action of the diamond operators Sπv , v - M 1M 2 on
H1(SKf ,C) is determined by the class in ClM 1M 2(F ) of the ideal determined by πv and induces
an R-linear action of ClM 1M 2(F ) on H1(SKf ,C). Here we use the fact that

Kf ⊃K(M 1M 2) :=
{(

a b
c d

)
∈GL2(Ô) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod M 1M 2

}
.

By assumption the ray class group has order prime to p, so R[ClM 1M 2(F )] is semisimple. For
ω := φ1φ2, which can be viewed as a character of ClM 1M 2(F ), let eω be the idempotent associated
to ω, so that Sπveω = ω(πv)eω. 2

Remark. By enlarging Kf the condition p - #(O/M 1M 2)∗ can be weakened to the order of φi|Ô∗
being coprime to p, see [Ber05, § 6.1].

4.4 Torsion problem (H1)
Hypothesis (H1) is related to the question of the occurrence of torsion classes in H2

c (SKf ,R)
as follows. There exists cφ ∈ H̃1(SKf ,R) with res(cφ) = res(Eis(φ)) ∈ H̃1(∂SKf ,R) if and only
if res(Eis(φ)) maps to zero in H̃2

c (SKf ,R). Let dφ ∈ H̃2
c (SKf ,R) be the image of res(Eis(φ)) and

write δ for a generator of the denominator δ(Eis(φ)). Since δEis(φ) ∈ H̃1(SKf ,R) we know that
δdφ is trivial in H̃2

c (SKf ,R). So if we knew that H2
c (SKf ,R)torsion = 0 then hypothesis (H1)

would be satisfied.
This problem does not arise for GL2/Q because no such torsion classes exist with the Hecke

eigenvalues under consideration (see [HP92]). In our situation, we know by Lefschetz duality
(see [Gre67, Equation (28.18)] or [Mau80, Theorem 5.4.13]) that

H2
c (SKf ,R)∼=H1(SKf ,R),

so this question reduces to the problem of torsion in Γab for arithmetic subgroups Γ⊂G(Q).
This has been studied in [EGM82, SV83], and [GS93] (see also [EGM98, § 7.5]). An arithmetic
interpretation or explanation for the torsion has not been found yet in general (but see [EGM82]
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for examples in the case of Q(
√
−1)). Based on computer calculations [GS93, Equation (2)

on p. 62] suggests that for Γ⊂ PSL2(O), apart from 2 and 3, only primes less than or equal
to 1

2 [PSL2(O) : Γ] occur in the torsion of Γab. Even restricting to the ordinary part there can
be torsion, see [Tay88, § 4]. In all cases calculated so far, PSL2(O)ab has only 2- or 3-torsion
(see also [Swa71, Ber06]) but this is not known in general; hence our different approach in the
following section, where we will prove the following.

Proposition 12. Let χ= φ1/φ2 be an unramified Hecke character of infinity type z2. Assume
that 1 is the only unit in O∗ congruent to 1 modulo the conductor of φ1. If (E1) holds for Kf

and Eis(φ) as defined in § 4.2 then (H1) is satisfied.

4.5 Congruence results
We will summarize in this section the conditions under which we can procure the ingredients for
Proposition 9 and hence prove the existence of cohomological congruences.

Theorem 13. Assume p splits in F/Q. Let χ be a Hecke character of infinity type z2 with split
conductor M coprime to (p). Assume L(0, χ)/L(0, χ) ∈R and

p - #(O/M)∗ ·#Cl(F ).

Let q >#(O∗) be any rational prime coprime to (p)M and split in F such that p - q − 1 and q

is a prime of F dividing (q). If H2
c (SK̃f , Zp)torsion = 0, where

K̃f = {k ∈K1(M) | det(k)≡ 1 mod q},

then there exists a pair of characters φ= (φ1, φ2) such that χ= φ1/φ2 and there is an R-algebra
surjection

T/Iφ �R/(Lint(0, χ)).

Remark. As noted before, this result is true, in fact, for characters χ of infinity type zm+2z−m

for m ∈N≥0.

Proof. Let φ1 be a Hecke character with conductor q of infinity type z (for existence see, e.g.,
[Ber08, Lemma 24]). This is the character used in the proof of [Ber08, Theorem 29] and Kf = K̃f

for this pair (φ1, φ1/χ), so the theorem follows from Proposition 9, Theorem 10, and Lemma 11,
together with the comments at the beginning of § 4.4. 2

A similar result can be deduced for characters χ satisfying χ= χc by taking as φ1 the character
used in the proof of [Ber08, Theorem 29]. Its construction is more involved and we refer the reader
to the account in [Ber08, § § 5.2 and 5.3]. The conductor M 1 of φ1 in this case is given by rD
for D the different of F and r ∈ Z any integer coprime to (p)M, but such that no inert prime
congruent to −1 modulo p divides r with multiplicity one.

To be able to apply Lemma 2 in § 6 and to satisfy the assumption in Proposition 12 we want
to impose the following extra condition on the conductor M 1:

(φ) 1 is the only unit in O∗ congruent to 1 modulo M 1, and

v |M 1⇒ v = v and #Ov/Pv 6≡ ±1 mod p.

We therefore assume in addition that p - #Cl(F ) and that ` 6≡ ±1 mod p for ` | dF . Also we
choose r appropriately such that p - (O/r)∗ and that (φ) holds.
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We leave the counterpart of Theorem 13 for characters χ satisfying χ= χc to the interested
reader and instead give the following result, which does not require torsion freeness. By Lemma 1,
unramified characters χ satisfy χc = χ, so we deduce the following theorem from Proposition 9
together with Lemma 11, Theorem 10, and Proposition 12.

Theorem 14. Assume in addition that p - #Cl(F ) and that ` 6≡ ±1 mod p for ` | dF . Let χ be an
unramified Hecke character of infinity type z2. Then there exists a pair of characters φ= (φ1, φ2)
satisfying (φ) such that χ= φ1/φ2 and there is an R-algebra surjection

T/Iφ �R/(Lint(0, χ)). 2

4.6 Discussion of results

These are the first such cohomological congruences between Eisenstein series and cuspforms for
GL2 over an imaginary quadratic field, except for the results for degree two Eisenstein classes
associated to unramified characters in [Fel00]. There are two options: either these congruences
first arise for GL2/F or they show that congruences over Q can be lifted, in accordance with
Langlands functoriality. The congruences constructed in [Fel00] turn out to be base changes of
congruences over Q (see [Fel00, Satz 3.3]).

Recall from [GL79, Theorem 2] and [Cre92, p. 413] that a cuspform over F is a base change if
and only if its Hecke eigenvalues at complex conjugate places coincide. Observe that if χ 6= χc then
the Hecke eigenvalues of our Eisenstein cohomology class Eis(φ) (and all twists by a character)
are distinct at complex conjugate places (see (E2) for the definition of the eigenvalues). Therefore
in this case our congruences are new, i.e., are not base changed.

If χ= χc then the proof of Lemma 8 implies that there exists a twist of the Eisenstein class
such that its eigenvalues at conjugate places coincide. However, we cannot determine if the
congruences are base changed, as for cohomology in degree one the arguments of [HLR86] do
not apply. We plan to investigate this question further. We refer the reader to [BK, Remark 4.6],
where we exhibit conditions under which this question can be answered. Consider split p and let
ρ0 :GΣφ →GL2(R/mR) be a continuous representation of the form(

1 ∗
0 χpε mod mR

)
with scalar centralizer. Under assumptions ensuring the uniqueness of ρ0 up to isomorphism we
then prove that no character twist of the congruent cuspforms of § 4.5 arises from base change.

5. The case of unramified characters

In this section we will prove Proposition 12, i.e., show the existence of an integral lift of the
constant term of the Eisenstein cohomology class Eis(φ), as defined in § 4.2. Our strategy is to
find an involution on the boundary cohomology such that the restriction map surjects onto the
−1-eigenspace of this involution, i.e., such that (for each connected component of SKf )

H1(Γ\H3,R)
res
�H1(∂(Γ\H3),R)− ⊂H1(∂(Γ\H3),R),

where the superscript ‘−’ indicates the −1-eigenspace. We prove the existence of such an
involution for all maximal arithmetic subgroups of SL2(F ), extending a result of Serre for SL2(O).
Proposition 12 is then proven by showing that res(Eis(φ)) lies in this −1-eigenspace.
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5.1 Involutions and the image of the restriction map
Let Γ⊂G(Q) be an arithmetic subgroup. Given an involution ι on X = Γ\H3 or ∂(Γ\H3) we
define an involution on H1(X, R) via the pullback of ι on the level of singular cocycles. Assuming
that we have an orientation-reversing involution on Γ\H3 such that

H1(Γ\H3,R) res→H1(∂(Γ\H3),R)− ⊂H1(∂(Γ\H3),R)

we show that the map is, in fact, surjective. The existence of such an involution will be shown
for maximal arithmetic subgroups in the following sections. We first recall the following.

Theorem 15 (Poincaré and Lefschetz duality). Let R be a Dedekind domain in which 2 and 3
are invertible. Let ι be an orientation-reversing involution on Γ\H3. Denoting by a superscript +
(respectively −) the +1-(respectively −1-) eigenspaces for the induced involutions on cohomology
groups, we have perfect pairings

Hr
c (Γ\H3, R)± ×H3−r(Γ\H3, R)∓→R for 0≤ r ≤ 3

and

Hr(∂(Γ\H3), R)± ×H2−r(∂(Γ\H3), R)∓→R for 0≤ r ≤ 2.

Furthermore, the maps in the exact sequence

H1(Γ\H3, R) res−−→H1(∂(Γ\H3), R) ∂−→H2
c (Γ\H3, R)

are adjoint, i.e.,

〈res(x), y〉= 〈x, ∂(y)〉.

References. Serre states this in the proof of [Ser70, Lemma 11] for field coefficients, Ash and
Stevens [AS86, Lemma 1.4.3] prove the perfectness for fields R and Urban [Urb95, Theorem 1.6]
for Dedekind domains as above. Other references for this Lefschetz or ‘relative’ Poincaré duality
for oriented manifolds with boundary are [May99, ch. 21, § 4] and [Gre67, Theorem (28.18)].
The pairings are given by the cup product and evaluation on the respective fundamental classes.
We use the fact that H3 is an oriented manifold with boundary and that Γ acts on it properly
discontinuously and without reversing orientation. The lemma in [Fel00, § 1.1] shows that the
order of any finite subgroup of G(Q) is divisible only by 2 or 3. See also [Ber05, Theorem 5.1
and Lemma 5.2].

Lemma 16. Suppose in addition to the conditions of the previous theorem that R is a complete
discrete valuation ring with finite residue field of characteristic p > 2. Suppose that we have an
involution ι as in the theorem such that

H1(Γ\H3, R) res→H1(∂(Γ\H3), R)ε,

where ε= +1 or −1. Then, in fact, the restriction map is surjective.

Proof. Let m denote the maximal ideal of R. Since the cohomology modules are finitely
generated (so the Mittag–Leffler condition is satisfied for lim←−H

1(·, R/mr)), it suffices to prove
the surjectivity for each r ∈N of

H1(Γ\H3, R/m
r) �H1(∂(Γ\H3), R/mr)ε.

For these coefficient systems we are dealing with finite groups and can count the number of
elements in the image and the eigenspace of the involution; they turn out to be the same.
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We observe thatH1(∂(Γ\H3), R/mr) =H1(∂(Γ\H3), R/mr)+ ⊕H1(∂(Γ\H3), R/mr)− and that,
by the last lemma,

#H1(∂(Γ\H3), R/mr)+ = #H1(∂(Γ\H3), R/mr)−.

Similarly, we deduce from the adjointness of res and ∂ and the perfectness of the pairings that
im(res)⊥ = im(res) and so

#im(res) = 1
2#H1(∂(Γ\H3), R/mr). 2

5.2 Involutions for maximal arithmetic subgroups of SL2(F )

For η ∈G(Q) let Bη be the parabolic subgroup defined by Bη(Q) = η−1B(Q)η. Let Γ⊂G(Q)
be an arithmetic subgroup. The set {Bη : [η] ∈B(Q)\G(Q)/Γ} is a set of representatives for the
Γ-conjugacy classes of Borel subgroups. Let Uη be the unipotent radical of Bη. For D ∈P1(F ) let
ΓD = Γ ∩ UD, where UD is the unipotent subgroup of SL2(F ) fixing D. Note that if Dη ∈P1(F )
corresponds to [η] ∈B(Q)\G(Q) under the isomorphism of B(Q)\G(Q)∼= P1(F ) given by right
action on [0 : 1] ∈P1(F ) then we have that UDη = Uη(Q) and ΓDη = Γ ∩ Uη(Q) =: ΓUη .

Let U(Γ) be the direct sum
⊕

[D]∈P1(F )/Γ ΓD. Up to canonical isomorphism this is
independent of the choice of representatives [D] ∈P1(F )/Γ. Since U(Γ) is abelian we use additive
notation in the following. The inclusions ΓD ↪→ Γ define a homomorphism

α : U(Γ)→ Γab.

For Γ = SL2(O), Serre [Ser70] shows that there is a well-defined action of complex conjugation
on U(SL2(O)) induced by the complex conjugation action on the matrix entries of G∞ = GL2(C).
Denoting by U+ the set of elements of U(SL2(O)) invariant under the involution and by U ′ the
set of elements u+ u for u ∈ U(SL2(O)), Serre proves the following.

Theorem 17 (Serre [Ser70, Théorème 9]). For imaginary quadratic fields F other than
Q(
√
−1) or Q(

√
−3) the kernel of the homomorphism α : U(SL2(O))→ SL2(O)ab satisfies the

inclusions

6U ′ ⊆ ker(α)⊆ U+.

In the following we generalize this theorem to all maximal arithmetic subgroups. After we
had discovered this generalization we found out that it had already been stated in [Blu92], but
for our application we need more detail than is provided there.

For b a fractional ideal let

H(b) :=
{(

a b
c d

)
∈ SL2(F )

∣∣∣∣ a, d ∈ O, b ∈ b, c ∈ b−1

}
.

This is a maximal arithmetic subgroup of SL2(F ) and any maximal arithmetic subgroup is
conjugate to H(b) (see [EGM98, Proposition 7.4.5]). In order to study the structure of U(H(b))
we define j : P1(F )→ Cl(F ) to be the map

j([z1 : z2]) = [z1b + z2O].

Theorem 18. For Γ =H(b), the induced map

j : P1(F )/Γ→ Cl(F )

is a bijection.
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Proof. Let (x1, x2), (y1, y2) ∈ F × F . It is easy to check (see [EGM98, Theorem VII 2.4] for
SL2(O), [Ber05, Lemma 5.10] for the general case) that the following are equivalent.

(1) x1b + x2O = y1b + y2O.
(2) There exists σ ∈H(b) such that (x1, x2) = (y1, y2)σ.

It remains to show the surjectivity of j. Given a class in Cl(F ) take a⊂O representing it.
By the Chinese Remainder theorem one can choose z2 ∈ O such that:

– ord℘(z2) = ord℘(a) if ℘|a;

– ord℘(z2) = 0 if ℘ - a, ord℘(b) 6= 0.

Then one chooses z1 such that:

– ord℘(z1b)> ord℘(z2) if ℘|a or ord℘(b) 6= 0;

– ord℘(z1b) = 0 if ℘|z2, ℘ - a, and ord℘(b) = 0.

These choices ensure that ord℘(z1b + z2O) = ord℘(a) for all prime ideals ℘. 2

Following Serre [Ser70] we now calculate explicitly Γ[z1:z2] for Γ =H(b) and [z1 : z2] ∈P1(F ).

Lemma 19. For Γ =H(b), Γ[z1:z2] is conjugate in H(b) to{
θ

(
1 t
0 1

)
θ−1 : t ∈ a−2b

}
,

where a = z1b + z2O and θ is an isomorphism O ⊕ b
∼→ a⊕ a−1b of determinant 1, i.e., such that

its second exterior power

Λ2θ : Λ2(O ⊕ b) = b→ Λ2(a⊕ a−1b) = a⊗ a−1b = b

is the identity.

Proof. The main change to [Ser70, § 3.6] is that we consider the lattice L :=O ⊕ b instead of O2.
We claim there exists a projective rank one submodule E of L containing a multiple of (z1, z2).
Let E be the kernel of the O-homomorphism L=O ⊕ b→ F given by (x, y) 7→ yz1 − xz2. Since
the image is a = z1b + z2O, we get L/E ∼= a, so L/E is projective of rank one and L decomposes
as E ⊕ L/E.

By definition Γ[z1:z2] fixes L ∩ {λ(z1, z2), λ ∈ F}, but this is exactly E. Since Γ[z1:z2] is
unipotent it can therefore be identified with HomO(L/E, E). For any fractional ideal a, Λ2(a) = 0
and so b = Λ2(L) = Λ2(E ⊕ L/E) = E ⊗O L/E; therefore E is isomorphic to (L/E)−1 ⊗ b.
This implies an isomorphism HomO(L/E, E) = (L/E)−1 ⊗ E ∼= (L/E)−1 ⊗ (L/E)−1 ⊗ b∼= a−2b.
Choosing an isomorphism θ : L→ L/E ⊕ E ∼= a⊕ a−1b of determinant 1 we can represent Γ[z1:z2]

as stated above. 2

Note that since H(b) is the stabilizer of any lattice m⊕ n with m and n fractional ideals of
F such that m−1n = b, one can deduce the following.

Lemma 20. Let a, b be two fractional ideals of F . If [a] = [b] in Cl(F )/Cl(F )2, then H(a) =
H(b)γ with γ ∈GL2(F ). If the fractional ideals differ by the square of an O-ideal, then γ can be
taken to be in SL2(F ).

If the class of b in Cl(F ) is a square, H(b) is isomorphic to SL2(O) by Lemma 20, and the
involution on U(SL2(O)) induced by complex conjugation and Serre’s Théorème 9 [Ser70] can
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easily be transferred to U(H(b)). We therefore turn our attention to the case when

[b] is not a square in Cl(F ).

Note that this implies that [b] has even order, since any odd order class can be written as a
square.

Define an involution on H(b) to be the composition of complex conjugation with an Atkin–
Lehner involution, i.e., by

H =
(
a b
c d

)
7→AHA−1 =

(
d −Nm(b)c

−bNm(b)−1 a

)
,

where A=
( 0 1
−Nm(b)−1 0

)
.

Like Serre, we will choose a set of representatives for the cusps P1(F )/H(b) on which
this involution acts. For this we observe that if Γ[z1:z2] fixes [z1 : z2] then AΓ[z1:z2]A

−1 fixes
[z1 : z2]A−1 = [z2 :−Nm(b)z1]. We use the isomorphism j : P1(F )/H(b)→ Cl(F ) to show that
this action on the cusps is fixpoint-free. We observe that if j([z1 : z2]) = a then j([z1 : z2]A−1) =
[z2b + Nm(b)z1O] = [ab]. Note that [a] 6= [ab] in Cl(F ) since otherwise [a2] = [Nm(a)b] = [b], i.e.,
[b] is a square, contradicting our hypothesis. So Cl(F ) can be partitioned into pairs (ai, aib).

Choosing [zi1 : zi2] ∈P1(F ) such that ai = zi1b + zi2O we obtain

U(H(b)) =
⊕

(ai,aib)

(Γ[zi1:zi2] ⊕AΓ[zi1:zi2]A
−1).

Our choice of representatives of P1(F )/H(b) shows that the involution operates on U(H(b))
and, in fact, by identifying Γ[zi1:zi2] with

{
θ
(

1 s
0 1

)
θ−1 : s ∈ a−2

i b
}

for θ :O ⊕ b→ ai ⊕ a−1
i b and

AΓ[zi1:zi2]A
−1 with

{
θ′
(

1 0
−t 1

)
θ′−1 : t ∈ ai

−2b−1
}

for θ′ =AθA−1 :O ⊕ b→ ai
−1 ⊕ aib, we can

describe the involution on each of the pairs as

(s, t) ∈ a−2
i b⊕ ai

−2b−1 7→ (tNm(b), sNm(b)−1).

Now denote by U+ the set of elements of U(H(b)) invariant under the involution H 7→
AHA−1, and by U ′ the set of elements u+AuA−1 for u ∈ U(H(b)).

Theorem 21. For Γ =H(b) with [b] a non-square in Cl(F ), the kernel N of the homomorphism

α : U(Γ)→ Γab

coming from the inclusion ΓD ↪→ Γ for D ∈P1(F ) satisfies 6U ′ ⊂N ⊂ U+.

Proof. With small modifications, we follow Serre’s proof of his Théorème 9. As in Serre’s case,
it suffices to prove the inclusion 6U ′ ⊂N , i.e., that 6(u+AuA−1) maps to an element of the
commutator [H(b), H(b)].

Suppose that we have 6U ′ ⊂N , but that there exists an element u ∈N not contained in U+.
Then the subgroup of N generated by 6U ′ and u has rank #Cl(F ) + 1. This contradicts the fact
that the kernel of α has rank #Cl(F ) (see [Ser70, Théorème 7]). (The latter is proven by showing
dually that the rank of the image of the restriction map H1(H(b)\H3, R)→H1(∂(H(b)\H3), R)
has half the rank of that of the boundary cohomology. This we have shown in the proof of
Lemma 16.)

To prove 6U ′ ⊂N we make use of Serre’s Proposition 6.
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Proposition 22 [Ser70, Proposition 6]. Let q be a fractional ideal of F and let t ∈ q and t′ =
t/Nm(q) so that t′ ∈ q−1. Put xt =

(
1 t
0 1

)
and yt =

(
1 0
−t′ 1

)
. Then (xtyt)6 lies in the commutator

subgroup of H(q).

Put a := z1b + z2O. If u ∈ Γ[z1:z2], identify it with θ−1
(

1 t
0 1

)
θ for some t ∈ a−2b and

θ :O ⊕ b→ a⊕ a−1b of determinant 1. One can easily check that AuA−1 then corresponds to
(AθA−1)

( 1 0
−tNm(b)−1 1

)
(AθA−1). Like Serre, we use the fact that since [a] = [a−1], AuA−1 is

also given by Theorem 18 by B−1θ−1
(

1 0
−t′ 1

)
θB for t′ = tNm(b)−1Nm(a)2 and B ∈H(b) taking(

Nm(b)z2
z1

)
to Nm(a)−1

(
Nm(b)z2

z1

)
.

Since θ−1xtytθ is a representative of u+BAuA−1B−1, we deduce from the above proposition
with q = a−2b that 6(u+BAuA−1B−1) and therefore 6(u+AuA−1) lie in [H(b), H(b)]. 2

The following observation links U(Γ) to the cohomology of the boundary components.

Lemma 23. For imaginary quadratic fields F other than Q(
√
−1) or Q(

√
−3), Γ⊂ SL2(F ) an

arithmetic subgroup, P a parabolic subgroup of ResF/Q(SL2/F ) with unipotent radical UP , and
R a ring in which 2 is invertible, we have

H1(ΓP , R)∼=H1(ΓUP , R),

where ΓP = Γ ∩ P (Q) and ΓUP = Γ ∩ UP (Q).

Proof. Serre shows in [Ser70, Lemme 7] that ΓUP / ΓP and that the quotient WP = ΓP /ΓUP can
be identified with a subgroup of the roots of unity of F , i.e., of {±1} since F 6= Q(

√
−1),Q(

√
−3).

The lemma follows from the Inflation–Restriction sequence. See also [Tay88, p. 110]. 2

By (2), (4) (in § 2.5), and Lemma 23 we have

H1(∂(Γ\H3), R)∼=
∐

[η]∈P1(F )/Γ

H1(ΓUη , R) =H1(U(Γ), R). (8)

We now reinterpret Serre’s theorem (Theorem 17) and its generalization (Theorem 21) as follows.

Proposition 24. For imaginary quadratic fields F other than Q(
√
−1) or Q(

√
−3) and R a

ring in which 2 and 3 is invertible, the image of the restriction map

H1(Γ\H3, R) res→H1(∂(Γ\H3), R)

is contained in the −1-eigenspace of the involution induced by

– ι : H3→H3 : (z, t) 7→ (z, t) if Γ = SL2(O),

– ι : H3→H3 : (z, t) 7→A.(z, t) for A=
( 0 1
−Nm(b)−1 0

)
if Γ =H(b) with [b] a non-square in

Cl(F ),

and these involutions are orientation-reversing.

By Lemma 16 this immediately implies the following.

Corollary 25. For imaginary quadratic fields F other than Q(
√
−1) or Q(

√
−3), Γ = SL2(O)

or H(b) with [b] a non-square in Cl(F ), and R a complete discrete valuation ring in which 2 and
3 are invertible and with finite residue field of characteristic p > 2, the restriction map

H1(Γ\H3, R) res→H1(∂(Γ\H3), R)−

surjects onto the −1-eigenspace of the involutions defined in the proposition.
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Proof of Proposition 24. Write I : Γ→ Γ for the involution{
γ 7→ γ if Γ = SL2(O),
γ 7→AγA−1 if Γ =H(b).

The involutions ι extend canonically to H3. One can check that for γ ∈ Γ we have

ι(γ.(z, t)) = I(γ)ι(z, t). (9)

This implies that the involutions operate on Γ\H3 and Γ\H3, and hence on ∂(Γ\H3). To show
that they act by reversing the orientation note that complex conjugation corresponds to reflection
in a half-plane of H3 and therefore reverses the orientation. Furthermore, GL2(C) acts on H3

via A′ = (det(A)−1/2)A ∈ SL2(C) and SL2(C) acts without reversing orientation, as can be seen
from the geometric definition of its action via the Poincaré extension of the action on P1(C)
(see [EGM98, pp. 2–3]).

Using (9) one can show that under the isomorphism

H1(∂(Γ\H3), R)
(8)∼= H1(U(Γ), R)

ι corresponds to the involution on H1(U(Γ), R) = Hom(U(Γ), R) given by ϕ 7→ I(ϕ), where
I(ϕ)(u) := ϕ(I(u)).

We can therefore check that the image of the restriction maps is contained in the
−1-eigenspace on the level of group cohomology: the restriction map is given by

Hom(Γab, R)→Hom(U(Γ), R) : ϕ 7→ ϕ ◦ α.

By Serre’s theorem (Theorem 17) and Theorem 21, 0 = ϕ(α(uI(u))) = ϕ(α(u)) + ϕ(α(I(u))), so
I(ϕ ◦ α)(u) = ϕ(α(I(u))) =−ϕ(α(u)) for any u ∈ U(Γ). 2

5.3 Integral lift of constant term

Recall the statement of Proposition 12.

Proposition 26 (=Proposition 12). Let χ= φ1/φ2 be an unramified Hecke character of infinity
type z2. Assume that 1 is the only unit in O∗ congruent to 1 modulo the conductor of φ1. Let
Kf and Eis(φ) be defined as in § 4.2. Assume res(Eis(φ)) ∈ H̃1(∂SKf ,R). Then there exists

cφ ∈ H̃1(SKf ,R) with

res(cφ) = res(Eis(φ)) ∈ H̃1(∂SKf ,R).

First observe that everywhere unramified characters with infinity type z2 exist only for
F 6= Q(

√
−1),Q(

√
−3). For unramified χ we have

Kf =
∏
v|M 1

U1(M 1,v)
∏
v-M 1

GL2(Ov).

Recall that U1(M 1,v) = {k ∈GL2(Ov) : det(k)≡ 1 mod M 1,v}. By assumption, 1 is the only unit
in O∗ congruent to 1 modulo M 1 so we get Kf ∩GL2(F ) = SL2(O).

Recall from § 2.5 the decomposition of SKf into its connected components. The above implies
that we can write SKf as a disjoint union of Γ\H3 with Γ =H(b) for suitable fractional ideals b.
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For a finite idele a, denote by (a) the corresponding fractional ideal. Write

SKf
∼=

#π0(Kf )∐
i=1

Γti\H3,

where Γti =G(Q) ∩ tiKf t
−1
i and the ti ∈G(Af ) are given by ti =

( γjakbm 0
0 bm

)
, with:

– {γj} a system of representatives of

ker(π0(Kf )→ Cl(F ))∼=O∗\
∏
v

O∗v/det(Kf );

– {ak} a set of representatives of Cl(F )/(Cl(F ))2 in A∗F,f (and we represent the principal
ideals by (1));

– {b2m} a set representing Cl(F )2.

Note that for these choices Γti =H((ak)) and either ak = 1 or [(ak)] is not a square in Cl(F ).
This allows us to apply our results for maximal arithmetic subgroups from the previous section
by considering the restriction maps to the boundary separately for each connected component.

Proposition 27. We have

[res(Eis(φ))] ∈ (H1(∂SKf ,R)−)free,

where H1(∂SKf ,R)− is defined via the isomorphism to

#π0(Kf )⊕
i=1

H1(∂(Γti\H3),R)−

where ‘−’ indicates the −1-eigenspace of the involutions defined in Proposition 24.

Remark. Together with Corollary 25 this shows the existence of an integral lift of the constant
term and proves Proposition 12.

Proof. We will consider the restriction maps to the boundary separately for each connected
component Γti\H3:

H1(Γti\H3,R) res→H1(∂(Γti\H3),R)
(2)∼=

⊕
[η]∈P1(F )/Γti

H1(Γti,Bη\H3,R),

where Γti,Bη = Γti ∩ η−1B(Q)η. By (4) and Lemma 23 we have H1(Γti,Bη\H3,R)∼=
H1(Γti,Uη ,R). We recall from [Ber08, Proposition 10, Lemma 11, and Proof of Proposition
16] that res(Eis(φ)) restricted to this boundary component is represented by

η−1
∞

(
1 x
0 1

)
η∞ 7→ xΨφ(ηf ti)−

L(0, χ)
L(0, χ)

W (χ) · xΨw0.φ(ηf ti), (10)

where W (χ) is the root number of χ, ηf and η∞ denote the images of η ∈G(Q) in G(Af ) and
G(R), respectively, w0.(φ1, φ2) = (φ2 · | · |, φ1 · | · |−1), and Ψφ :G(Af )→C satisfies

Ψφ

((
a b
0 d

)
k

)
= φ1(a)φ2(d) for

(
a b
0 d

)
∈B(Af ), k ∈

∏
v

SL2(Ov)⊂Kf .

Note that, in particular, Ψφ(bg) = φ−1
∞ (b)Ψφ(g) for b ∈B(F )⊂G(Af ), where we use the

convention introduced in § 2.5 for considering φ as a character of B(A). By Lemma 1, χc = χ, so
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L(0, χ) = L(0, χ). Furthermore,W (χ) = i2(χ/|χ|)(δ−1
F ) for δF the different ideal of F/Q (see, e.g.,

the proof of [AH06, Proposition 2.1.7]). Since δF = g′(α)O, where O = Z[α] and g ∈ Z[x] is the
minimal polynomial of α (see [Neu99, Proposition III.2.4]) one can check that for all imaginary
quadratic fields there exists a generator δ of δF satisfying δ =−δ. We deduce therefore that in
our case W (χ) = 1.

We need to prove that (10) lies in the −1-eigenspace of the involution induced by u 7→ u for
Γti = SL2(O) and by u 7→AuA−1 for Γti =H(b), where A=

(
0 1

−N−1 0

)
with N = Nm(b).

(1) Case Γti = SL2(O): Recall that in this case ti =
( γibi 0

0 bi

)
for some γi ∈ Ô∗ and bi ∈A∗F,f .

It suffices to prove that Ψφ(ηf ti) = Ψw0.φ(ηf ti). For this we use the Bruhat decomposition of
matrices in GL2(F ) given by

(
a b
c d

)
=



(
1 b/d

0 1

)(
a 0
0 d

)
if c= 0,(

1 a/c

0 1

)(
(ad− bc)/c 0

0 −c

)(
0 1
−1 0

)(
1 d/c

0 1

)
otherwise.

Since Ψφ

((
a b
0 d

)
g
)

= Ψφ

((
a b
0 d

))
Ψφ(g) we can consider separately the cases:

(a) η =
(
a b
0 d

)
for a, b, d ∈ F ; and

(b) η =
(

0 1
−1 0

)(
1 e
0 1

)
for e ∈ F .

We check that, for case (a),

Ψφ

(
ηf

(
γibi 0
0 bi

))
= φ1(γibi)φ2(bi)Ψφ(ηf )

and

Ψw0.φ

(
ηf

(
γibi 0
0 bi

))
= φ2(γi)|γi|φ1(bi)φ2(bi)Ψw0.φ(ηf ).

Since γi ∈ Ô∗ and χ= φ1/φ2 is unramified, it suffices to show that Ψφ(ηf ) = Ψw0.φ(ηf ). In case
(b) we similarly reduce to this assertion.

In case (a) we get Ψφ(ηf ) = φ−1
1,∞(a)φ−1

2,∞(d) = d/a. Since w0.φ has infinity type (z, z−1) this
equals Ψw0.φ(ηf ). In case (b) we need to calculate the Iwasawa decomposition of η in GL2(Fv)
if e /∈ Ov (at all other places Ψφ(ηv) = Ψw0.φ(ηv) = 1). It is given by(

0 1
−1 0

) (
1 e
0 1

)
=
(
e−1 0
0 e

) (
−1 0
−e−1 −1

)
.

So, if e /∈ Ov then Ψφ(ηv) = (φ2/φ1)v(e) = χ−1
v (e), which matches Ψw0.φ(ηv) = (φ1/φ2)v(e)|e|−2

v

because χc = χ and χχ= | · |2.

(2) Case Γti =H(b): The involution maps the cusp corresponding to Bη to BηA−1
. We therefore

have to prove that

Ψφ(ηf ti) = Ψw0.φ(ηfA
−1ti). (11)

Recall that ti =
(
xibi 0

0 bi

)
for some xi, bi ∈A∗F,f . Again making use of the Bruhat decomposition,

we need to only consider η as in cases (a) and (b) above. Following the arguments used for case
(1) above, case(a) reduces immediately to showing that Ψφ(ti) = Ψw0.φ(A−1ti). The left-hand
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side equals φ1,f (xibi)φ2,f (bi), the right-hand side is

Ψw0.φ

((
N 0
0 1

) (
0 1
−1 0

) (
xibi 0

0 bi

))
= N−1Ψw0.φ

((
bi 0
0 xibi

))
= N−1φ1,f (xibi)φ2,f (bi)|xi|−1

f .

Equality follows from |xi|−1
f = Nm(b).

For case (b), one can quickly check that for η =
(

0 1
−1 0

)
the two sides in (11) agree. For general

η =
(

0 1
−1 0

)(
1 e
0 1

)
one can show that, on the one hand,

ηf

(
xibi 0

0 bi

)
=
(
bi 0
0 xibi

) (
0 1
−1 0

) (
1 exi
0 1

)
,

and, on the other hand,

ηfA
−1

(
xibi 0

0 bi

)
=
(
xibi 0

0 biN

) (
0 1
−1 0

) (
1 exi/N
0 1

)
.

Since (xixi) = (N) the valuations of exi/N agree with that of exi. Repeating the calculation
for η =

(
0 1
−1 0

)
and then applying the argument from case 1(b) (since χ is unramified we are only

concerned about the valuation of the upper right-hand entry) we also obtain equality. 2

6. Bloch–Kato Conjecture for Hecke characters

Combining Theorem 6 with Theorem 13 or 14 we get lower bounds on the size of the Selmer group
of Hecke characters. We want to demonstrate this application under the particular conditions of
Theorem 14 and relate it to the Bloch–Kato conjecture.

Theorem 28. Assume that p > 3, p - dF#Cl(F ) and that ` 6≡ ±1 mod p for ` | dF . If p is inert
in F/Q then assume Conjecture 5. Let χ be an unramified Hecke character of infinity type z2.
Then we have

valp#Sel(F, χpε)≥ valp(#R/Lint(0, χ)).

Proof. Put ρ := χpε. Theorem 6 together with Lemma 8 and Theorem 14 imply that

valp#SelΣφ\Σp(F, χpε)≥ valp(#R/Lint(0, χ)),

where φ= (φ1, φ2) is given by Theorem 14. For the definition of Σφ see the start of § 3. Recall
that by (φ) the set Σφ\Σp contains only places v such that v = v and #Ov/Pv 6≡ ±1 mod p.
By Lemma 1 we have χc = χ, which implies that ρ is anticyclotomic, and so we get ρ(Frobv) =
ρ(Frobcv) = ρ−1(Frobv), or ρ(Frobv) =±1. Hence we have ensured that

ρ(Frobv) 6≡ ε(Frobv) mod p

for all v ∈ Σφ\Σp, so the theorem follows from applying Lemma 2. 2

Example 29. A numerical example in which the conditions of our theorem are satisfied and a
non-trivial lower bound on a Selmer group is obtained is given by the following. Let F = Q(

√
−67)

and p= 19. One can check that 19 splits in F . Since the class number is 1, there is only
one unramified Hecke character of infinity type z2. Up to p-adic units Lalg(0, χ) is given by
L(0, χ)/Ω2 where Ω is the Neron period of the elliptic curve y2 + y = x3 − 7370x+ 243582, which
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has conductor 672 and complex multiplication by O. Using MAGMA and ComputeL [Dok04]
one calculates that Lalg(0, χ) ∈ Z19 and

val19(Lalg(0, χ)) = 1.

6.1 Comparison with other results
Assume from now on that #Cl(F ) = 1. Let Ψ : F ∗\A∗F →C∗ be a Hecke character of infinity
type z−1 which satisfies Ψc = Ψ. Then there exists an elliptic curve E over Q with complex
multiplication by O and associated Grössencharacter Ψ. Consider

ρ= (ΨkΨ−j)p for k > 0, j ≥ 0.

We now have the following proposition from [Dee99, Proposition 4.4.3 and § 5.3].

Proposition 30 (Dee). The group Sel(F, ρ) is finite if and only if Sel(F, ρ−1ε) is finite. If this
is the case then

#Sel(F, ρ) = #Sel(F, ρ−1ε)<∞.

By considering χ= Ψ−2 for some Ψ as above and (k, j) = (2, 0), therefore compare
Theorem 28 with the following.

Theorem 31 (Han [Han97]). Suppose k > j + 1. For inert p also assume that ρ is non-trivial
when restricted to Gal(F (Ep)/F ). Then Sel(F, ρ) is finite and

valp#Sel(F, ρ) = valp(#R/Lalg(0,Ψ−kΨj)).

Previously, Kato proved this in the case k > 0 and j = 0; cf. [Kat93]. For a similar result in
the case of split p see [Guo93]. Han claims that his method extends to general class numbers.
All proofs take as input the proof of the Main Conjecture of Iwasawa theory by Rubin [Rub91].

We refer to [Guo96, § 3] for the proof that this statement on the size of the Selmer group is
equivalent to the (critical case of the) p-part of the Bloch–Kato Tamagawa number conjecture
for the motives associated to the Hecke characters.
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