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Tits Triangles

Bernhard Mühlherr and Richard M. Weiss

Abstract. A Tits polygon is a bipartite graph in which the neighborhood of every vertex is endowed
with an “opposition relation” satisfying certain properties. Moufang polygons are precisely the Tits
polygons in which these opposition relations are all trivial. here is a standard construction that pro-
duces a Tits polygon whose opposition relations are not all trivial from an arbitrary pair (∆, T), where
∆ is a building of type Π, Π is a spherical, irreducible Coxeter diagram of rank at least 3, and T is a
Tits index of absolute type Π and relative rank 2. A Tits polygon is called k-plump if its opposition
relations satisfy a mild condition that is satisûed by all Tits triangles coming from a pair (∆, T) such
that every panel of ∆ has at least k+ 1 chambers. We show that a 5-plump Tits triangle is parametrized
and uniquely determined by a ring R that is alternative and of stable rank 2. We use the connection
between Tits triangles and the theory of Veldkamp planes as developed by Veldkamp and Faulkner to
show existence.

1 Introduction

An irreducible spherical building of rank 2 is a generalized polygon. Generalized
polygons are too numerous to classify, but Tits observed that the generalized poly-
gons associated with absolutely simple algebraic groups of F-rank 2 satisfy a sym-
metry property he called the Moufang condition. Moufang polygons (that is to say,
generalized polygons satisfying the Moufang condition) were classiûed in [14].

he notion of a Tits polygon was introduced in [11]. A Tits polygon is a bipartite
graph in which the neighborhood of each vertex is endowed with an “opposition re-
lation” satisfying certain axioms. Moufang polygons are precisely the Tits polygons
in which these opposition relations are all trivial. Every pair (∆, T), where ∆ is an
irreducible spherical building of rank at least 3 and T is a Tits index of relative rank 2
whose absolute type is the Coxeter system of ∆, gives rise, in a natural way, to a Tits
polygon in which the opposition relations are not all trivial. We call these (together
with those that are actually Moufang polygons) the Tits polygons of index type.
Almost all Tits polygons of index type share a natural property of their tori. We

call a Tits polygon dagger-sharp if it has this property or simply sharp if it has a slightly
weaker version of this property. All Moufang polygons are trivially dagger-sharp.

In [11] we developed the basic theory of Tits polygons. In particular, we showed
that sharp Tits n-gons exist only for n = 3, 4, 6, and 8 (as is the case with Moufang
n-gons). In the second part of [11] and in forthcomingwork, we give characterizations
of large classes of Tits quadrangles and hexagons (i.e, Tits n-gons for n = 4 and 6) of
index type, all arising from buildings of exceptional type.
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In this paper we consider the case n = 3. Under the assumption that a Tits triangle
X is 5-plump (a mild condition satisûed, for example, by all Tits polygons of index
type arising from a building whose panels all contain at least 6 chambers), we show
in Section 5 that X is parametrized and uniquely determined by a ring R that is alter-
native and of stable rank 2. Rings of stable rank 2 were introduced in [1], and their
connection to incidence geometry was ûrst explored by Veldkamp in [15]. It turns
out that a Tits triangle is essentially the same thing as a Veldkamp plane that is (C , l)-
transitive for all incident pairs C , l as deûned in [6, §2], and hence it follows from
[6,hm. 9] that every alternative ring of stable rank 2 arises as the parametrizing ring
of a Tits triangle. In Section 7 we obtain as a corollary that [6, hm. 9] continues to
hold if we replace the conûgurational condition (QS) in the deûnition of a Moufang–
Veldkamp plane on [6, pp. 190-191] by themuchmilder 5-plump condition. In Section
5 we also show that a 5-plump Tits triangle X is dagger-sharp if and only if the ring R
is simple.

Conventions Let G be a group. As in [14], we set

ab = b−1ab and [a, b] = a−1b−1ab

for all a, b ∈ G. hus,

[ab, c] = [a, c]b ⋅ [b, c] and [a, bc] = [a, c] ⋅ [a, b]c(1.1)

for all a, b, c. We compose permutations from le� to right. Other functions will be
written on the le� and composed from right to le�. When i and j are subscripts, we
sometimes use [i , j] to indicate the set of integers {i , i + 1, . . . , j} as, for example, in
Deûnition 2.1(ii).

2 Tits Polygons

In this section, we deûne Tits polygons and summarize their most basic properties.

Deûnition 2.1 A dewolla is a triple

X = (Γ,A, {≡v}v∈V),

where the following hold:

(i) Γ is a bipartite graph with vertex set V and ∣Γv ∣ ≥ 3 for each v ∈ V , where Γv
denotes the set of vertices adjacent to v.

(ii) For each v ∈ V , ≡v is an anti-re�exive symmetric relation on Γv . We say that ver-
ticesu,w ∈ V are opposite at v ifu,w ∈ Γv andu ≡v w, and a path (w0 ,w1 , . . . ,wm)

in Γ is called straight if w i−1 and w i+1 are opposite at w i for all i ∈ [1,m − 1].
(iii) A is a set of 2n-cycles for some n ≥ 3 and every cycle inA contains only straight

paths.

he parameter n is called the level of X. he automorphism group Aut(X) is the
subgroup of Aut(Γ) consisting of all g ∈ Aut(Γ) such that Ag = A and for all v ∈ V
and all u,w ∈ Γv , u and w are opposite at v if and only if ug and w g are opposite at v g .
A root of X is a straight path of length n.

584 B. Mühlherr and R. M. Weiss

https://doi.org/10.4153/S0008439518000140 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000140


Tits Triangles

Deûnition 2.2 A Tits n-gon is a dewolla

X = (Γ,A, {≡v}v∈V)

of level n for some n ≥ 3 such that Γ is connected and the following axioms hold:
(i) For all v ∈ V and all u,w ∈ Γv , there exists z ∈ Γv that is opposite both u and w

at v.
(ii) For each straight path δ = (w0 , . . . ,wk) of length k ≤ n − 1, δ is the unique

straight path of length at most k from w0 to wk .
(iii) For G = Aut(X) and for each root α = (w0 , . . . ,wn) of X, the group Uα acts

transitively on the set of vertices oppositewn−1 atwn , whereUα is the pointwise
stabilizer of the set

Γw1 ∪ Γw2 ∪ ⋅ ⋅ ⋅ ∪ Γwn−1

in Aut(X). he group Uα is called the root group associated with the root α.
A Tits polygon is a Tits n-gon for some n ≥ 3. A Tits n-gon is called a Tits triangle if
n = 3, a Tits quadrangle if n = 4, etc.

Notation 2.3 Let X = (Γ,A, {≡v}v∈V) be a Tits n-gon. A coordinate system for X
is a pair (γ, i ↦ w i) where γ is an element of A and i ↦ w i is a map from Z to the
vertex set of γ such that w i+1 is adjacent to w i and distinct from w i−1 for each i. For
each coordinate system (γ, i ↦ w i), we denote by U i the root group associated with
the root (w i ,w i+1 , . . . ,w i+n) for each i ∈ Z and call the map i ↦ U i the associated
root group labeling. hus,w i = w j andU i = U j whenever i and j have the same image
in Z2n . If (γ, i ↦ w i) is a coordinate system for X, then so is (γ, i ↦ wn+1−i).

For the rest of this section, we ûx a Tits n-gon X = (Γ,A, {≡v}v∈V) and a coordi-
nate system (γ, i ↦ w i) of X and let i ↦ U i be the corresponding root group labeling.

Proposition 2.4 he following hold:
(i) [U i ,U j] ⊂ U[i+1, j−1] for all i , j such that i < j < i + n, where

U[k ,m] =
⎧⎪⎪
⎨
⎪⎪⎩

UkUk+1 ⋅ ⋅ ⋅Um if k ≤ m,
1 otherwise.

In particular, [U i ,U i+1] = 1 for all i.
(ii) he product map U1 ×U2 × ⋅ ⋅ ⋅ ×Un → U[1,n] is bijective.

Proof his holds by [11, 1.3.36]. ∎

Proposition 2.5 For each i, U i acts sharply transitively on the set of vertices that are
opposite w i+1 at w i and on the set of vertices that are opposite w i+n−1 at w i+n .

Proof his holds by [11, 1.3.25]. ∎

Notation 2.6 Let

U♯
i = {a ∈ U i ∣ wa

i+n+1 is opposite w i+n+1 at w i+n}
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for each i. By [11, 1.4.3],U♯
i is non-empty and closed under inverses, and by [11, 1.4.8],

we have
U♯

i = {a ∈ U i ∣ wa
i−1 is opposite w i−1 at w i}

for each i

Proposition 2.7 For each i ∈ Z, there exist unique maps κγ and λγ from U♯
i to U♯

i+n
such that for each a ∈ U♯

i , the product

µγ(a) ∶= κγ(a) ⋅ a ⋅ λγ(a)

interchanges the vertices w i+n−1 and w i+n+1. For each a ∈ U♯
i , the element µγ(a) ûxes

the vertices w i and w i+n and interchanges the vertices w i+ j and w i− j for all j ∈ Z and

(2.1) U µγ(a)
k = U2i+n−k

for all k ∈ Z.

Proof his holds by [11, 1.4.4]. ∎

Remark 2.8 Let m i ∈ µγ(U♯
i ) for i = 1 and n. By Proposition 2.7, the subgroup

⟨m1 ,mn⟩ acts transitively on the set of edges of γ. If n is odd, ⟨m1 ,mn⟩ acts transitively
on the set {U i ∣ i ∈ Z}, but if n is even, U i and U j are in the same ⟨m1 ,mn⟩-orbit if
and only if i and j have the same parity.

Proposition 2.9 Let a ∈ U♯
i for some i. hen µγ(a) is the unique element ofU i+naU i+n

that interchanges w i−1 and w i+1.

Proof Let b, c ∈ U i+n and suppose that m ∶= bac interchanges w i−1 and w i+1. hen
wbi+1 = wa−1

i−1 andw
a
i−1 = wc

−1

i+1. By Proposition 2.5, therefore, b and c are unique. Hence
b = κγ(a), c = λγ(a) and m = µγ(a). ∎

Proposition 2.10 Let u ∈ U♯
i for some i. hen µγ(u−1) = µγ(u)−1.

Proof By Notation 2.6, u−1 ∈ U♯
i . he claim holds, therefore, by [11, 1.4.13(i)]. ∎

Proposition 2.11 Suppose that [a1 , a−1
n ] = a2 ⋅ ⋅ ⋅ an−1 with a i ∈ U i for each i ∈ [1, n].

hen the following hold:

(i) If a1 ∈ U♯
1 , then a2 = a

µγ(a1)
n and [a2 , λγ(a1)−1] = a3 ⋅ ⋅ ⋅ an−1an .

(ii) If an ∈ U♯
n , then a1 = a

µγ(an)
n−1 and [κγ(an), a−1

n−1] = a1a2 ⋅ ⋅ ⋅ an−2.

Proof his holds by [11, 1.4.16]. ∎

Proposition 2.12 wU iU i+n
i−1 = Γw i = wU i+nU i

i+1 for each i.

Proof his holds by [11, 1.3.4]. ∎

Proposition 2.13 he following hold:
(i) If a ∈ U1 and U ba

2 = Un for some b ∈ Un+1, then a ∈ U♯
1 .
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(ii) If a ∈ Un and U ba
n−1 = U1 for some b ∈ U0, then a ∈ U♯

n .

Proof his holds by [11, 1.4.27]. ∎

Deûnition 2.14 Let k ≥ 3. As in [11, 1.4.21], we call X k-plump if for all v ∈ V , and
for every subset N of Γv of cardinality at most k, there exists a vertex that is opposite
u at v for all u ∈ N . hus, k-plump implies (k − 1)-plump, where “2-plump” is simply
Deûnition 2.2(i). See Remark 8.4.

Notation 2.15 Let G = Aut(X), let G† denote the subgroup of G generated by all
the root groups of X and let Gγ (resp. G†

γ) denote the pointwise stabilizer of γ in G
(resp. G†). he subgroup Gγ normalizes U i for each i. We say that X is sharp if for
each i, every nontrivialGγ-invariant normal subgroup ofU i contains elements ofU♯

i ,
where U♯

i is as in Notation 2.6. We say that X is dagger-sharp if for each i, every
nontrivial G†

γ-invariant normal subgroup of U i contains elements of U♯
i . Note that

dagger-sharp implies sharp.

Remark 2.16 Let Gγ and G†
γ be as in Notation 2.15. It follows from Remark 2.8 that

to show that X is sharp (or dagger-sharp), it suõces to show that every nontrivialGγ-
invariant (or G†

γ-invariant) normal subgroup of U i contains elements of U♯
i for any

one value of i if n is odd, respectively, for i = 1 and n if n is even.

Proposition 2.17 If X is (n + 1)-plump, then G†
γ = Y1Yn , where G†

γ is as in Nota-
tion 2.15 and

Yi = ⟨ µγ(a)µγ(b) ∣ a, b ∈ U♯
i ⟩

for i = 1 and n.

Proof his holds by [11, 1.5.28]. ∎

Proposition 2.18 Suppose that X is (n + 1)-plump and let m i ∈ µγ(U♯
i ) for i = 1 and

n. hen X is uniquely determined by U[1,n], the action of m1 on U[2,n], the action of mn
on U[1,n−1] and the action of the product m iµγ(u) on U[1,n] for i = 1 and n and for all
u ∈ U♯

i .

Proof his holds by [11, 1.5.29]. ∎

3 Tits Triangles

he main result of this section is heorem 3.2. he proof is derived from results in
[14, Chapter 19].

Notation 3.1 Let Abe a unital ring (i.e., A contains a two-sided identity 1) that is not
necessarily commutative or associative. Wewill say that an element a of A is invertible
if there exists b ∈ A such that xa ⋅b = x and b ⋅ ax = x for all x ∈ A. he element b, if it
exists, is unique and is denoted by a−1. We denote by A× the set of invertible elements
of A.
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heorem 3.2 Let X = (Γ,A, {≡v}v∈V) be a Tits triangle, let (γ, i ↦ w i) be a coordi-
nate system of X, and let i ↦ U i be the corresponding root group labeling. hen there
exists a unital ring R and isomorphisms x i from the additive group of R to U i for all
i ∈ [1, 3] such that the following hold:

(i) [x1(s), x3(t)] = x2(st) for all s, t ∈ R.
(ii) x i(t) ∈ U♯

i if and only if t ∈ R×.
(iii) he set R× of invertible elements of R is closed under multiplication and if u, v ∈

R×, then (uv)−1 = v−1u−1.
(iv) he set R× is closed under inverses and (t−1)−1 = t for all t ∈ R×.
(v) he Moufang identities (tu ⋅ v)u = t(u ⋅ vu), u(t ⋅ uv) = (ut ⋅ u)v and uv ⋅ tu =

u(vt ⋅ u) = (u ⋅ vt)u hold for all u ∈ R× and all t, v ∈ R.

We proveheorem 3.2 in a series of steps.

Remark 3.3 Suppose that [a i , a i+2] = a i+1 for some i with a i+ j ∈ U i+ j for j ∈ [0, 2].
By Proposition 2.4(i), we have [U j ,U j+2] ⊂ U j+1 and [U j ,U j+1] = 1 for all j. Applying
(1.1) to [a i ⋅ a−1

i , a i+2] and to [a i , a i+2 ⋅ a−1
i+2], we conclude that [a−1

i , a i+2] = a−1
i+1 and

[a i , a−1
i+2] = a

−1
i+1.

Proposition 3.4 he following hold:

(i) Let a1 ∈ U♯
1 . hen aµγ(a1)2

2 = a−1
2 and a

µγ(a1)2
3 = a−1

3 for all a2 ∈ U2 and all a3 ∈ U3.

(ii) Let a3 ∈ U♯
3 . hen aµγ(a3)2

1 = a−1
1 and aµγ(a3)2

2 = a−1
2 for all a1 ∈ U1 and a2 ∈ U2.

Proof Choose a1 ∈ U♯
1 and a3 ∈ U3, and let a2 = [a1 , a−1

3 ]. By Proposition 2.10,
a−1
1 ∈ U♯

1 and µγ(a−1
1 ) = µγ(a1)−1, and by Remark 3.3, [a−1

1 , a−1
3 ] = a−1

2 . By Proposi-

tion 2.11(ii), therefore, a2 = a
µγ(a1)
3 follows from a2 = [a1 , a−1

3 ], and a−1
2 = aµγ(a−1

1 )
3 =

aµγ(a1)−1

3 follows from a−1
2 = [a−1

1 , a−1
3 ]. Hence, aµγ(a1)2

i = a−1
i for i = 2 and 3. hus, (i)

holds; (ii) holds by a similar argument. ∎

Proposition 3.5 U i is abelian for all i.

Proof By Proposition 3.4, the map x ↦ x−1 is an automorphism of U3. It follows
that U3 is abelian. By Remark 2.8, therefore, U i is abelian for all i. ∎

Proposition 3.6 Let a i ∈ U i for some i. hen the maps u i+2 ↦ [a i , u i+2] from U i+2
to U i+1 and the map u i−2 ↦ [u i−2 , a i] from U i−2 to U i−1 are both homomorphisms.

Proof As was observed in Remark 3.3, we have [U j ,U j+2] ⊂ U j+1 and [U j ,U j+1] = 1
for all j. he claim holds, therefore, by (1.1) and Proposition 3.5. ∎

Notation 3.7 We now choose an additive group R isomorphic to U1 and an iso-
morphism t ↦ x1(t) from R to U1. hus,

x1(t + u) = x1(t)x1(u) and x1(t)−1
= x1(−t)
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for all t, u ∈ R. We then choose e1 ∈ U♯
1 and e3 ∈ U♯

3 , and let

2(t) = x1(t)µγ(e3) and x3(t) = x2(t)µγ(e1)

for all t ∈ R.

By (2.1) and Notation 3.7, t ↦ x i(t) is an isomorphism from R to U i for i = 2 and
3. Next, we deûne a multiplication on R.

Notation 3.8 Let (u, v) ∈ R × R. hen uv (or u ⋅ v) is the unique element of R such
that

[x1(u), x3(v)] = x2(uv).

Proposition 3.9 he le� and right distributive laws hold in R.

Proof Let u, u′ , v ∈ R. By Proposition 3.6, we have

x2((u + u′)v) = [x1(u + u′), x3(v)] = [x1(u), x3(v)] ⋅ [x1(u′), x3(v)]

= x2(uv)x2(u′v),

and thus (u + u′)v = uv + u′v. By a similar argument, v(u + u′) = vu + vu′. ∎

Proposition 3.10 he following hold: x1(t)µγ(e3) = x2(t), x2(t)µγ(e1) = x3(t),
x2(t)µγ(e3) = x1(−t) and x3(t)µγ(e1) = x2(−t) for all t ∈ R.

Proof he ûrst two assertions hold by deûnition. he second two follow by Propo-
sition 3.4. ∎

Notation 3.11 Now let 1 ∈ R denote the pre-image of e1 under the isomorphism t ↦
x1(t), and let e2 = [e1 , e3]. hen [e1 , e−1

3 ] = e−1
2 byProposition 3.6. By Proposition 2.11,

therefore, e−1
1 = eµγ(e3)

2 and e−1
2 = eµγ(e1)

3 . By Proposition 3.10, it follows that e2 = x2(1)
and then e3 = x3(1).

Proposition 3.12 he element 1 is a 2-sided identity, i.e. 1 ⋅ t = t ⋅ 1 = t for all t ∈ R.

Proof Choose t ∈ R. Since e1 = x1(1), we have

x2(1 ⋅ t) = [e1 , x3(t)] = [e1 , x3(−t)−1
] = x3(−t)µγ(e1) = x2(t),

and hence 1 ⋅ t = t by Proposition 2.11, Notation 3.8, and Proposition 3.10. By Propo-
sition 2.10, we have e−1

3 ∈ U♯
3 and µγ(e−1

3 )−1 = µγ(e3). Since e3 = x3(1), it follows
that

x2(t ⋅ 1) = [x1(t), e3] = [x1(t), (e−1
3 )

−1
] = x1(t)µγ(e3) = x2(t),

and hence t ⋅ 1 = t, again by Proposition 2.11, Notation 3.8, and Proposition 3.10. ∎

Proposition 3.13 R is a unital ring, and heorem 3.2(i) holds.

Proof By Propositions 3.9 and 3.12, R is a unital ring, and heorem 3.2(i) is simply
a restatement of Notation 3.8. ∎
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Now let x0(t) = x3(t)µγ(e3) and x4(t) = x1(t)µγ(e1) for all t. By (2.1), t ↦ x i(t) is
an isomorphism from R to U i for i = 0 and 4.

Proposition 3.14 he following hold:

[x0(u), x2(v)] = x1(vu) and [x2(u), x4(v)] = x3(vu)

for all u, v ∈ R.

Proof Choose u, v ∈ R. hen [x1(u), x3(v)] = x2(uv). Conjugating by µγ(e3), we
obtain [x2(u), x0(v)] = x1(−uv) by Proposition 3.10, so

[x0(v), x2(u)] = x1(uv).

Conjugating instead by µγ(e1), we obtain [x4(u), x2(−v)] = x3(uv). By Proposi-
tion 3.6,

[x4(u), x2(−v)] = [x4(u), x2(v)]−1 .
hus, [x2(v), x4(u)] = x3(uv). ∎

Proposition 3.15 heorem 3.2(ii) holds.

Proof Suppose ûrst that u ∈ R×. By Notation 3.8 and Proposition 3.14,

x2(t)x0(u
−1)x3(u) = (x1(−tu−1

)x2(t))
x3(u)

= x1(−tu−1
)

for all t ∈ R. By Proposition 2.13(ii), therefore, x3(u) ∈ U♯
3 .

Suppose, conversely, that x3(u) ∈ U♯
3 . hus,

x1(u) = x3(u)µγ(e1)µγ(e3) ∈ U♯
1

by Proposition 3.10. We have κγ(x3(u)) = x0(v) and λγ(x1(u)) = x4(w) for some
w , v ∈ R, where κγ and λγ are as in Proposition 2.7. Let t ∈ R be arbitrary. By Propo-
sition 3.6 and Notation 3.8, we have

[x1(t), x3(u)−1
] = x2(tu)−1 .

By Proposition 2.11(ii), therefore,

[x0(v), x2(tu)] = x1(t).

By Proposition 3.14, on the other hand, [x0(v), x2(tu)] = x1(tu ⋅ v). hus, t = tu ⋅ v
for all t ∈ R.
Again, let t ∈ R be arbitrary. By Proposition 3.6 and Notation 3.8, we have

[x1(u), x3(t)−1
] = x2(ut)−1 .

By Proposition 2.11(i), therefore,

[x2(ut)−1 , x4(w)
−1
] = x3(t).

By Propositions 3.6 and 3.14, on the other hand

[x2(ut)−1 , x4(w)
−1] = [x2(ut), x4(w)] = x3(w ⋅ ut).

hus, t = w ⋅ ut for all t ∈ R.
Setting t = 1 in t = tu ⋅ v, we have uv = 1, since 1 ⋅ u = u by Proposition 3.12. Setting

t = v in t = w ⋅ ut, we then obtain v = w ⋅ uv = w, since w ⋅ 1 = w by Proposition 3.12.
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hus,heorem 3.2(ii) holds for i = 3. hus, by (2.1) and Proposition 3.10, it also holds
for i = 1 and 2. ∎

Lemma 3.16 Let x be an element of Γw i that is opposite w i+1 at w i for some i and let
g ∈ U i . hen g ∈ U♯

i if and only if x g is opposite x at w i .

Proof Let g1 be the unique element of U i mapping x to w i−1. By Proposition 3.5,
U i is abelian. Hence, x g1 g g−1

1 = x g . herefore, x g is opposite x at w i if and only if
w g

i−1 = x g1 g is opposite w i−1 = x g1 at w i . ∎

Proposition 3.17 heorem 3.2(iii) holds.

Proof Let u, v ∈ R×. By Proposition 3.13, [x1(u), x3(v)] = x2(uv). We claim that
x2(uv) ∈ U♯

2 . By Proposition 3.15, we have x1(u) ∈ U♯
1 and x3(v) ∈ U♯

3 and hence
x3(v)−1 ∈ U♯

3 by Notation 2.6. Let d = wx3(v)−1

1 and f = wx3(v)−1

2 . Since x1(u) ûxes w1,
we have

(3.1) wx2(uv)
1 = w[x1(u),x3(v)]

1 = dx1(u)x3(v) .

Since x3(v)−1 ∈ U♯
3 , the vertex f is opposite w2 at w3. Hence, there exists g ∈ U0

mapping f to w4. By Lemma 3.16 with i = 3, d gx1(u) is opposite d g at w4 = f g . Since
[g , x1(u)] ∈ [U0 ,U1] = 1, it follows that dx1(u) is opposite d at f . Hence, dx1(u)x3(v)

is opposite dx3(v) = w1 at f x3(v) = w2. By (3.1), therefore, x2(uv) ∈ U♯
2 as claimed.

Hence, uv ∈ R× by Proposition 3.15. It follows from u = uv ⋅ v−1 that (uv)−1 ⋅ u = v−1,
and thus (uv)−1 = v−1u−1. ∎

Proposition 3.18 heorem 3.2(iv) holds.

Proof Let t ∈ R× and u ∈ R. By Notation 3.8 and Proposition 3.14, we have

x2(u)x0(t)x3(t
−1)

= (x1(−ut)x2(u))
x3(t−1)

= x1(−ut)x2(u − ut ⋅ t−1
) = x1(−ut).

By Proposition 2.13(ii), it follows that x3(t−1) ∈ U♯
3 . By Proposition 3.15, therefore,

t−1 ∈ R×. It follows from 1 = t−1(t ⋅ 1) = t−1 t that t = (t−1)−1 ⋅ t−1 t = (t−1)−1 ⋅ 1 =
(t−1)−1. ∎

Notation 3.19 Let

αu = µγ(x3(1))
−1

µγ(x3(u)) and βu = µγ(x1(1))
−1

µγ(x1(u))

for each u ∈ R×.

Proposition 3.20 he following hold for all u ∈ R× and all t ∈ R:

x1(t)αu = x1(tu−1
), x2(t)αu = x2(tu), x3(t)αu = x3(u ⋅ tu)

and

x1(t)βu = x1(ut ⋅ u), x2(t)βu = x2(ut), x3(t)βu = x3(u−1 t).
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Proof Choose t ∈ R and u ∈ R×. By Proposition 3.6 and Notation 3.8,

[x1(t), x3(u)−1] = x2(tu)−1 .

By Proposition 2.11, therefore,

x2(tu)µγ(x3(u)) = x1(t)−1 .

hus, x2(t)µγ(x3(u)) = x1(−tu−1) by heorem 3.2(iv) and x1(t)µγ(x3(u)) = x2(tu) by
Proposition 3.4(ii). It follows that x1(t)αu = x1(tu−1) and x2(t)αu = x2(tu).
By Proposition 3.4(ii) and Notation 3.8, [x1(u), x3(t)−1] = x2(ut)−1. By Proposi-

tion 2.11, therefore,
x3(t)µγ(x1(u)) = x2(−ut).

By Proposition 3.4(i), it follows that x2(ut)µγ(x1(u)) = x3(t), and thus x2(t)µγ(x1(u)) =
x3(u−1 t) by heorem 3.2(iv). Hence, x2(t)βu = x2(ut) and x3(t)βu = x3(u−1 t).

here exist w , v ∈ R× such that x3(t)αu = x3(v) and x1(t)βu = x1(w). Conjugating
[x1(1), x3(t)] = x2(t) by αu , we obtain

[x1(u−1
), x3(v)] = x2(tu),

and thereforeu−1v = tu. It follows that v = u⋅u−1v = u⋅tu. Conjugating [x1(t), x3(1)] =
x2(t) by βu , we obtain [x1(w), x3(u−1)] = x2(ut) and therefore wu−1 = ut. hus,
w = wu−1 ⋅ u = ut ⋅ u. ∎

Proposition 3.21 heorem 3.2(v) holds.

Proof Choose u ∈ R× and t, v ∈ R. Conjugating [x1(tu), x3(v)] = x2(tu ⋅ v) by αu
yields [x1(t), x3(u⋅vu)] = x2((tu⋅v)u) by Proposition 3.20. hus, t(u⋅vu) = (tu⋅v)u.
Similarly, conjugating [x1(t), x3(uv)] = x2(t ⋅ uv) by βu yields (ut ⋅ u)v = u(t ⋅ uv).
Setting v = 1, we conclude that

(3.2) uz ⋅ u = u ⋅ zu

for all z ∈ R.
here existsw ∈ R such that x4(v)αu = x4(w). By Proposition 3.14, [x2(1), x4(v)] =

x3(v). Conjugating by αu , we obtain [x2(u), x4(w)] = x3(u ⋅vu). By Proposition 3.14
and (3.2), therefore,wu = u⋅vu = uv ⋅u. Hence,w = (wu)u−1 = (uv ⋅u)u−1 = uv. Con-
jugating [x2(t), x4(v)] = x3(vt) by αu now yields [x2(tu), x4(uv)] = x3(u(vt ⋅ u)),
and therefore uv ⋅ tu = u(vt ⋅ u). Finally, we observe that u(vt ⋅ u) = (u ⋅ vt)u by
(3.2). ∎

his completes the proof of heorem 3.2. ∎

4 Stable Rank 2

hemain result of this section is Proposition 4.4.

Deûnition 4.1 Let Abe a unital ring and let [x , y, z] = xy ⋅z−x ⋅ yz for all x , y, z ∈ R.
he map (x , y, z) ↦ [x , y, z] is called the associator of A. It is tri-additive. he ring
A is called alternative if the associator is alternating, i.e., if [x , y, z] = 0 whenever two
of the terms x , y, z are equal.
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Remark 4.2 henotion of the stable rank (or stable range) of a ring was introduced
in [1]. For an associative ring A, stable rank 2 is equivalent to the condition that for
all s, b, c ∈ A such that sb + c is le�-invertible, there exists t ∈ A such that b + tc is
le�-invertible. At the bottom of [5, p. 179], Faulkner adapted this as the deûnition of
stable rank 2 for alternative rings and in [5, hm. 2] he showed (for alternative rings)
that “le�-invertible” can be replaced by “invertible” in the deûnition. he relevance
of this notion to incidence geometry was ûrst examined by Veldkamp in [15].

Deûnition 4.3 Let A be a unital ring. We call A Veldkamp if for all s, b, c ∈ A such
that sb + c ∈ A×, there exists t such that b + tc ∈ A×. hus, if A is alternative, then A
is Veldkamp if and only if A has stable rank 2.

Proposition 4.4 he ring R in heorem 3.2 is Veldkamp as deûned in Deûnition 4.3.

Proof Let (γ, i ↦ w i) and i ↦ U i be as in heorem 3.2. Suppose that sb+ c ∈ R× for
some s, b, c ∈ R and let f = sb + c. By heorem 3.2(i) and Proposition 3.14, we have

x3( f )x1(p)x4(s) = (x2(−p f )x3( f ))
x4(s)

= x2(−p f )x3( f − s ⋅ p f ) = x2(b)x3(c)

for p = b f −1. Let u = wx1(p)x4(s)
5 . By Proposition 2.12, there exist a, t ∈ R such that

wx4(a)x1(t)
3 = u. hus, the product g ∶= x1(p)x4(s)x1(t)−1x4(a)−1 maps w5 to w3.

Since U1 and U4 both ûx w1 and w4, so does g. By Deûnition 2.2(ii), therefore,

(4.1) (w4 ,w5 ,w6 ,w1)
g
= (w4 ,w3 ,w2 ,w1).

By Deûnition 2.2(iii), (w4 ,w5)
g = (w4 ,w3) implies that U g

3 = U2. hus, x3( f )g =

x2(e) for some e ∈ R. Using heorem 3.2(i) and Proposition 3.14 again, we calculate
that

x2(b)x3(c) = x3( f )x1(p)x4(s) = x3( f )gx4(a)x1(t)

= x2(e)x4(a)x1(t) = (x2(e)x3(ae))x1(t) = x2(e − t ⋅ ae)x3(ae),

so ae = c and e − t ⋅ ae = b by Proposition 2.4(ii). Hence b + tc = e. Since f ∈ R×, we
have x3( f ) ∈ U♯

3 by heorem 3.2(ii). hus, wx3( f )
1 is opposite w1 at w6, so wx3( f )g

1 =

wx2(e)
1 is opposite w g

1 = w1 at w
g
6 , and by (4.1), w g

6 = w2. hus, x2(e) ∈ U♯
2 . By another

application of heorem 3.2(ii), therefore, b + tc = e ∈ R×. ∎

5 The Moufang Identities

Weassume that X, (γ, i ↦ w i), i ↦ U i , x i for all i ∈ [1, 3], and R are as inheorem 3.2.
he main result of this section is heorem 5.8.

Notation 5.1 Let u, v ∈ R×. We denote by S the subset of R consisting of all products
of terms equal to u, v, u−1, or v−1. hen 1 ∈ S, and byheorem 3.2(iii) and (iv), S ⊂ R×

and S is closed under inverses.

Proposition 5.2 Let u, v, and S be as in Notation 5.1. hen S is a group.
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Proof By heorem 3.2(iii)–(v), R× is a Moufang loop. he set S is the intersection
of all the subloops containing u and v. hus, S is the subloop generated by {1, u, v}.
he claim holds, therefore, by Moufang’s heorem; see, for example, [3]. ∎

hen ⟨u, v⟩ is associative.

Proof he additive group of the subring ⟨u, v⟩ is generated by the set S deûned in
Notation 5.1. he claim holds, therefore, by Proposition 5.2. ∎

Proposition 5.4 Let A be a unital ring and let

Iu = {v ∈ A× ∣ u − v ∈ A×}

for all u ∈ A. Suppose that the following hold:
(i) For all w , v ∈ A×, the subring generated by {w , v} is associative.
(ii) For all u ∈ A, A is generated as an additive group by Iu .
hen A is alternative.

Proof Let u ∈ A. By (i), we have u, v ∈ ⟨u − v , v⟩, and hence

(5.1) [u, u, v] = [u, v , u] = [v , u, u] = 0

for all v ∈ Iu . Since the associator is tri-additive, it follows from (ii) that (5.1) holds for
all v ∈ A. hus, R is alternative. ∎

Proposition 5.5 Let g ∈ U3, let z = w g
2 , and let

Ug = {g1 ∈ U♯
3 ∣ w g1

2 is opposite z}.

hen for each g1 ∈ Ug , there exists g2 ∈ U♯
3 such that g = g2g1.

Proof Let
g1 ∈ Ug , y = w g1

2 , and z = w g
2 .

hen zg−1
1 is opposite both yg−1

1 = w2 and w g−1
1

4 = w4 at w3, so by Deûnition 2.2(iii)
and Notation 2.6, there exists g2 ∈ U♯

3 mapping w2 to zg−1
1 . herefore, w g2 g1

2 = z. hus,
g = g2g1 by Proposition 2.5. ∎

Proposition 5.6 Let Ug be as in Proposition 5.5 for some g ∈ U3. Suppose that X is
5-plump. hen U3 = Ug ⋅U−1

g .

Proof Let g0 ∈ U3, let y = w g0
2 , and let z = w g

2 . Since X is 5-plump, we can choose
x ∈ Γw3 such that x is opposite w4, w2, y, z and zg0 at w3. By Deûnition 2.1(iii), there
exist elements g1 and g2 in U3 such that w g1

2 = x and yg2 = x. hen g1 ∈ Ug and by
Lemma 3.16, g2 ∈ U♯

3 . Since U3 is abelian (by Proposition 3.5), we have

w g2
2 = w g0 g2 g−1

0
2 = yg2 g−1

0 = x g−1
0 .

Since x is opposite zg0 at w3, it follows that w g2
2 is opposite z at w3. Hence g2 ∈ Ug .

Since w g1 g−1
2

2 = y = w g0
2 , we have g0 = g1g−1

2 ∈ Ug ⋅U−1
g by Proposition 2.5. ∎
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Proposition 5.7 If X is 5-plump, then R satisûes the conditions Proposition 5.4(i)
and (ii).

Proof By Corollary 5.3, Proposition 5.4(i) holds. Let g = x3(u) for some u ∈ R. By
heorem 3.2(ii) and Proposition 5.5, we have Ug ⊂ x3(Iu). hus, by Proposition 5.6,
Proposition 5.4(ii) holds. ∎

heorem 5.8 If X is 5-plump, then R is alternative and has stable rank 2.

Proof By Propositions 5.4 and 5.7, R is alternative. By Deûnition 4.3 and Proposi-
tion 4.4, it follows that R has stable rank 2. ∎

Proposition 5.9 Suppose that X is 4-plump. hen X is dagger-sharp as deûned in
Notation 2.15 if and only if R is simple.

Proof Suppose that X is dagger-sharp and let I be an ideal of R. By Propositions 2.17
and 3.20, x2(I) is G†

γ-invariant and hence contains an element of U♯
2 . By

heorem 3.2(ii), therefore, I = R. hus, R is simple. Suppose, conversely, that R is
simple and let I be an additive subgroup of R such that x2(I) is G†

γ-invariant. By
[11, 1.4.23], U2 is generated byU♯

2 , so byheorem 3.2(ii), R is generated as an additive
group by R×. By Proposition 3.20, it follows that I is an ideal of R. Hence, x2(I) = U2.
By Remark 2.16, therefore, X is dagger-sharp. ∎

heorem 5.10 If X is 5-plump and dagger-sharp, then either R is an octonion algebra
or R is a simple associative ring.

Proof he octonions are the only simple non-associative alternative rings, as shown
in [8]. he claim holds, therefore, by heorem 5.8 and Proposition 5.9. ∎

Proposition 5.11 Suppose that X is 4-plump. hen X is uniquely determined by the
ring R.

Proof By Proposition 2.4 and heorem 3.2(i), the sequence Ω is uniquely deter-
mined by R. By Proposition 3.10, the action of m1 ∶= µγ(e1) on U[2,3] and the action
of m3 ∶= µγ(e3) on U[1,2] are uniquely determined by R. By Propositions 2.18 and
3.20, therefore, X is uniquely determined by R. ∎

6 Faulkner Graphs

hemain result of this section is heorem 6.10.

Deûnition 6.1 Let Γ = (V , E) be a bipartite graph endowed with a symmetric
binary relation ≡ on V . We say that vertices u and v have the same type if dist(u, v)
is even; we say that vertices u and v are far from each other if u ≡ v and u and v have
the same type, and we say that vertices u and v are distant if u ≡ v and u and v do not
have the same type. hen (Γ, ≡) is a Veldkamp graph if the following axioms hold:
(i) If u ≡ v, then dist(u, v) ≥ 2.
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(ii) Vertices u and v are far from each other if and only if there exists w ∈ Γv such
that u and w are distant.

(iii) If u and v are far from each other, then there exists a unique vertex in Γu ∩ Γv
denoted by u ∧ v.

(iv) If u and v are far from each other and w ∈ Γv is far from u ∧ v, then w and u are
distant.

(v) For all vertices u and v that have the same type, there exists a vertex w that is
distant from both u and v.

Remark 6.2 Let (Γ, ≡) be a Veldkamp graph. By Deûnition 6.1(i)–(iii), dist(u, v) =
3 if u and v are distant and dist(u, v) = 2 if u and v are far from each other. By
Deûnition 6.1(v), it follows that Γ is connected.

Remark 6.3 In [15, Def. 3.1] Veldkamp introduced the notion of a projective Barbi-
lian plane. A projective Barbilian plane is an incidence geometry with point set P and
line set L endowed with a relation ≈ on P ∪ L satisfying six axioms. By [15, Prop. 3.2],
the dual statements to all six axioms hold. With this in mind, it is easy to check that a
bipartite graph Γ endowed with a relation ≡ on its vertices is a Veldkamp graph if and
only if it is the incidence graph of a projective Barbilian plane in which u ≈ v exactly
when u /≡ v.

Proposition 6.4 Let (Γ, ≡) be a Veldkamp graph. hen for all vertices u, v ,w such
that w has the same type as neither u nor v, there exists a vertex z ∈ Γw that is far from
both u and v.

Proof his holds by Remark 6.3 and [15, Prop. 3.2(iii)]. ∎

Corollary 6.5 Let (Γ, ≡) be a Veldkamp graph. If u, v ∈ Γw , then there exists z ∈ Γw
that is far from both u and v

Proof If u, v ∈ Γw , then w has the same type as neither u nor v, and hence the claim
holds by Proposition 6.4 ∎

Corollary 6.6 If (Γ, ≡) is a Veldkamp graph, then ∣Γz ∣ ≥ 3 for all vertices z.

Proof Let z be a vertex of Γ. Since Γ is connected, Γz ≠ ∅. By two applications of
Corollary 6.5, the ûrst with u = v and the second with u ≠ v, it follows that ∣Γz ∣ ≥ 3. ∎

Corollary 6.7 Let (Γ, ≡) be a Veldkamp graph. hen there exist 6-circuits γ such that
for each vertex u of γ, the two vertices in Γu contained in γ are far from each other.

Proof By Deûnition 6.1(ii) and (v), there exist vertices u0 , u2 far from each other.
Let u1 = u0 ∧ u2. By Corollary 6.5, there exists u3 ∈ Γu2 far from u1. he vertex u3 has
the same type as neither u0 nor u2. By Proposition 6.4, therefore, there exists a vertex
u4 ∈ Γu3 that is far from both u0 and u2. Let u0 = u6 and let u5 = u4 ∧ u6. Let γ be
the subgraph with vertex set {u i ∣ i ∈ [1, 6]} and edge set {{u i−1 , u i} ∣ i ∈ [1, 6]}. By
construction, γ is a 6-circuit, u0, u2, and u4 are pairwise far from each other and u1
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is far from u3. By Deûnition 6.1(iv), u i , and u i+3 are distant for i = 0 and 1. Since u0
and u3 are distant and u0 ∈ Γu5 , Deûnition 6.1(i) implies that u3 and u5 are far from
each other. Since u4 is distant from u1 and u4 ∈ Γu5 , Deûnition 6.1(i) implies that u5
and u1 are far from each other. ∎

Remark 6.8 Let γ and u1 , . . . , u6 be as in Corollary 6.7. By Deûnition 6.1(iv), u i is
distant from u i+3 for i = 0, 1, and 2. By Deûnition 6.1(i), it follows that u i /∈ Γu i+3 for
i = 0, 1 and 2. hus, the only edges of Γ containing two vertices of γ are already edges
of γ. In other words, γ is the subgraph of Γ spanned by the vertices {u i ∣ i ∈ [1, 6]}.

Deûnition 6.9 Let Y = (Γ, ≡) be a Veldkamp graph. An automorphism of Y is
an automorphism of Γ that preserves ≡. A root is a path (u0 , u1 , u2 , u3) of length 3
such that u i is far from u i−2 for i = 2 and 3. he root group Uα associated with a root
α = (u0 , u1 , u2 , u3) is the pointwise stabilizer of the set Γu1 ∪ Γu2 in Aut(Y). We say
that Y is aMoufang if for each root α = (u0 , u1 , u2 , u3), Uα acts transitively on the set
of vertices that are far from u2 and adjacent to u3. Requiring Y to be Moufang is the
same as requiring that the corresponding Veldkamp plane be (C , l)-transitive for all
incident pairs C , l , as deûned at the top of [6, p. 190]. We deûne a Faulkner graph to
be a Veldkamp graph that is Moufang.

heorem 6.10 he following hold.

(i) Let Y = (Γ, ≡) be a Faulkner graph, let V be the vertex set of Γ, let u ≡v w for
u, v ,w ∈ V whenever u and w are far from each other and v = u ∧w and letA be
the set of 6-circuits in Γ such that for each vertex v of Γ, the two vertices of γ in Γv
are far from each other. hen X ∶= (Γ,A, {≡v}v∈V) is a Tits triangle.

(ii) Let X = (Γ,A, {≡v}v∈V) be a 4-plump Tits triangle. Let u ≡ v for u, v ∈ V if and
only if there exists a straight path from u to v of length 2 or 3. hen Y ∶= (Γ, ≡) is
a Faulkner graph.

Proof Let X be as in (i). By Corollary 6.7,A ≠ ∅; by Corollary 6.6, X is a dewolla of
level 3; by Remark 6.2, Γ is connected; by Corollary 6.5, X satisûes Deûnition 2.2(i),
and by Deûnition 6.1(iii), X satisûes Deûnition 2.2(i). It follows from Deûnition 6.9,
that X satisûes Deûnition 2.2(iii). hus, (i) holds.

Suppose now that Y is as in (ii). Every 1-path is straight. By Deûnition 2.2(ii),
therefore, Y satisûes Deûnition 6.1(i). Let u, v ∈ V . If (u, z, v) is a straight 2-path
from u to v, then by Deûnition 2.2(i), there exists w ∈ Γv such that (u, z, v ,w) is
a straight 3-path. If there exists a straight 3-path from u to a vertex w in Γv , then
by [11, 1.3.18], there exists a straight 2-path from u to v. hus, Y satisûes Deûnition
6.1(ii). Now suppose that w , z are vertices such that (u,w , v) and (u, z, v) are both
2-paths from u to v and that (u,w , v) is straight. By Deûnition 2.2(i), we can choose
y ∈ Γv that is opposite both w and z at v. hus, (u,w , v , y) is a straight 3-path, so
by [11, 1.3.18], there exists a vertex z′ such that (u, z, z′ , y) is a straight 3-path. Since
(z, v , y) is also straight, it follows by Deûnition 2.2(ii) that z′ = v. Hence, (u, z, v)
is straight. By another application of Deûnition 2.2(ii), therefore, z = w. hus, Y
satisûes Deûnition 6.1(iii). If (u, z, v) is a straight 2-path from u to v, and (z, y,w) is
a straight 2-path from z to a vertexw in Γv , then by Deûnition 6.1(iii), v = y and hence
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the 3-path (u, z, v ,w) is straight. hus, Y satisûes Deûnition 6.1(iv). By [11, 1.3.16
and 1.5.1(iii)] and the assumption that X is 4-plump, Y satisûes Deûnition 6.1(v). By
Deûnition 2.2(iii), Y is Moufang. ∎

7 Existence

he main results of this section are heorems 7.2 and 7.3. he ûrst is a corollary of a
result of Faulkner on the existence of Moufang–Veldkamp planes.

Notation 7.1 Let R be an alternative ring of stable rank 2 and let P(R) be the plane
constructed in [6, Lemma 8] and the paragraph preceding [6,hm. 9]. By [6,hm. 9],
P(R) is a Moufang–Veldkamp plane as deûned at the bottom of [6, p. 190]. hus, in
particular, the Veldkamp graph corresponding toP(R) is a Faulkner graph as deûned
in Deûnition 6.9. Let T(R) be the Tits triangle obtained by applying heorem 6.10(i)
to this Faulkner graph.

heorem 7.2 For every alternative ring R of stable rank 2, there exists a Tits triangle
X such that R is isomorphic to the ring obtained by applying heorem 3.2 to X.

Proof Let X = T(R) as described in Notation 7.1. By [6, Lemma 4 and eq. (3)], R is
isomorphic to the ring obtained by applying heorem 3.2 to X. ∎

heorem 7.3 If X is a 5-plump Tits triangle, then X is isomorphic to T(R), as de-
scribed in Notation 7.1, for some alternative ring R of stable rank 2.

Proof his holds by heorem 5.8, Proposition 5.11, andheorem 7.2. ∎

Notation 7.4 Let Y = (Γ, ≡) be a Veldkamp graph. With Corollary 6.5 in mind, we
deûne Y to be k-plump for some k ≥ 3 if for every vertex v and for every subset N of
Γv of cardinality at most k, there exists a vertex that is far from u for all u ∈ N . hus,
Y is k-plump if and only if the Tits triangle in heorem 6.10(i) is k-plump, as deûned
in Deûnition 2.14. We say that a Veldkamp plane is k-plump if its corresponding
Veldkamp graph is k-plump.

Remark 7.5 Let Y = (Γ, ≡) be a Faulkner graph as deûned in Deûnition 6.9 and
let V denote the corresponding Veldkamp plane; see Remark 6.3. Suppose that V
is 5-plump as deûned in Notation 7.4. Let X be the Tits triangle in heorem 6.10(i)
corresponding to Y . By heorem 7.3, X is isomorphic to T(R) for some alternative
ring R of stable rank 2, so by Notation 7.1, V is isomorphic to P(R). By [6, hm. 9],
therefore, the Veldkamp plane V satisûes the conûgurational condition (QS) on [6,
p. 191]. In other words, a Veldkamp plane that is (C , l)-transitive for all incident pairs
C , l and 5-plump automatically satisûes Faulkner’s condition (QS).

Suppose that R is alternative and simple and that R satisûes the descending chain
condition on right ideals if R is associative. hen R is either a matrix ring over a skew
ûeld or an octonion algebra. As was observed in the last paragraph of [5, §2], these
rings are all of stable rank 2, and hence T(R) exists.
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8 Tits Indices

We close with a few comments about Tits polygons of index type (deûned in Example
8.3). he notion of a Tits polygon arose from a study of these structures. We assume
some familiarity with the theory of buildings in this section.

Notation 8.1 Let Π be aCoxeter diagramwith vertex set S and let (W , S) denote the
corresponding Coxeter system. For each subset J ⊂ S, we denote byWJ the subgroup
of W generated by J. A subset J is spherical if WJ is ûnite. If J is a spherical subset
of S, we denote by wJ the longest element in the Coxeter system (WJ , J). For each
spherical subset J of S, s ↦ wJswJ is an automorphism of the subdiagram ΠJ spanned
by J; see, for example, [9, 19.6].

Deûnition 8.2 A Tits index is a triple

T = (Π,Θ,A),

where Π is a Coxeter diagramwith vertex set S, Θ is a subgroup of Aut(Π), and A is a
Θ-invariant subset of S such that for each s ∈ S/A, the subset Js ∶= A∪ sΘ is spherical
and A is stabilized by the automorphism s ↦ wJs swJs of ΠJs , where sΘ is the Θ-orbit
containing s. he Coxeter diagram Π is called the absolute type of T , and ∣S∣ is called
the absolute rank of T . For each s ∈ S/A, we denote by s̃ the product wAwJs . here
is one element s̃ for each Θ-orbit disjoint from A. Let S̃ denote the set of all these
elements and let W̃ = ⟨S̃⟩. By [9, 20.4, 20.32 and 20.34], (W̃ , S̃) is also a Coxeter
system. It is called the relative Coxeter system of T and ∣S̃∣ is called the relative rank
of T . he relative type Π̃ of T is the Coxeter diagram corresponding to its relative
Coxeter system.

Examples 8.3 Let T = (Π,Θ,A) be a Tits index as in Deûnition 8.2 whose absolute
type Π is an irreducible spherical Coxeter diagram and whose relative rank is 2. hus,
W̃ is a dihedral group, where W̃ is as inDeûnition 8.2. Let n = ∣W̃ ∣/2 and let J i = A∪sΘi
for i = 1 and 2, where s1 and s2 are representatives of the two Θ-orbits disjoint from
A. By [9, 20.39 and 20.40], n ≥ 3. Let ∆ be a building of type Π. We assume that ∆
satisûes the Moufang condition; this is automatic if the rank of T is greater than 2.
Let Vi be the set of J i-residues of ∆ for i = 1 and 2 and let Γ be the bipartite graph
whose vertex set is V ∶= V1 ∪ V2, where a residue in V1 is adjacent to a residue in V2
whenever their intersection is an A-residue of ∆. By [11, 1.2.12 and 1.2.28(i)], there is
a natural way to endow Γ with sets A and {≡v}v∈V so that X∆,T ∶= (Γ,A, {≡v}v∈V) is
a Tits n-gon. We call the Tits polygons that arise in this way for some pair (∆, T) the
Tits polygons of index type.

Remark 8.4 Suppose that X = X∆,T for some pair (∆, T) as in Example 8.3. If
every panel of X contains at least k + 1 chambers for some k, then by [11, 1.2.7], X is
k-plump as deûned in Deûnition 2.14. It follows that X is k-plump whenever the ûeld
of deûnition of ∆ (or one of its ûelds of deûnition) as deûned in [9, 28.8] contains at
least k elements. In particular, if ∆ is the spherical building associated with the group
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of F-rational points of an absolutely simple algebraic group and ∣F∣ ≥ k, then X is
k-plump.

Remark 8.5 By [9, 20.31], the relative type of a Tits index is spherical if and only if
the absolute type is spherical. With this in mind, it can be checked that the only Tits
indices whose absolute type is irreducible and whose relative type is A2 are

• • • • •
•

.......
...........................................................
..... .......

...........................................................

.............................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
....

(drawn following the conventions described in [9, 34.2]) and Tm ∶= (Π,Θ,A), where
Π = A3m−1 for somem ≥ 1, Θ is the trivial subgroup of Aut(Π) and A = S/{vm , v2m},
where S is the vertex set of Π and v1 , . . . , v3m−1 are the elements of S going from le�
to right.

Remark 8.6 Let ∆ be the building E6(K) for some ûeld K, let T be the Tits index

• • • • •
•

.......
...........................................................
..... .......

...........................................................

.............................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
....

and let X be the Tits triangle X∆,T as deûned in Remark 8.4. Suppose that ∣K∣ ≥

5, so that X is 5-plump by Remark 8.4 and let R be as in heorem 3.2. It can be
shown, in this case, that R is an 8-dimensional non-division algebra over K and that
the Veldkamp plane corresponding to X does not satisfy axiom 8 in [15, 4.16], so by
[15, 5.12], R is not associative. Using the connection to a polar space of type D5, it can
be shown that X is dagger-sharp. Hence, R is simple by Proposition 5.9. By heorem
5.10, it follows that R is the split octonion algebra over K. If ∣K∣ ≤ 4, we can reach the
same conclusion by embedding ∆ as the set of ûxed points of a Galois group acting
on the building E6(L), where L is a suitable separable extension of K.

Remark 8.7 Let ∆ = A3m−1(E) for some m ≥ 1 and some skew ûeld E, let Tm be
the Tits index described in Remark 8.5, let X =∆,Tn , let R be as in heorem 3.2, and
let R0 be the ring of m ×m matrices over E. We identify ∆ with the projective space
associated with R3 regarded a le�-vector space over E. With the description of the
root groups of ∆ in [10, §7] in mind, it is an elementary calculation to show that R is
isomorphic to R0.

Remark 8.8 By [14, 40.22(vi)] (in light of [14, 40.15 and 40.17]) every building of
type E6 is isomorphic to E6(K) for some ûeld K and by [14, 17.2, 17.3 and 40.22(i)],
every building of type A3m−1 is isomorphic to A3m−1(E), where either m > 1 and E
is a skew ûeld or m = 1 and E is either a skew ûeld or an octonion division ring. If
∆ = A2(E) for E either a skew ûeld or an octonion division ring, then X∆,T1 is the
Moufang polygon described in [14, 16.1], the ring R in heorem 3.2 is isomorphic to
E and T(R) is the projective plane associated with E.

Remark 8.9 By Remarks 8.5–8.8, the Tits triangles of index type as deûned in Ex-
ample 8.3 are precisely the Tits triangles of the form T(R) where R is either an octo-
nion algebra or a matrix ring over a skew ûeld.
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Remark 8.10 We mention that there is another interesting family of Tits triangles
that can be described in terms of spheres of ûnite or inûnite radius in a suitable aõne
building. he rings that arise in this context are quotients of the ring of integers of an
alternative division ring with valuation.

Remark 8.11 Freudenthal observed in 1951 (in a paper re-published as [7]) that the
automorphism group of the projective plane over the octonions is a real form of type
E6 of relative rank 2. he idea that the split group of type E6 acts on a “projective
plane over the split octonions” is suggested by Tits in the footnote on [13, p. 25]. In
their paper [12], Springer and Veldkamp give a concrete construction of the projec-
tive planes over the split Cayley-Dickson algebras (in characteristic diòerent from 2
and 3). hey remark without proof that these correspond precisely to the geometries
considered by Tits in [13]. Later, Faulkner provided a characteristic free approach to
the projective planes over the split Cayley–Dickson algebras in [4].
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