
BULL. AUSTRAL. MATH. SOC. 05B30, 05C99

VOL. 73 (2006) [477-478]

Graphical trades

JAMES LEFEVRE

Given a simple graph G, a G-trade is a pair { T x ^ } , where T\ and T2 are two
entirely different G -decompositions of some graph H with no isolated vertices, with
no repeated copies of G in either 7\ or in T2. The copies of G are known as blocks.
The order of H is the foundation of the trade, and the number of blocks in T\ and in
T2 is the volume of the trade. If H is a simple graph, meaning that no edge occurs
in more than one block of 7\ or of T2, then the trade is Steiner, we assume all trades
are Steiner unless otherwise stated. A Kk -trade is conventionally regarded as a (it, 2)
trade, which is equivalent but written in block design notation rather than graphical
notation.

The trade spectrum problem for unspecified foundation is to determine, for a given
graph G, the set of integers s for which there exists a G -trade of volume s. The trade
spectra problem for fixed or specified foundation is to determine, for a given G and for
each possible foundation v, the set of integers s for which there exists a G -trade of
volume s and foundation v.

The trade spectra problem with fixed foundation has previously been solved for
(3,2) trades (Bryant), C4-trades (Bryant, Granell, Griggs and Maenhaut), and C5-
trades (Maenhaut). In Chapters 2 to 7 we completely solve the trade spectra prob-
lem with fixed foundation for (K4 - e)-trades, C6-trades, 6(1,3,3)-trades, (K3 + e)-
trades and, for every integer n ^ 2, ifin-trades (the graph Kittl is known as the
n-star). We also give partial results for (4,2) trades, including a tight lower bound on
the trade volume for each foundation, and, for paths of arbitrary length, we solve the
trade spectrum problem for every odd foundation.

The results on (K4 — e) -trades and (4,2) trades are given in Chapters 2 and 3
respectively. These chapters include lengthy non-existence proofs to establish a tight
lower bound on the trade volume for each foundation, as well as iterative construc-
tions based on a number of small trades. The necessary (K4 - e) -trade examples are
listed in Appendix A. If a connected graph G contains a vertex x such that G - {x}
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is a disconnected graph, then x is a cut-vertex of G. If G contains non-adjacent
vertices x and y such that G — {x, y} is a disconnected graph, then {x, y} is an in-
dependent cut-pair of G. In Chapter 4, we give a result which provides a tight lower
bound on the G- trade volume for each foundation, provided that G has a cut-vertex
or an independent cut-pair. This result is applicable to C6-trades, 9(1,3,3)-trades,
and (K3 + e)-trades. In Chapter 5, we complete the trade spectra problem for these
graphs by giving the required constructions, together with some additional necessary
conditions. The necessary trade examples are listed in Appendices B, C and D.

The lower bound result presented in Chapter 4 is also applicable to trades on stars
and paths of arbitrary size; thus the results in Chapters 6 and 7, in which we respec-
tively complete the trade spectra problem for stars and (for odd foundation) paths,
are also mostly constructive. However, the star and path trades require a somewhat
different approach to the earlier trade constructions, since the stars and paths are of
arbitrary size. Although in general we only determine the path trade spectra for odd
foundations, we also include a short construction in Chapter 7 which completes the P4
trade spectrum for even foundations as well.

In 2002, Billington and Hoffman solved the trade spectrum problem (with unspec-
ified foundation) for all complete multipartite graphs, except that in the case where
all parts are the same size, some volumes less than 6 were unresolved. In Chapter 8,
we complete this problem, by providing a construction in one case and proving non-
existence in all others.

In Chapter 9, we also complete an earlier result, in this case determining the
maximum volume non-Steiner (3,2) trade for each possible foundation. Khosrovshahi
and Torabi solved this problem in 1999, with one exception: they did not provide a
general construction when the foundation is congruent to 5 modulo 6. We give the
required construction, thus completing this problem.
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