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CRITICALITY OF THE EXPONENTIAL RATE OF
DECAY FOR THE LARGEST NEAREST-NEIGHBOR
LINK IN RANDOM GEOMETRIC GRAPHS
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Abstract

Let n points be placed independently in d-dimensional space according to the density
f (x) = Ade−λ‖x‖α

, λ, α > 0, x ∈ R
d , d ≥ 2. Let dn be the longest edge length

of the nearest-neighbor graph on these points. We show that (λ−1 log n)1−1/α dn −
bn converges weakly to the Gumbel distribution, where bn ∼ ((d − 1)/λα) log log n.
We also prove the following strong law for the normalized nearest-neighbor distance
d̃n = (λ−1 log n)1−1/α dn/ log log n: (d−1)/αλ ≤ lim infn→∞ d̃n ≤ lim supn→∞ d̃n ≤
d/αλ almost surely. Thus, the exponential rate of decay α = 1 is critical, in the sense
that, for α > 1, dn → 0, whereas, for α ≤ 1, dn → ∞ almost surely as n → ∞.
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1. Introduction and main results

In this paper we prove weak and strong laws for the largest nearest-neighbor distance of
points distributed according to the probability density function

f (x) = Ade−λ‖x‖α

, λ > 0, α > 0, x ∈ R
d , d ≥ 2, (1.1)

where ‖ · ‖ is the Euclidean (�2) norm on R
d and

Ad = αλd/α�(d/2 + 1)

dπd/2�(d/α)
. (1.2)

If X has density given by (1.1) then R = ‖X‖ has density,

fR(r) = A′
drd−1e−λrα

, 0 < r < ∞, d ≥ 2, (1.3)

where A′
d = αλd/α/�(d/α). The basic object of study will be the graphs Gn with vertex

set Xn = {X1, X2, . . . , Xn}, n = 1, 2, . . . , where the vertices are independently distributed
according to f . Edges of Gn are formed by connecting each of the vertices in Xn to its nearest
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neighbor. The longest edge of the graph Gn is denoted by dn. We will refer to Gn as the nearest-
neighbor graph (NNG) on Xn and to dn as the largest nearest-neighbor distance (LNND). For
any finite subset X ⊂ R

d , let G(X, r) denote the graph with vertex set X and edges between
all pairs of vertices that are at distances less than r . Thus, dn is the minimum rn required so
that the graph G(Xn, rn) has no isolated nodes.

The largest nearest-neighbor link has been studied in the context of computational geometry
(see Dette and Henze (1989) and Steele and Tierney (1986)) and has applications in statistics,
computer science, biology, and the physical sciences. For a detailed description of random
geometric graphs, their properties, and applications, we refer the reader to Penrose (2003) and
the references therein.

The asymptotic distribution of dn was derived in Penrose (1997), assuming that f is uniform
on the unit cube. It is shown that if the metric is assumed to be the toroidal, and if θ is the volume
of the unit ball, then nθdd

n − bn converges weakly to the Gumbel distribution, where bn ∼
log n. Penrose (1998) showed that, for normally distributed points (α = 2),

√
(2 log n) dn − bn

converges weakly to the Gumbel distribution, where bn ∼ (d − 1) log log n. The above result
is also shown to be true for the longest edge of the minimal spanning tree. The notation
an ∼ bn implies that an/bn converges to 1 as n → ∞. Hsing and Rootzén (2005) derived
the asymptotic distribution for dn in the case d = 2, for a large class of densities, including
elliptically contoured distributions, distributions with independent Weibull-like marginals, and
distributions with parallel level curves (which includes the densities defined by (1.1)). Appel
and Russo (1997) proved strong laws for dn for graphs on uniform points in the d-dimensional
unit cube. Penrose (1999) extended this to general densities having compact support � for
which minx∈� f (x) > 0.

Our aim in this paper is to show that when the tail of the density decays like an exponential
or slower (α ≤ 1), dn diverges, whereas, for superexponential decay of the tail, dn → 0, almost
surely (a.s.) as n → ∞. Properties of one-dimensional exponential random geometric graphs
have been studied in Gupta et al. (2005). In this case, spacings between the ordered nodes
are independent and exponentially distributed. This allows for explicit computations of many
characteristics for the graph and both strong and weak laws can be established.

It is often easier to study the graph Gn via the NNG Pn on the set Pn = {X1, X2, . . . , XNn},
n ≥ 1, where {Nn}n≥1 is a sequence of Poisson random variables that are independent of the
sequence {Xn}n≥1 with E[Nn] = n. Here Pn is an inhomogeneous Poisson point process with
intensity function nf (·) (see Penrose (2003, Proposition 1.5)). Note that the graphs Gn and Pn

are coupled, since the first min(n, Nn) vertices of the two graphs are identical. We also assume
that the random variables Nn are nondecreasing, so that P1 ⊂ P2 ⊂ P3 ⊂ · · · .

Let Wn(rn) and W ′
n(rn) be the numbers of vertices of degree 0 (isolated nodes) in G(Xn, rn)

and G(Pn, rn), respectively. Let θd denote the volume of the d-dimensional unit ball in R
d ,

and let Po(λ) denote a Poisson distribution with mean λ > 0. In what follows we will write
log2 n for log log n and log3 n for log log log n, etc.

For any β ∈ R, let {rn}n≥1 be a sequence of edge distances that satisfies

rn(λ
−1 log n)1−1/α − d − 1

λα
log2 n + d − 1

2λα
log3 n → β

λα
(1.4)

as n → ∞. We now state our main results.

Theorem 1.1. Let {rn}n≥1 satisfy (1.4) as n → ∞. Then

Wn(rn) → Po

(
e−β

Cd

)
(1.5)
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in distribution, where

Cd = α1−dθd−1(d − 1)!
2

(
d − 1

2π

)(d−1)/2

. (1.6)

An easy consequence of the above result is the following limiting distribution for dn.

Theorem 1.2. Let f (·) be the d-dimensional density defined in (1.1). Let dn be the largest
nearest-neighbor link of the graph Gn of n independent and identically distributed points
Xn = {X1, X2, . . . , Xn} distributed according to f . Then, for any γ ∈ R,

lim
n→∞ P

[
λα(λ−1 log n)1−1/α dn−(d−1) log2 n+ d − 1

2
log3 n ≤ γ −log(Cd)

]
→ exp(−e−γ ).

The above result for the case α = 2 was derived in Penrose (1998). In dimension d = 2,
Theorem 1.2 follows from Theorem 7 of Hsing and Rootzén (2005) (see also Example 3 therein).
Their method is based on spatial blocking and uses a locally orthogonal coordinate system with
respect to the level curves. We follow the approach in Penrose (1998) and use the Chen–Stein
method.

Strong laws exist in the literature only for densities that do not vanish and whose support
is bounded. Suppose that d ≥ 2, the density f is continuous, has support �, and that the
boundary ∂� is a compact (d − 1)-dimensional C2 submanifold of R

d . Let f0 > 0 be the
essential infimum of f restricted to �, and let f1 = inf∂� f . Then (see Theorem 7.2 of Penrose
(2003)), limn→∞ ndd

n / log n = max{c0f
−1
0 , c1f

−1
1 } a.s. Thus, the asymptotic behavior of the

LNND depends on the (reciprocal of the) infimum of the density, since it is in the vicinity of
this infimum that points will be sparse and, hence, be farthest from each other. If f0 or f1 is 0,
then the right-hand side is infinite, implying that the scaling on the left is not the appropriate
one. We now state a strong law for the LNND in our case.

Theorem 1.3. Let dn be the LNND of the NNG Gn defined on the collection Xn of n points
distributed independently and identically according to the density f (·) as defined in (1.1). Then,
a.s., for any d ≥ 2,

lim inf
n→∞

(λ−1 log n)
1−1/α

dn

log2 n
≥ d − 1

αλ
, (1.7)

lim sup
n→∞

(λ−1 log n)
1−1/α

dn

log2 n
≤ d

αλ
.

Note that it follows from Theorem 1.2 that the opposite inequality holds as well in (1.7).
Thus, the inequality in (1.7) can be replaced by an equality.

2. Supporting results and proofs of Theorems 1.1 and 1.2

In what follows, C, C1, C2, C
′, c1, etc. will denote constants whose values might change

from place to place. For any x ∈ R
d , let B(x, r) denote the open ball of radius r centered at x.

Let

I (x, r) =
∫

B(x,r)

f (y) dy.

For ρ > 0, define I (ρ, r) = I (ρe, r), where e is the d-dimensional unit vector (1, 0, 0, . . . , 0).
Due to the radial symmetry of f , I (x, r) = I (‖x‖, r). The following lemma, which provides
a large ρ asymptotic for I (ρ, r), will be crucial in subsequent calculations.
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Lemma 2.1. Letd ≥ 2, and let {ρn}n≥1 and {rn}n≥1 be sequences of positive numbers satisfying
ρn → ∞, rn/ρn → 0, r2

nρα−2
n → 0, and rnρ

α−1
n → ∞. Then

Kde−λw1(n) (�((d + 1)/2) + En)

�((d + 1)/2)
g(ρn, rn) ≤ I (ρn, rn) ≤ Kde−λw2(n)g(ρn, rn),

where

Kd = Adθd−12(d−1)/2�

(
d + 1

2

)
, (2.1)

w1(n) =

⎧⎪⎨
⎪⎩

α

2
r2
n(ρ2

n − 2rnρn)
α/2−1, α ≤ 2,

α

2
r2
n(ρ2

n + 2rnρn)
α/2−1[1 + (α − 2)ρ2

n(ρ2
n − 2rnρn)

−1], α > 2,

(2.2)

w2(n) =

⎧⎪⎨
⎪⎩

α(α − 2)

2
(rnρn)

2(ρ2
n − 2rnρn)

α/2−2, 0 < α ≤ 2,

0, α > 2,

|En| ≤ C1

rnρ
α−1
n

, (2.3)

g(ρ, r) = rde−λ(ρα−αrρα−1)(λαrρα−1)−(d+1)/2, r, ρ ≥ 0, (2.4)

Ad is as defined in (1.2), θd−1 is the volume of the (d − 1)-dimensional unit ball, and C1 is
some constant. As n → ∞, En → 0, and wi(n) → 0, i = 1, 2.

The proof of Lemma 2.1 is given in Appendix A. We first prove a Poissonized version of
Theorem 1.1 for the number of isolated nodes, i.e. (1.5) with Wn(rn) replaced by W ′

n(rn). To
this end, we first find a sequence rn for which E[W ′

n(rn)] converges. From the Palm theory for
Poisson processes (see Equation (8.45) of Penrose (2003)), we obtain

E[W ′
n(rn)] = n

∫
Rd

exp(−nI (x, rn))f (x) dx.

Changing to polar coordinates gives

E[W ′
n(rn)] = n

∫ ∞

0
exp (−nI (s, rn))fR(s) ds, (2.5)

where fR is defined in (1.3). Define the sequence of functions {ρn}n≥1 by

ρn(t)
α = t + an

λ
, t ≥ −an, (2.6)

where

an = log n +
(

d

α
− 1

)
log2 n − log

(
�

(
d

α

))
. (2.7)

Choose rn so that the remaining factor in (2.5) also converges. Making the change of variable
t = ρ−1

n (s) in (2.5) we obtain

E[W ′
n(rn)] =

∫ ∞

−an

exp(−nI (ρn(t), rn))gn(t) dt, (2.8)
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where

gn(t) = nfR(ρn(t))ρ
′
n(t)

= nλd/α−1

�(d/α)

(
t + an

λ

)d/α−1

e−(t+an)

=
(

t + an

log n

)d/α−1

e−t

=
(

t + log n + (d/α − 1) log2 n − log(�(d/α))

log n

)d/α−1

e−t

→ e−t as n → ∞ for all t ∈ R. (2.9)

Lemma 2.2. Suppose that the sequence {rn}n≥1 satisfies (1.4). Let t ∈ R, and set ρn(t)
α =

((t + an)/λ) 1{t≥−an}, where an is as defined in (2.7). Then

lim
n→∞ nI (ρn(t), rn) = Cdeβ−t , (2.10)

where Cd is as defined in (1.6).

Proof. It is easy to verify that, for each fixed t ∈ R, ρn = ρn(t) and rn satisfy the conditions
of Lemma 2.1, and so we have nI (ρn, rn) ∼ Kdng(ρn, rn). Substituting for λρα

n (t) from (2.6)
and (2.7), we obtain

nI (ρn, rn) ∼ nKd�(d/α)e−t

n(log n)d/α−1 rd
n exp(λαrnρ

α−1
n )(λαrnρ

α−1
n )−(d+1)/2. (2.11)

From (1.4) we can write

rn = d − 1

λα

log2 n

(λ−1 log n)1−1/α
− d − 1

2λα

log3 n

(λ−1 log n)1−1/α
+ β + o(1)

λα(λ−1 log n)1−1/α

= d − 1

λα

log2 n

(λ−1 log n)1−1/α
(1 + o(1)), (2.12)

and, hence,

λαrnρ
α−1
n =

(
(d − 1) log2 n

(λ−1 log n)1−1/α
− d − 1

2

log3 n

(λ−1 log n)1−1/α
+ β + o(1)

(λ−1 log n)1−1/α

)

×
(

1

λ

(
t + log n +

(
d

α
− 1

)
log2 n − log

(
�

(
d

α

))))(α−1)/α

=
(

(d − 1) log2 n − d − 1

2
log3 n + β + o(1)

)

×
(

1 + t

log n
+

(
d

α
− 1

)
log2 n

log n
− log(�(d/α))

log n

)(α−1)/α

(2.13)

= (d − 1) log2 n − d − 1

2
log3 n + β + o(1). (2.14)
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Substituting (2.12) and (2.14) into (2.11), we obtain

nI (ρn, rn) ∼ Kd�(d/α)e−t

(log n)d/α−1

(
d − 1

λα

log2 n

(λ−1 log n)1−1/α
(1 + o(1))

)d

×
(

exp((d − 1) log2 n − log3 n(d − 1)/2 + β + o(1))

((d − 1) log2 n − log3 n(d − 1)/2 + β + o(1))(d+1)/2

)
→ Cdeβ−t , (2.15)

where Cd = Kd�(d/α)(d − 1)(d−1)/2λ−d/αα−d . Substituting for Kd from (2.1) (and for Ad

from (1.2)) and simplifying, we obtain

Cd = α1−dθd−12(d−1)/2(d − 1)(d−1)/2 �((d + 1)/2)�(d/2 + 1)

dπd/2 .

Since �((d + 1)/2)�(d/2 + 1) = 2−d�(d + 1)
√

π , we obtain the expression for Cd given
in (1.6).

Lemma 2.3. For any t ∈ R and sufficiently large n, let gn(t) be as defined in (2.9). There
exists a constant M depending on α, d , and λ such that the following inequalities hold for all
large enough n.

1. Suppose that d/α ≥ 1 and λrα
n − an ≤ t ≤ 0 or that d/α < 1 and − log n/ log2 n ≤

t ≤ 0. Then gn(t) ≤ Me−t .

2. For d/α < 1 and λrα
n − an ≤ t ≤ − log n/ log2 n, gn(t) ≤ M(log2 n/ log n)d−αe−t .

Remark 2.1. From (2.7), it follows that, for large n,

1
2 log n ≤ an ≤ 2 log n. (2.16)

Hence, from (2.12) and (2.16), we have, for large n, λrα
n − an < − log n/ log2 n. Thus, the

first part of Lemma 2.3 includes the cases d/α ≥ 1 and − log n/ log2 n ≤ t ≤ 0.

Proof of Lemma 2.3. For the case where d/α ≥ 1 and λrα
n − an ≤ t ≤ 0, we have, by (2.16),

gn(t) ≤
(

0 + an

log n

)d/α−1

e−t ≤ 2d/α−1e−t .

Again using (2.16), if d/α < 1 and − log n/ log2 n ≤ t ≤ 0, then

gn(t) ≤
(− log n/ log2 n + log n/2

log n

)d/α−1

e−t

≤
(− log n/4 + log n/2

log n

)d/α−1

e−t

≤ 41−d/αe−t .

From (2.12), it follows that, for large n, λrα
n ≥ ((d − 1) log2 n/2α(log n)1−1/α)α . Thus, if

d/α < 1 and λrα
n − an ≤ t ≤ − log n/ log2 n,

gn(t) ≤
(

λrα
n − an + an

log n

)d/α−1

e−t ≤
(

(d − 1) log2 n

2α log n

)d−α

e−t .
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Proposition 2.1. Let the sequence {rn}n≥1 satisfy (1.4), and let Cd be as defined in (1.6). Then

lim
n→∞ E[W ′

n] = e−β

Cd

.

Proof. From Lemma 2.2 and (2.9), for each t ∈ R, we have

lim
n→∞ exp(−nI (ρn(t), rn))gn(t) = exp(−Cdeβ−t )e−t . (2.17)

Suppose that we can find integrable bounds for exp(−nI (ρn(t), rn))gn(t) that hold for all
large n. Then, from (2.8), (2.17), and the dominated convergence theorem, we have

lim
n→∞ E[W ′

n(rn)] = lim
n→∞

∫ ∞

−an

exp(−nI (ρn(t), rn))gn(t) dt

=
∫ ∞

−∞
exp(−Cdeβ−t )e−t dt

= e−β

Cd

.

We find integrable bounds for exp(−nI (ρn(t), rn))gn(t) by dividing the range of t into four
parts.

Part 1. First consider t ≥ 0. For large n, since 0.5 log n < an < 2 log n, we have

gn(t) ≤

⎧⎪⎪⎨
⎪⎪⎩

(
t + 2 log n

log n

)d/α−1

e−t ≤ e−t2d/α max(t, 1)d/α−1, d/α > 1,

21−d/αe−t , d/α ≤ 1.

(2.18)

By the above bound on gn(t), it follows that

exp(−nI (ρn(t), rn))gn(t) ≤ gn(t) (2.19)

is integrable over [0, ∞).
Part 2. Now consider the range − log n/ log2 n ≤ t ≤ 0. As λρn(t)

α = t + an, from (2.13)
we obtain

λαrnρn(t)
α−1 =

(
(d − 1) log2 n − d − 1

2
log3 n + β + o(1)

)

×
(

1 + α − 1

α

(
t + (d/α − 1) log2 n − log(�(d/α))

log n

)
(1 + ζn(t))

−1/α

)
,

where |ζn(t)| ≤ |t + (d/α − 1) log2 n − log(�(d/α))|(log n)−1. Hence,

ζn(t) 1[− log n/ log2 n,0](t) → 0

uniformly as n → ∞. Since −1 ≤ t log2 n/ log n ≤ 0 in the above range of t , we can find
constants c1 and c2 such that, for large n,

(d−1) log2 n−d − 1

2
log3 n−c1 ≤ λαrnρn(t)

α−1 ≤ (d−1) log2 n−d − 1

2
log3 n+c2. (2.20)
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Hence, for all large n, we have

exp(λαrnρ
α−1
n ) ≥ (log n)d−1

(log2 n)(d−1)/2
e−c1 . (2.21)

From Lemma 2.1,

nI (ρn, rn) ≥ C1n

(
�

(
d + 1

2

)
+ En

)
e−λw1(n)g(ρn, rn)

= C1n

(
�

(
d + 1

2

)
+ En

)
rd
n

�(d/α)e−t

n(log n)d/α−1 e−λw1(n)

× exp(λαrnρ
α−1
n )(λαrnρ

α−1
n )−(d+1)/2, (2.22)

where C1 = Adθd−12(d−1)/2. Substituting (2.12), (2.20), and (2.21) into the above expression
we obtain, for some constant C and large n,

nI (ρn, rn) ≥ Adθd−12(d−1)/2
(

�

(
d + 1

2

)
+ En

)
e−λw1(n)

×
(

(d − 1) log2 n

λα(λ−1 log n)1−1/α
(1 + o(1))

)d
�(d/α)e−t

(log n)d/α−1

(log n)d−1

(log2 n)(d−1)/2

× e−c1

(
(d − 1) log2 n − d − 1

2
log3 n + c2

)−(d+1)/2

≥ C

(
�

(
d + 1

2

)
+ En

)
e−λw1(n)e−t . (2.23)

Suppose that we show, as n → ∞, rn/ρn(t) and r2
nρn(t)

α−2 converge uniformly to 0, and that
rnρn(t)

α−1 → ∞ uniformly for − log n/ log2 n ≤ t ≤ 0. It then follows from (2.2) and (2.3)
that w1(n) and En converge uniformly to 0. Hence, we can find a constant c′ > 0 such that

nI (ρn, rn) ≥ c′e−t . (2.24)

From the above inequality and part 1 of Lemma 2.3 (see also Remark 2.1), there exists a constant
c such that, for all large n, we have

exp(−nI (ρn(t), rn))gn(t) ≤ c exp(−c′e−t )e−t , − log n

log2 n
≤ t ≤ 0. (2.25)

This upper bound is integrable over t ∈ (−∞, 0). We now verify the three conditions assumed
above. That rnρn(t)

α−1 → ∞ uniformly follows from (2.20). From (2.12), for some constant
c1 and large n, we have rn ≤ c1 log2 n/(log n)1−1/α . Since − log n/ log2 n ≤ t ≤ 0, by (2.6),
for all sufficiently large n,

λρn(t)
α ≥ log n − log n

log2 n
+

(
d

α
− 1

)
log2 n − log

(
�

(
d

α

))
≥ 1

2
log n.

So, for large n, we can find a constant c2 such that rn/ρn(t) ≤ c2 log2 n/ log n → 0 as n → ∞.
Next we show that r2

nρn(t)
α−2 → 0 as n → ∞ uniformly over − log n/ log2 n ≤ t ≤ 0. By

https://doi.org/10.1239/aap/1282924057 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924057


Criticality of the exponential rate of decay SGSA • 639

(1.4) and (2.6), we obtain

(λα)2r2
nρn(t)

α−2 =
(

(d − 1) log2 n

(λ−1 log n)1−1/α
− d − 1

2

log3 n

(λ−1 log n)1−1/α
+ β + o(1)

(λ−1 log n)1−1/α

)2

×
(

1

λ

(
t + log n +

(
d

α
− 1

)
log2 n − log

(
�

(
d

α

))))(α−2)/α

= λ

(
((d − 1) log2 n − log3 n(d − 1)/2 + β + o(1))2

log n

)

×
(

1 + t + (d/α − 1) log2 n − log(�(d/α))

log n

)(α−2)/α

.

Since − log n/ log2 n ≤ t ≤ 0, the right-hand side of the above equation is bounded by

λ
((d − 1) log2 n − log3 n(d − 1)/2 + β + o(1))2

log n

×
(

1 + (d/α − 1) log2 n − log(�(d/α))

log n

)(α−2)/α

for α ≥ 2, and by

λ
((d − 1) log2 n − log3 n(d − 1)/2 + β + o(1))2

log n

×
(

1 − log n/ log2 n − (d/α − 1) log2 n + log(�(d/α))

log n

)(α−2)/α

for 0 < α < 2. Both these bounds are independent of t and converge to 0 as n → ∞.
Part 3. Next, consider the range λrα

n − an ≤ t ≤ − log n/ log2 n (see Remark 2.1). From
the first inequality we have rn ≤ ρn(t), and, hence,

I (ρn(t), rn) =
∫

B(ρn(t)e,rn)

Ade−λ‖x‖α

dx

>

∫
B(ρn(t)e,rn), ‖x‖≤ρn(t)

Ade−λ‖x‖α

dx

≥ Ade−λρn(t)α |B(ρn(t)e, rn) ∩ B(0, ρn(t))|, (2.26)

where | · | denotes the volume and e = (1, 0, . . . , 0) ∈ R
d . Inscribe a sphere of diameter rn

inside B(ρn(t)e, rn) ∩ B(0, ρn(t)) (see Figure 1). Hence,

|B(ρn(t)e, rn) ∩ B(0, ρn(t))| ≥ θdrd
n

2d
. (2.27)

Substituting (2.6), (2.12), and (2.27) into (2.26), we have, for large n,

I (ρn(t), rn) ≥ c′′e−λρn(t)α rd
n

= c′′′e−t

n(log n)d/α−1

(log2 n)d

(log n)d−d/α

(
1 − log3 n

2 log2 n
+ β + o(1)

(d − 1) log2 n

)d

≥ c∗n−1(log n)1−d(log2 n)de−t

= qne−t , (2.28)
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rn

ρn

Figure 1.

where

qn = c∗(log n)1−d(log2 n)dn−1. (2.29)

From Lemma 2.3 and (2.28), we obtain,

∫ − log n/ log2 n

λrα
n −an

exp(−nI (ρn(t), rn))gn(t) dt

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M

∫ − log n/ log2 n

λrα
n −an

exp(−nqne−t )e−t dt, d/α ≥ 1,

M

(
log2 n

log n

)d−α ∫ − log n/ log2 n

λrα
n −an

exp(−nqne−t )e−t dt, d/α < 1,

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M

∫ exp(an−λrα
n )

exp(log n/ log2 n)

e−nqny dy, d/α ≥ 1,

M

(
log2 n

log n

)d−α ∫ exp(an−λrα
n )

exp(log n/ log2 n)

e−nqny dy, d/α < 1,

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M

nqn

exp(−nqnelog n/ log2 n), d/α ≥ 1,

M

nqn

(
log2 n

log n

)d−α

exp(−nqnelog n/ log2 n), d/α < 1.

(2.30)

We have

M

nqn

exp(−nqnelog n/ log2 n) = M

nqn

exp(−n1+1/ log2 nqn)

= C
(log n)d−1

(log2 n)d
exp(−c∗n1/ log2 n(log n)1−d(log2 n)d). (2.31)
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Consider the exponent c∗n1/ log2 n(log n)1−d(log2 n)d . Taking logarithms we obtain, for large n,

log(c∗) + log n

log2 n
+ (1 − d) log2 n + d log3 n ≥ log n

2 log2 n
.

Hence,

c∗n1/ log2 n(log n)1−d(log2 n)d ≥ elog n/2 log2 n. (2.32)

Using (2.32) in (2.31), we obtain

M

nqn

exp(−nqnelog n/ log2 n) ≤ C

(
log n

log2 n

)d−1 1

log2 n
exp(−elog n/2 log2 n) → 0, (2.33)

since the exponent is decaying exponentially fast in log n/ log2 n. Using the inequality from
(2.33) in (2.30) for the case d/α < 1, we obtain

M

nqn

(
log2 n

log n

)d−α

exp(−nqnelog n/ log2 n) ≤ C(log n)α−1

(log2 n)α
exp(−elog n/2 log2 n), (2.34)

which converges to 0 as n → ∞, by the same argument as above. From (2.30), (2.33), and
(2.34), we have ∫ − log n/ log2 n

λrα
n −an

exp(−nI (ρn(t), rn))gn(t) dt → 0. (2.35)

Part 4. Finally, consider the case −an ≤ t ≤ λrα
n − an. The second inequality implies that

rn ≥ ρn(t). Hence, for large n, we have

nI (ρn(t), rn) = n

∫
B(ρn(t)e,rn)

Ade−λ‖x‖α

dx ≥ n

∫
B(rne,rn)

Ade−λ‖x‖α

dx ≥ c1ne−λ(2rn)α rd
n .

(2.36)
For large n from (2.12), we have

(d − 1) log2 n

2λ1/αα(log n)1−1/α
≤ rn ≤ 2(d − 1) log2 n

λ1/αα(log n)1−1/α
. (2.37)

Fix 0 < ε1, ε2 < 1 such that ε = ε1 + ε2 < 1. Substituting (2.37) into (2.36) we obtain, for
large n and some positive constants c2 and c3,

nI (ρn(t), rn) ≥ c2n exp

(
−c3

(log2 n)α

(log n)α−1

)
(log2 n)d

(log n)d−d/α

≥ c2n
1−ε1 exp

(
−c3

(
log2 n

log n

)α

log n

)
= c2n

1−ε1−c3(log2 n/ log n)α

≥ c2n
1−ε1−ε2

= c2n
1−ε. (2.38)
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From (2.9), (2.38), and the fact that, for large n, an < 2 log n, we obtain

∫ λrα
n −an

−an

e−nI (ρn(t),rn)gn(t) dt ≤ e−c2n
1−ε

(log n)d/α−1

∫ λrα
n −an

−an

(t + an)
d/α−1e−t dt

≤ eane−c2n
1−ε

(log n)d/α−1

∫ ∞

0
ud/α−1e−u du

≤ cn2e−c2n
1−ε

(log n)d/α−1

→ 0. (2.39)

This completes the proof of Proposition 2.1.

Theorem 2.1. Let α ∈ R, and let rn be as defined in (1.4). Then

W ′
n(rn)

D−→ Po(e−β/Cd),

where Cd is as defined in (1.6) and Po(e−β/Cd) is the Poisson random variable with mean
e−β/Cd .

Proof. From Theorem 6.7 of Penrose (2003) and Proposition 2.1, the total variation distance,
dTV(W ′

n(rn), Po(E[W ′
n(rn)])) is bounded by a constant times J1(n) + J2(n), where J1(n) and

J2(n) are defined as

J1(n) = n2
∫

Rd

exp(−nI (x, rn))f (x) dx

∫
B(x,3rn)

exp(−nI (y, rn))f (y) dy,

J2(n) = n2
∫

Rd

f (x) dx

∫
B(x,3rn)\B(x,rn)

exp(−nI (2)(x, y, rn))f (y) dy, (2.40)

where I (2)(x, y, r) = ∫
B(x,r)∪B(y,r)

f (z) dz. Theorem 2.1 follows from Proposition 2.1 if we
show that Ji(n) → 0 as n → ∞, i = 1, 2. We first analyze J1. Let ρn(t) and gn(t) be as
defined in Lemma 2.2 and (2.9), respectively. We have

J1(n) = n2
∫ ∞

−an

exp(−nI (ρn(t), rn))gn(t) dt

∫
B(ρn(t)e,3rn)

exp(−nI (y, rn))f (y) dy.

Write J1(n) = J11(n) + J12(n), where

J11(n) =
∫ − log n/ log2 n

−an

exp(−nI (ρn(t), rn))gn(t) dt

×
∫

B(ρn(t)e,3rn)

exp(−nI (y, rn))nf (y) dy,

J12(n) =
∫ ∞

− log n/ log2 n

exp(−nI (ρn(t), rn))gn(t) dt

×
∫

B(ρn(t)e,3rn)

exp(−nI (y, rn))nf (y) dy.
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From (2.8) and Proposition 2.1, the inner integral in J11,∫
B(ρn(t)e,3rn)

exp(−nI (y, rn))nf (y) dy ≤
∫ ∞

−an

exp(−nI (ρn(t
′), rn))gn(t

′) dt ′

= E[W ′
n(rn)]

→ e−β

Cd

as n → ∞. Thus, for any ε > 0 and all large n, we have

J11(n) ≤ (1 + ε)
e−β

Cd

∫ − log n/ log2 n

−an

exp(−nI (ρn(t), rn))gn(t) dt.

It follows from (2.35) and (2.39) that J11(n) → 0. Next we will show that J12(n) → 0
as n → ∞. Define Bn(t) = {t ′ : ρn(t) − 3rn ≤ ρn(t

′) ≤ ρn(t) + 3rn}. Note that, for t ≥
− log n/ log2 n, ρn(t) − 3rn ≥ 0. The inner integral in J12(n) reduces to∫

B(ρn(t)e,3rn)

exp(−nI (y, rn))nf (y) dy

≤
(

2 sin−1
(

3rn

ρn(t)

))d−1 ∫
Bn(t)

exp(−nI (ρn(t
′), rn))gn(t

′) dt ′

≤
(

2 sin−1
(

3rn

ρn(t)

))d−1 ∫ ∞

−an

exp(−nI (ρn(t
′), rn))gn(t

′) dt ′

≤ 2d−1(1 + ε)
e−β

Cd

(
sin−1

(
3rn

ρn(t)

))d−1

≤ C

(
log2 n

log n

)d−1

, (2.41)

since, for all large n and t ∈ (− log n/ log2 n, ∞), we can find constants c, c′, and ε > 0 such
that 0 ≤ 3rn/ρn(t) ≤ c log2 n/ log n → 0, and sin−1(x) ≤ c′x for all x ∈ [0, ε]. Thus, the
inner integral in J12 converges uniformly to 0 as n → ∞. Hence, J12 converges to 0 from the
last statement and the fact that the bounds in (2.19) and (2.25) are integrable over [0, ∞) and
(−∞, 0], respectively.

We now show that J2 as defined in (2.40) converges to 0. Write J2(n) = ∑3
k=1 J2k(n),

where

J2k(n) = n2
∫

Rd

f (x) dx

∫
Ak(n)

exp(−nI (2)(x, y, rn))f (y) dy, k = 1, 2, 3,

with A1(n) = {2rn ≤ ||x − y|| ≤ 3rn}, A2(n) = {rn ≤ ||x − y|| ≤ 2rn, ‖x‖ ≤ ‖y‖},
and A3(n) = {rn ≤ ||x − y|| ≤ 2rn, ‖y‖ ≤ ‖x‖}. Since on A1(n), I (2)(x, y, rn) =
I (x, rn) + I (y, rn), we obtain

J21(n) = n2
∫

Rd

exp(−nI (x, rn))f (x) dx

∫
{y : 2rn≤||x−y||≤3rn}

exp(−nI (y, rn))f (y) dy

≤ n2
∫

Rd

exp(−nI (x, rn))f (x) dx

∫
B(x,3rn)

exp(−nI (y, rn))f (y) dy

= J1(n),
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x

y

z

Figure 2.

which has already been shown to converge to 0. Next we analyze J22(n) as n → ∞. The proof
for J23(n) is the same and so we omit it.

Let B(z(x, y), ρ1) be the ball with center z = z(x, y) (see Figure 2) and radius ρ1 =
ρ1(x, y) ≥ rn/2 inscribed inside B(x, rn) \ B(y, rn). Then

I (2)(x, y, rn) ≥ I (z(x, y), ρ1) + I (y, rn)

≥ I (z(x, y), rn/2) + I (y, rn)

≥ I (x, rn/2) + I (y, rn),

where the last inequality follows since ‖z‖ < ‖x‖. Thus,

J22(n) ≤ n2
∫

Rd

exp

(
−nI

(
x,

rn

2

))
f (x) dx

∫
A2(n)

exp(−nI (y, rn))f (y) dy

≤ n2
∫

Rd

exp

(
−nI

(
x,

rn

2

))
f (x) dx

∫
B(x,3rn)

exp(−nI (y, rn))f (y) dy.

Write J22(n) = J ∗
1 (n) + J ∗

2 (n) + J ∗
3 (n), where

J ∗
i (n) =

∫
Di

exp

(
−nI

(
ρn(t),

rn

2

))
gn(t) dt

∫
B(ρn(t)e,3rn)

exp(−nI (y, rn))nf (y) dy

for i = 1, 2, 3, where D1 = [−an, − log n/ log2 n), D2 = [− log n/ log2 n, 0), and D3 =
[0, ∞). The proof of J ∗

i → 0 as n → ∞ for i = 1, 3 proceeds in exactly the same manner as
in the cases of J11 and J12 by replacing rn by rn/2 while estimating the outer integrals. In the
case of J ∗

2 , we proceed exactly as in the case of J12 (see (2.41)) to obtain

J ∗
2 (n) ≤ C

(
log2 n

log n

)d−1 ∫
D2

exp

(
−nI

(
ρn(t),

rn

2

))
gn(t) dt. (2.42)

We will show that there exists a constant C1 such that, for large n,∫
D2

exp

(
−nI

(
ρn(t),

rn

2

))
gn(t) dt ≤ C1

(log n)(d−1)/2

(log2 n)(d−1)/4
. (2.43)

Substituting (2.43) into (2.42) we obtain

J ∗
2 (n) ≤ C′

(
log2 n

log n

)d−1
(log n)(d−1)/2

(log2 n)(d−1)/4
→ 0 as n → ∞.
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This completes the proof of Theorem 2.1 once we show (2.43). We first obtain a bound for the
integrand in (2.43) as in (2.25) by replacing rn by rn/2. Using Lemma 2.1 (see also (2.22)),
we can find a constant c0 > 0 such that

nI

(
ρn(t),

rn

2

)
≥ c0n

(
�

(
d + 1

2

)
+ En

)
rd
n e−λw1(n)(rnρ

α−1
n )−(d+1)/2

× exp(−λ(ρα
n − αrnρ

α−1
n )) exp

(
−λα

2
rnρ

α−1
n

)
, (2.44)

where the functions En and w1(n) are as in Lemma 2.1, but with rn replaced by rn/2. It is easy
to see that the conditions for the uniform convergence to 0 of En and w1(n) that were verified
below (2.25) for rn hold for rn/2 as well. Hence, the computations leading to (2.24) can be
used to estimate the right-hand side of (2.44) leaving out the last factor. This gives, for large n

and some constant c′′ > 0,

nI

(
ρn(t),

rn

2

)
≥ c′′e−t exp

(
−λα

2
rnρn(t)

α−1
)

.

From (2.20) we have exp(−λαrnρn(t)
α−1/2) ≥ (log2 n)(d−1)/4(log n)−(d−1)/2e−c2/2. There-

fore,

nI

(
ρn(t),

rn

2

)
≥ c3

(log2 n)(d−1)/4

(log n)(d−1)/2
e−t . (2.45)

From (2.45) and part 1 of Lemma 2.3, we obtain

exp

(
−nI

(
ρn(t),

rn

2

))
gn(t) ≤ M exp

(
−c3

(log2 n)(d−1)/4

(log n)(d−1)/2
e−t

)
e−t

for all large n. Hence, for all large n, we have∫
D2

exp

(
−nI

(
ρn(t),

rn

2

))
gn(t) dt ≤ M

∫ 0

−∞
exp

(
−c3

(log2 n)(d−1)/4

(log n)(d−1)/2
e−t

)
e−t dt

≤ M

c3

(log n)(d−1)/2

(log2 n)(d−1)/4
.

This proves (2.43).

Proof of Theorem 1.1. For each positive integer n, set m1(n) = n − n3/4 and m2(n) =
n + n3/4. Recall that the Poisson sequence Nn is assumed to be nondecreasing. Let rn be
as in the statement of the theorem. Since mi(n) ∼ n, it is easy to see that Proposition 2.1 and
Theorem 2.1 hold with n replaced by mi(n), that is,

E[W ′
mi(n)(rn)] → e−β

Cd

, W ′
mi(n)(rn)

D−→ Po

(
e−β

Cd

)
, i = 1, 2.

LetP −
n = Pm1(n) andP +

n = Pm2(n). LetAc denote the complement of setA. LetHn = {P −
n ⊆

Xn ⊆ P +
n }. Let An be the event that there exists a point Y ∈ P +

n \ P −
n such that Y is isolated in

G(P −
n ∪ {Y }, rn). Let Bn be the event that one or more points of P +

n \ P −
n lie within distance

rn of a point X of P −
n with degree 0 in G(P −

n , rn). Then {Wn(rn) �= W ′
n(rn)} ⊆ An ∪ Bn ∪ H c

n .
Thus, the proof is complete if we show that P[An], P[Bn], P[H c

n ] all converge to 0. We have

P[H c
n ] ≤ P[|Nm1(n) − m1(n)| ≥ n3/4] + P[|Nm2(n) − m2(n)| ≥ n3/4] → 0

as n → ∞ by Chebyshev’s inequality.
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Let Y ∈ R
d be a point distributed according to the density f independent of P −

n . By the
Palm theory we have

P[An] ≤ 2n3/4 P[Y is isolated in G(P −
n ∪ {Y }, rn)] = 2n3/4m1(n)−1 E[W ′

m1(n)(rn)],
which converges to 0 as n → ∞. By Boole’s inequality and the Palm theory,

P[Bn] ≤ 2n3/4 P[there is a isolated point of G(P −
n , rn) in B(Y, rn)]

≤ 2n7/4
∫

Rd

f (y) dy

∫
B(y,rn)

exp(−m1(n)I (x, rn))f (x) dx.

By interchanging the order of integration, we obtain

P[Bn] ≤ 2n7/4
∫

Rd

I (x, rn) exp(−m1(n)I (x, rn))f (x) dx

= 2n3/4
∫ ∞

−an

I (ρn(t), rn) exp(−m1(n)I (ρn(t), rn))gn(t) dt. (2.46)

From (2.9) and (2.10), we obtain

2n3/4I (ρn(t), rn) exp(−m1(n)I (ρn(t), rn))gn(t) → 0.

Thus, the integrand in (2.46) converges pointwise to 0 as n → ∞. To complete the proof, we
need to find integrable bounds for the left-hand side of the above equation. Let 0 < ε < 1 be
fixed. For large n, we have m1(n) ≥ (1 − ε)n. Hence, for large n,

n3/4I (ρn(t), rn) exp(−m1(n)I (ρn(t), rn))gn(t)

≤ n3/4I (ρn(t), rn) exp(−(1 − ε)nI (ρn(t), rn))gn(t). (2.47)

Thus, it suffices to find integrable bounds for the right-hand side expression in (2.47). The
procedure for doing this is the same as in the proof of Proposition 2.1, where we obtained
integrable bounds for exp(−nI (ρn(t), rn))gn(t) by dividing the range of the integral [−an, ∞)

into four parts, and in each part finding a lower bound for nI (ρn(t), rn) of the form cihi(n, t) and
upper bounds for gn(t), i = 1, . . . , 4. We can use the same bounds for the factor exp(−(1 −
ε)nI (ρn(t), rn))gn(t) by replacing the constants ci by (1 − ε)ci, i = 1, . . . , 4 (see below).
Thus, for each of the four domains analyzed in Proposition 2.1, we need to find an upper bound
for n3/4I (ρn(t), rn), and then verify that the product of this bound and the one obtained for
exp(−(1 − ε)nI (ρn(t), rn))gn(t) is integrable.

Part 1. Let t ≥ 0. From (2.15) we obtain, for large n,

n3/4I (ρn(t), rn) ≤ n3/4I (ρn(0), rn) ≤ (1 + ε)Cdeβn−1/4.

Hence, for large n,

n3/4I (ρn(t), rn) exp(−(1 − ε)nI (ρn(t), rn))gn(t) ≤ (1 + ε)Cdeβn−1/4gn(t),

which is integrable over [0, ∞) by (2.18) for each n, and converges to 0 as n → ∞.
Part 2. Next suppose that − log n/ log2 n ≤ t ≤ 0. Using Lemma 2.1 and proceeding as in

(2.22) and (2.23), with w1(n) replaced by w2(n) and En replaced by 0, we obtain, for large n

and some constant c′′,
n3/4I (ρn(t), rn) ≤ n−1/4c′′e−t .
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This together with (2.24) and part 1 of Lemma 2.3 yields

n3/4I (ρn(t), rn) exp(−(1 − ε)nI (ρn(t), rn))gn(t) ≤ c1n
−1/4 exp(−(1 − ε)c′e−t )e−2t

for large n and some constant c1. This bound is integrable in t over the interval (−∞, 0), and
converges to 0 as n → ∞.

Part 3. Next, consider the range λrα
n − an ≤ t ≤ − log n/ log2 n. For large n, we have

I (ρn(t), rn) ≤
∫

B(0,rn)

Ade−λ‖x‖α

dx ≤ Adrd
n ≤ c2

(log2 n)d

(log n)d−d/α
, (2.48)

where the last inequality in (2.48) follows from (2.37). Note that the above bound is independent
of t . Hence, for large n,

∫ − log n/ log2 n

λrα
n −an

n3/4I (ρn(t), rn) exp(−(1 − ε)nI (ρn(t), rn))gn(t) dt

will be bounded by n3/4 times the last expression in (2.48) times the bound obtained in (2.30),
with the constant c∗ (see (2.29)) replaced by (1 − ε)c∗. The bounds obtained in (2.30) are in
turn bounded above in (2.33) or (2.34), depending on whether d/α ≥ 1 or d/α ≤ 1. If d/α ≥ 1
then, for large n, the product of the bounds in (2.33) and (2.48) will be less than a constant
times

n3/4(log n)d/α−1 exp(−elog n/2 log2 n) ≤ n3/4(log n)d/α−1 exp(−elog2 n) = n−1/4(log n)d/α−1,

which converges to 0 as n → ∞. The same reasoning applies to the case d/α < 1 by using
(2.34) instead of (2.33).

Part 4. Finally, consider the case −an ≤ t ≤ λrα
n − an. Using (2.39) and (2.48) with c2

replaced by (1 − ε)c2, we obtain, for large n and some constant c,

∫ λrα
n −an

−an

n3/4I (ρn(t), rn) exp(−(1 − ε)nI (ρn(t), rn))gn(t) dt

≤ cn3(log2 n)d exp(−(1 − ε)c2n
1−ε)

(log n)d−1 ,

which converges to 0 as n → ∞.

Proof of Theorem 1.2. Define a sequence {rn}n≥1 by

λα(λ−1 log n)1−1/αrn − (d − 1) log2 n + d − 1

2
log3 n = β.

Then by Theorem 1.1 we have

lim
n→∞ P[dn ≤ rn] = lim

n→∞ P[Wn(rn) = 0] = exp

(
−e−β

Cd

)
.

The result now follows by taking β = γ − log(Cd).

https://doi.org/10.1239/aap/1282924057 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924057


648 • SGSA B. GUPTA AND S. K. IYER

3. Proof of Theorem 1.3

In order to prove strong laws for the LNND for graphs with densities having compact
support, we cover the support of the density using an appropriate collection of concentric balls
and then show summability of certain events involving the distribution of the points of Xn on
these balls. The results then follow by an application of the Borel–Cantelli lemma. In the
case of densities having unbounded support, the region to be covered changes with n and must
be determined first. The following lemma gives us the regions of interest when the points in
Xn = {X1, X2, . . . , Xn}, n ≥ 1, are distributed according to the probability density function
f given by (1.1).

For any set A, let Ac denote its complement. For any two real sequences {an}n≥1 and
{bn}n≥1, an � bn means that an ≥ cn, n ≥ 1, for some sequence {cn}n≥1 with cn ∼ bn.

For any c ∈ R and large enough n, define

Rn(c) =
(

1

λ

(
log n + c + d − α

α
log2 n

))1/α

. (3.1)

Define the events Un(c) = {Xn ⊂ B(0, Rn(c))}, and, for any c < 0, let Vn(c) = {Xn ∩
(B(0, Rn(0)) \ B(0, Rn(c))) �= ∅} for all large enough n for which Rn(c) > 0, and arbitrarily
otherwise.

Lemma 3.1. Let the events Un(c) and Vn(c), n ≥ 1, be as defined above. Then

1. P[U c
n(c) infinitely often ] = 0 for any c > α, and

2. P[V c
n (c) infinitely often ] = 0 for any c < 0.

The above results are also true with Xn replaced by Pλn provided that λn ∼ n.

Thus, for almost all realizations of the sequence {Xn}n≥1, all points of Xn will lie within
the ball B(0, Rn(c)) for any c > α eventually, and, for any c < 0, there will be at least one
point of Xn in B(0, Rn(0)) \ B(0, Rn(c)) eventually.

Proof of Lemma 3.1. From (1.3) we obtain∫ ∞

R̃

fR(r) dr ∼ A′
d(λα)−1R̃d−αe−λR̃α

as R̃ → ∞. (3.2)

Fix an integer a > 1, and define the subsequence {nk}k≥1 by nk = ak . For large k, we have

P

[nk+1⋃
n=nk

U c
n(c)

]
≤ P[at least one vertex of Xnk+1 is in Bc(0, Rnk

(c))]

≤ nk+1

∫ ∞

Rnk
(c)

fR(r) dr

∼ A′
d(λα)−1nk+1R

d−α
nk

(c)e−λRα
nk

(c)

≤ C

kc/α
.

Thus, the above probability is summable for c > α, and the first part of Lemma 3.1 follows
from the Borel–Cantelli lemma.
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Next, suppose that c < 0 and let {nk}k≥1 be as above. Note that, for all large k, Rnk+1(c) <

Rnk
(0). From (3.1) we obtain, for all large n,

1

2λ(d−α)/α

1

n(log n)b/α
≤ Rd−α

n (b)e−λRα
n (b) ≤ 2

λ(d−α)/α

1

n(log n)b/α
, b = c, 0.

Using the inequality 1 − x ≤ e−x , (3.2), and the above inequalities, we obtain, for large k,

P

[nk+1⋃
n=nk

V c
n (c)

]
≤ P[Xnk

∩ (B(0, Rnk
(0)) \ B(0, Rnk+1(c))) = ∅]

≤ exp

(
−nk

∫ Rnk
(0)

Rnk+1 (c)

A′
de−λrα

rd−1 dr

)

≤ exp
(−nkA

′
d(λα)−1( 1

2Rd−α
nk+1

(c)e−λRα
nk+1

(c) − 2Rd−α
nk

(0)e−λRα
nk

(0)))
= exp

(
−A′

d(λα)−1

λ(d−α)/α

(
1

4a(log a)c/α
(k + 1)−c/α − 4

))
,

which is summable for all c < 0. The second part of Lemma 3.1 now follows from the
Borel–Cantelli lemma. If Xn is replaced by Pλn , where λn ∼ n, then

P[U c
n(c)] = 1 − exp(−λn(1 − I (0, Rn(c))))

� λnA
′
d(λα)−1Rd−α

n (c) exp(−λRα
n (c))

∼ nA′
d(λα)−1Rd−α

n (c) exp(−λRα
n (c)),

which is the same as the asymptotic behavior of P[U c
n(c)] in case of Xn. Similarly, we can

show that P[V c
n (c)] has the same asymptotic behavior as in the case of Xn. Thus, the results

stated for Xn also hold for Pλn .

Proposition 3.1. For any t > d/αλ, let rn(t) = t (λ−1 log n)1/α−1 log2 n. Then, with proba-
bility 1, dn ≤ rn(t) for all large enough n.

Proof. Fix t > d/αλ, and choose u ∈ (d/αλ, t). Pick c > α and ε satisfying 0 < ε <

u/(2 + u), ε + u < t , and

c + α(d − 1)

α2λ
= d

αλ
+ c − α

α2λ
< (1 − ε)u < t. (3.3)

From Lemma 3.1, a.s., Xn ⊂ B(0, Rn(c)) for all large enough n, where Rn(c) is as defined
in (3.1). For m = 1, 2, . . . , let ν(m) = am for some integer a > 1. Define the sequence of
functions {r̃m(v)}m≥1 by

r̃m(v) =
{

rν(m+1)(v) if α > 1,

rν(m)(v) if α ≤ 1.

This is required since rn(u) is decreasing in n if α > 1, and increasing if α ≤ 1. Let κm (the
covering number) be the minimum number of balls of radii r̃m(ε) required to cover the ball
B(0, Rν(m+1)(c)). Since

rν(m+1)(ε)

rν(m)(ε)
→ 1 as m → ∞, (3.4)
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we can find constants C, C1, and C2 such that, for all sufficiently large m,

κm ≤ C
Rν(m+1)(c)

d

r̃m(ε)d

≤ C1
Rν(m+1)(c)

d

rν(m+1)(ε)d

= C1

λdεd

(log(ν(m + 1)) + log2(ν(m + 1))(c + d − α)/α)d/α

(log(ν(m + 1)))d/α−d(log2(ν(m + 1)))d

≤ C2

(
m + 1

log(m + 1)

)d

. (3.5)

Consider a deterministic set {xm
1 , . . . , xm

κm
} ⊂ B(0, Rν(m+1)(c)), such that

B(0, Rν(m+1)(c)) ⊂
κm⋃
i=1

B(xm
i , r̃m(ε)).

Given x ∈ R
d , define Am(x) to be the annulus B(x, r̃m(u)) \ B(x, r̃m(ε)), and let Fm(x) be

the event such that no vertex of Xν(m) lies in Am(x), i.e.

Fm(x) = {Xν(m)[Am(x)] = 0}, (3.6)

where X[B] denotes the number of points of the finite set X that lie in B. For any x ∈
B(0, Rν(m+1)(c)), we have, by the radial symmetry of f ,

P[Xi ∈ Am(x)] =
∫

Am(x)

f (y) dy =
∫

Am(|x|e)
f (y) dy, (3.7)

where e = (1, 0, . . . , 0) ∈ R
d . The aim is to find a lower bound for the above probability.

Note that
rn(u)

Rn(c)
= u(λ−1 log n)1/α−1 log2 n

(λ−1(log n + log2 n(c + d − α)/α))1/α
→ 0 (3.8)

as n → ∞. Thus, in (3.7) we integrate the density f over a relatively small annulus Am(x)

centered at x which lies in a ball B(0, Rν(m+1)(c)) of relatively larger radius. Since f is radially
symmetric and decreasing, it should be possible to obtain a lower bound for x = Rν(m+1)(c)e.
To show this, first consider the case in which |x| > r̃m(u). Then, y = (y1, . . . , yd) ∈ Am(|x|e)
implies that y1 > 0. Combining this with the fact that |x| ≤ Rν(m+1)(c), we have

|y + (Rν(m+1)(c) − |x|)e| = |(y1 + (Rν(m+1)(c) − |x|), y2, . . . , yd)| ≥ |y|. (3.9)

On the other hand, if |x| ≤ r̃m(u) then, for any y ∈ Am(x), |y| ≤ 2r̃m(u). Hence, for all large
m, we obtain

|y + (Rν(m+1)(c) − |x|)e| ≥ Rν(m+1)(c) − r̃m(u) − |y| ≥ |y| + (Rν(m+1)(c) − 5r̃m(u)) ≥ |y|,
(3.10)
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where the last inequality follows using (3.8). From (3.7), (3.9), (3.10), and the fact that the
density f is radially symmetric and decreasing, we obtain, for all large m,

P[Xi ∈ Am(x)] ≥
∫

Am(|x|e)
f ((Rν(m+1)(c) − |x|)e + y) dy

=
∫

Am(Rν(m+1)(c)e)

f (y) dy

= I (Rν(m+1)(c), r̃m(u)) − I (Rν(m+1)(c), r̃m(ε)). (3.11)

To apply Lemma 2.1 with ρn = Rn(c) and rn = rn(v), v = ε, u, we first check the four
conditions of the lemma. As n → ∞, by definition, Rα

n (c) → ∞, and

rn(v)

Rn(c)
= λ1−1/αv log2 n

/
log n

(
1

λ

(
1 + c + d − α

α

log2 n

log n

))1/α

→ 0,

r2
n(v)Rα−2

n (c) = v2λ2−2/α(log2 n)2

log n

(
1

λ

(
1 + c + d − α

α

log2 n

log n

))1−2/α

→ 0,

rn(v)Rα−1
n (c) = vλ1−1/α log2 n

(
1

λ

(
1 + c + d − α

α

log2 n

log n

))1−1/α

→ ∞.

The above limits can be easily seen to hold if we take Rn and rn to be Rν(m+1) and rν(m),
respectively, by using (3.4). Hence, by Lemma 2.1 (noting from the last line of the lemma that
wi(n), i = 1, 2, and En converge to 0), we can find positive constants c1 and c2 (depending on
u) such that, for large m,

c1g(Rν(m+1)(c), r̃m(u)) ≤ (λα)−(d+1)/2I (Rν(m+1)(c), r̃m(u)) ≤ c2g(Rν(m+1)(c), r̃m(u)).

(3.12)
Substituting (3.12) and (2.4) into (3.11), we have, for large m,

P[Xi ∈ Am(x)]
≥ exp(−λRα

ν(m+1)(c))(R
α−1
ν(m+1)(c))

−(d+1)/2

× (c1(u) exp(λαr̃m(u)Rα−1
ν(m+1)(c))(r̃m(u))(d−1)/2

− c2(ε) exp(λαr̃m(ε)Rα−1
ν(m+1)(c))(r̃m(ε))(d−1)/2)

= qm. (3.13)

We now compute a lower bound for qm. For large n, we can find a constant C3 such that

exp(−λRα
n (c))(Rα−1

n (c))−(d+1)/2

= 1

n(log(n))(c+d−α)/α

(
1

λ

(
log n + c + d − α

α
log2 n

))−(1−1/α)(d+1)/2

≥ C3
(log n)−(1−1/α)(d+1)/2

n(log n)(c+d−α)/α
. (3.14)

Furthermore,

λαrn(u)Rα−1
n (c) = λαu log2 n

(
1 + log2 n(c + d − α)/α

log n

)1−1/α

. (3.15)
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From the above equation (and using (3.4) for the α ≤ 1 case), we obtain, for large m,

(1 − ε)λαu log2 ν(m + 1) ≤ λαr̃m(u)Rα−1
ν(m+1)(c) ≤ 2λαu log2 ν(m + 1). (3.16)

By the above inequality and (3.4), we can find a constant C4 = C4(u) such that, for large m,

exp(λαr̃m(u)Rα−1
ν(m+1)(c))(r̃m(u))(d−1)/2 (3.17)

≥ C4
exp((1 − ε)λαu log2(ν(m + 1)))(log2 ν(m + 1))(d−1)/2

(log ν(m + 1))(1−1/α)(d−1)/2
. (3.18)

From (3.16), with u replaced by ε, for some constant C5 = C5(ε) and large m, we obtain

exp(λαr̃m(ε)Rα−1
ν(m+1)(c))(r̃m(ε))(d−1)/2

≤ C5
exp(2λαε log2(ν(m + 1)))(log2(ν(m + 1)))(d−1)/2

(log(ν(m + 1)))(1−1/α)(d−1)/2
. (3.19)

Substituting (3.14), (3.18), and (3.19) into (3.13), we obtain, for large m,

qm ≥ C3
(log(ν(m + 1)))−(1−1/α)(d+1)/2

ν(m + 1)(log(ν(m + 1)))(c+d−α)/α

× (log2(ν(m + 1)))(d−1)/2 exp((1 − ε)λαu log2(ν(m + 1)))

(log(ν(m + 1)))(1−1/α)(d−1)/2

× (c1C4 − c2C5 exp(λα(2ε − (1 − ε)u) log2(ν(m + 1)))).

Since ε < u/(2 + u), 2ε − (1 − ε)u < 0, and, hence, for large m, the term on the last line
above is bounded below by c1C4/2. Hence, for large m, we have

qm ≥ C3c1C4

2

(log(ν(m + 1)))−(1−1/α)(d+1)/2

ν(m + 1)(log(ν(m + 1)))(c+d−α)/α

× (log2(ν(m + 1)))(d−1)/2 exp((1 − ε)λαu log2(ν(m + 1)))

(log(ν(m + 1)))(1−1/α)(d−1)/2

≥ C
(log(m + 1))(d−1)/2

am(m + 1)c/α+d−(1−ε)λαu−1
(3.20)

for some constant C. Hence, for large m, from (3.6), (3.13), (3.20), and the inequality 1 − x ≤
e−x , we obtain, for any x ∈ B(0, Rν(m+1)(c)),

P[Fm(x)] = (1 − P[X1 ∈ Am(x)])ν(m)

≤ (1 − qm)ν(m)

≤ exp(−ν(m)qm)

≤ exp

(
−C

(log(m + 1))(d−1)/2

(m + 1)c/α+d−(1−ε)λαu−1

)
. (3.21)

Set Gm = ⋃κm

i=1 Fm(xm
i ). From (3.5) and (3.21), we have, for large m,

P[Gm] ≤
κm∑
i=1

P[Fm(xm
i )]

≤ C2

(
m + 1

log(m + 1)

)d

exp

(
−C

(log(m + 1))(d−1)/2

(m + 1)λα((c+α(d−1))/λα2−(1−ε)u)

)
,

https://doi.org/10.1239/aap/1282924057 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924057


Criticality of the exponential rate of decay SGSA • 653

which is summable in m by (3.3). By the Borel–Cantelli lemma, a.s., Gm occurs only for
finitely many m. Choose n > a, and take m such that am ≤ n ≤ am+1. If dn > rn(t) then
there exists an X ∈ Xn such that Xn[B(X, rn(t)) \ {X}] = 0. By Lemma 3.1, X will a.s. be
in B(0, Rν(m+1)(c)) for all large enough m. Hence, a.s., if n is large enough then there is some
i ≤ κm such that X ∈ B(xm

i , r̃m(ε)). Since

r̃m(ε) + r̃m(u) ≤ r̃m(t) ≤ rn(t),

it follows that Fm(xi) and, hence, Gm occur. Since, a.s., Gm occurs only finitely often, it
follows that dn ≤ rn(t) a.s. for all large n. This completes the proof of Proposition 3.1.

Proposition 3.2. For any t ∈ (0, (d −1)/αλ), let rn(t) = t log2 n(λ−1 log n)1/α−1. Then, with
probability 1, dn ≥ rn(t) eventually.

We prove Proposition 3.2 via the Poissonization technique, which uses the following lemma
(see Lemma 1.4 of Penrose (2003)).

Lemma 3.2. Let N be a Poisson random variable with mean λ. Then there exist constants c

and λ1 such that, for all λ > λ1,

max
{
P
[
N > λ + 1

2λ3/4], P
[
N < λ − 1

2λ3/4]} ≤ c exp
(− 1

9

√
λ
)
,

Proof of Proposition 3.2. Enlarging the probability space, assume that there exists nonde-
creasing sequences of Poisson variables {N(n)}n≥1 and {M(n)}n≥1 with E[N(n)] = n − n3/4

and E[M(n)] = 2n3/4, independent of each other and of the sequence {X1, X2, . . . }. Define
the point processes

P −
n = {X1, X2, . . . , XN(n)}, P +

n = {X1, X2, . . . , XN(n)+M(n)}.
Then, P −

n and P +
n are Poisson point processes on R

d with intensity functions (n − n3/4)f (·)
and (n + n3/4)f (·), respectively. The point processes P −

n and P +
n are coupled in such a way

that P −
n ⊆ P +

n . Furthermore, if Hn = {P −
n ⊆ Xn ⊆ P +

n } then, by the Borel–Cantelli lemma
and Lemma 3.2, P[H c

n infinitely often] = 0. Hence, a.s., the event Hn happens eventually.
Fix t ∈ (0, (d − 1)/αλ). Choose u and c such that c < 0, t < u < (d − 1)/αλ, and

u < (c + α(d − 1))/α2λ. Pick ε > 0 small enough such that (1 + ε)u < (c + α(d − 1))/α2λ

and ε + t < u. Fix an integer a > 1, and let ν(m) = am, m = 1, 2, . . . . Define the annulus

Am(c) = B(0, Rν(m)(0)) \ B(0, Rν(m)(c)),

where Rn(c) is as defined in (3.1) (note that Rn(c) < Rn(0) since c < 0). Define the sequence
of functions {r̂m(v)}m≥1 by

r̂m(v) =
{

rν(m)(v) if α > 1,

rν(m+1)(v) if α ≤ 1.
(3.22)

For each m, choose a nonrandom set {xm
1 , xm

2 , . . . , xm
σm

} ⊂ Am(c), such that the balls

B(xn
i , r̂m(u)), 1 ≤ i ≤ σm,

are disjoint. The packing number σm is the maximum number of disjoint balls B(x, r̂m(u))

with x ∈ Am(c). Using (3.4), we can find constants c0 and c1 such that, for all large m, we
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have

σm ≥ c0
Rd

ν(m)(0) − Rν(m)
d(c)

r̂d
m(u)

≥ c1
Rd

ν(m)(0) − Rν(m)
d(c)

rd
ν(m)(u)

= c1

(λu)d

(
log ν(m)

log2 ν(m)

)d((
1 + d − α

α

log2 ν(m)

log ν(m)

)d/α

−
(

1 + c + d − α

α

log2 ν(m)

log ν(m)

)d/α)
.

The function g(x) = (1 + x(d − α)/α)d/α − (1 + x(c + d − α)/α)d/α, x ≥ 0, can satisfy
g(0) = 0 and g′(0) = −cd/α2 > 0, since c < 0. Hence, for all sufficiently small x > 0, we
have g(x) ≥ δx for some constant δ > 0. Using this inequality in the above lower bound for
σm, we obtain

σm ≥ c2

(
log ν(m)

log2 ν(m)

)d−1

(3.23)

for large m and some constant c2. By part 2 of Lemma 3.1, there will a.s. be points of P −
ν(m) in

Am for all large enough m. Consider the sequence of sets (
⋃σm

i=1 Em,i)
c, where

Em,i = {P −
ν(m)[B(x

ν(m)
i , r̂m(ε))] = 1} ∩ {P +

ν(m+1)[B(x
ν(m)
i , r̂m(u))] = 1}

for i = 1, 2, . . . , σm, m = 1, 2, . . . . From an earlier argument P[H c
n ] is summable and,

hence, with probability 1, Hn happens eventually. For any n > a, let m be such that am ≤
n ≤ am+1. Recall that {N(n)}n≥1 and {M(n)}n≥1 are nondecreasing. Hence, if Hn and
Em,i happen, then there is a point X ∈ P −

ν(m) ⊂ P −
n ⊂ Xn such that X ∈ B(x

ν(m)
i , r̂m(ε)) with

no other point of P +
ν(m+1) ⊃ P +

n (and, hence, of Xn) in B(x
ν(m)
i , r̂m(u)). This would imply

that dn ≥ r̂m(u) − r̂m(ε) ≥ r̂m(t) ≥ rn(t). Thus, by the Borel–Cantelli lemma, the proof of
Proposition 3.2 is complete if we show that

∞∑
m=1

P

[( σm⋃
i=1

Em,i

)c]
< ∞. (3.24)

To this end, we first estimate P[Em,i]. For i = 1, 2, . . . , σm, m = 1, 2, . . . , define the sets

Im = P +
ν(m+1) \ P −

ν(m), Um,i = B(x
ν(m)
i , r̂m(ε)), Vm,i = B(x

ν(m)
i , r̂m(u)) \ Um,i .

Then, Em,i = {P −
ν(m)[Um,i] = 1} ∩ {P −

ν(m)[Vm,i] = 0} ∩ {Im[Um,i] = 0} ∩ {Im[Vm,i] = 0}.
Let α(m) = ν(m) − ν(m)3/4 and β(m) = ν(m + 1) + ν(m + 1)3/4. Note that each of the four
events appearing in the above equation are independent. Hence,

P[Em,i] =
(

α(m)

∫
Um,i

f (y) dy

)
exp

(
−β(m)

∫
Um,i∪Vm,i

f (y) dy

)

= α(m)I (x
ν(m)
i , r̂m(ε)) exp(−β(m)I (x

ν(m)
i , r̂m(u)))

≥ α(m)I (Rν(m)(0), r̂m(ε)) exp(−β(m)I (Rν(m)(c), r̂m(u))), (3.25)
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where the last inequality follows since Rν(m)(c) ≤ |xν(m)
i | ≤ Rν(m)(0) and the density is

decreasing radially. Using Lemma 2.1 (that this lemma is applicable is shown in the proof of
Proposition 3.1; see the arguments below (3.11) leading to (3.12)) and noting that α(m) ∼ ν(m)

and β(m) ∼ aν(m), we can find constants C′
1 and C′

2, such that, for large m,

P[Em,i] ≥ C′
1ν(m)r̂

(d−1)/2
m (ε) exp(−λ(Rα

ν(m)(0) − αr̂m(ε)Rα−1
ν(m)(0)))(Rα−1

ν(m)(0))−(d+1)/2

× exp(−C′
2ν(m)r̂

(d−1)/2
m (u) exp(−λ(Rα

ν(m)(c) − αr̂m(u)Rα−1
ν(m)(c)))

× (Rα−1
ν(m)(c))

−(d+1)/2). (3.26)

We now estimate the right-hand side of the above inequality. In what follows, we will use
(3.4) to obtain the desired inequalities for the α ≤ 1 case, as in the proof of Proposition 3.1,
without mentioning it explicitly. From (3.15), with c = 0 and u replaced by ε, we obtain
λαr̂m(ε)Rα−1

ν(m)(0) ≥ log2(ν(m))λαε/2 for large m. Hence, we can find a constant c′
3 such that,

for large m,

exp(λαr̂m(ε)Rα−1
ν(m)(0))(r̂m(ε))(d−1)/2 ≥ c′

3
elog2 ν(m)λαε/2(log2 ν(m))(d−1)/2

(log ν(m))(1−1/α)(d−1)/2
.

Using (3.14) with c = 0 and the above inequality, we obtain, for large m and some constant
C′

3,

C′
1ν(m)r̂

(d−1)/2
m (ε) exp(−λ(Rα

ν(m)(0) − αr̂m(ε)R
(α−1)
ν(m) (0)))(R

(α−1)
ν(m) (0))−(d+1)/2

≥ C′
3ν(m)

(log ν(m))−(1−1/α)(d+1)/2

ν(m)(log ν(m))(d−α)/α

elog2 ν(m)λαε/2(log2 ν(m))(d−1)/2

(log ν(m))(1−1/α)(d−1)/2

= C′
3

(log2 ν(m))(d−1)/2

(log ν(m))d−1−αελ/2 . (3.27)

From (3.15), we obtain, for large m, λαr̂m(u)Rα−1
ν(m)(c) ≤ (1 + ε)λαu log2 ν(m), from which

we obtain, for some constant C′
4,

exp(λαr̂m(u)Rα−1
ν(m)(c))(r̂m(u))(d−1)/2 ≤ C′

4
e(1+ε)λαu log2 ν(m)(log2 ν(m))(d−1)/2

(log ν(m))(1−1/α)(d−1)/2

= C′
4
(log ν(m))(1+ε)λαu(log2 ν(m))(d−1)/2

(log ν(m))(1−1/α)(d−1)/2
.

As in (3.14), we can find a constant C′
5 such that, for large m,

exp(−λRα
ν(m)(c))(R

α−1
ν(m)(c))

−(d+1)/2 ≤ C′
5
(log ν(m))−(1−1/α)(d+1)/2

ν(m)(log ν(m))(c+d−α)/α
.

Using the two bounds obtained above, we obtain, for large m and some constant C′
6,

C′
2ν(m)r̂

(d−1)/2
m (u) exp(−λ(Rα

ν(m)(c) − αr̂m(u)Rα−1
ν(m)(c)))(R

α−1
ν(m)(c))

−(d+1)/2

≤ C′
6

(log2(ν(m)))(d−1)/2

(log(ν(m)))d+c/α−(1+ε)αuλ−1
.
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Using (3.27) and the above inequality in (3.26), we obtain, for large m,

P[Em,i] ≥ C′
3

(log2(ν(m)))(d−1)/2

(log(ν(m)))d−1−αελ/2 exp

(
−C′

6
(log2(ν(m)))(d−1)/2

(log(ν(m)))d+c/α−(1+ε)λαu−1

)

∼ C′
3

(log2(ν(m)))(d−1)/2

(log(ν(m)))d−1−αελ/2 , (3.28)

where the last relation follows since (1+ε)u < (αd+c−α)/α2λ. The events Em,i, 1 ≤ i ≤ σm,
are independent, since the balls B(x

ν(m)
i , r̂m(u)) are disjoint. So, by (3.23), (3.28), and the

inequality 1 − x ≤ e−x , we can find constants C′ and C′′ such that, for all large enough m,

P

[( σm⋃
i=1

Em,i

)c]
≤

σm∏
i=1

exp(− P[Em,i])

≤ exp

(
−C′σm

(log2(ν(m)))(d−1)/2

(log(ν(m)))d−1−αελ/2

)

≤ exp

(
−C′′

(
m

log m + log2 a

)d−1
(log m + log2 a)(d−1)/2

md−1−αελ/2

)

= exp

(
−C′′ mαελ/2

(log m + log2 a)(d−1)/2

)
,

which is summable in m. This proves (3.24).

Proof of Theorem 1.3. The proof is immediate from Propositions 3.1 and 3.2.

Appendix A. Proof of Lemma 2.1

In the definition of I (ρn, rn) = I (ρne, rn), set y = (ρn + rnt, rns), t ∈ (−1, 1), s ∈ R
d−1.

This gives

I (ρn, rn) = Ad

∫ 1

−1

∫
‖s‖2≤(1−t2), s∈Rd−1

exp(−λ((ρn + rnt)
2 + (‖s‖rn)2)α/2)rd

n ds dt. (A.1)

First consider the case in which 0 < α ≤ 2. Using the Taylor expansion, we obtain

((ρn + rnt)
2 + (‖s‖rn)2)α/2 = ((ρ2

n + 2rntρn) + (t2 + ‖s‖2)r2
n)α/2

= (ρ2
n + 2rnρnt)

α/2 + h1(n, s, t), (A.2)

where h1(n, s, t) = (α/2)r2
n(t2 + ||s||2)(ρ2

n + 2rnρnt + ξ)α/2−1 and ξ ∈ (0, r2
n(t2 + ||s||2)).

Since 0 < α ≤ 2, (t, s) ∈ B(0, 1), and 0 ≤ ξ ≤ r2
n , we have

0 ≤ h1(n, s, t) ≤ α

2
r2
n(t2 + ||s||2)(ρ2

n + 2rnρnt)
α/2−1 ≤ w1(n),

where

0 ≤ w1(n) = α

2
r2
n(ρ2

n − 2rnρn)
α/2−1 = α

2
r2
nρα−2

n

(
1 − 2rn

ρn

)α/2−1

→ 0, (A.3)
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since r2
nρα−2

n → 0, and rn/ρn → 0 as n → ∞. Again, from the Taylor expansion applied to
(ρ2

n + 2rnρnt)
α/2 in (A.2), we obtain

(ρ2
n + 2rnρnt)

α/2 = ρα
n + αrntρ

α−1
n + h2(n, t), (A.4)

where h2(n, t)= 1
2α(α − 2)(rntρn)

2(ρ2
n + ζ )α/2−2 and ζ ∈ (min(0, 2ρnrnt), max(0, 2ρnrnt)).

Since 0 < α ≤ 2 and −1 ≤ t ≤ 1, we obtain

w2(n) = α(α − 2)

2
r2
nρα−2

n

(
1 − 2

rn

ρn

)α/2−2

≤ h2(n, t) ≤ 0. (A.5)

Since r2
nρα−2

n → 0 and rn/ρn → 0, it follows that w2(n) → 0 as n → ∞. From (A.2)–(A.5),
we obtain

ρα
n + αrntρ

α−1
n + w2 ≤ ((ρn + rnt)

2 + (‖s‖rn)2)α/2 ≤ ρα
n + αrntρ

α−1
n + w1.

Using the above in (A.1), we obtain

Adrd
n e−λw1Gn ≤ I (ρn, rn) ≤ Adrd

n e−λw2Gn, (A.6)

where

Gn =
∫ 1

−1

∫
‖s‖2≤(1−t2), s∈Rd−1

exp(−λ(ρα
n + αrntρ

α−1
n )) ds dt, (A.7)

and w1 and w2, as defined in (A.3) and (A.5), respectively, converge to 0 as n → ∞.
If α > 2 then h2(n, t) ≥ 0, and we take w1 and w2 to be the upper and lower bounds of

h1(n, s, t) + h2(n, t), respectively. We then obtain (A.6) with w2(n) = 0, and

w1(n) = α

2
r2
n(ρ2

n + 2rnρn)
α/2−1[1 + (α − 2)ρ2

n(ρ2
n − 2rnρn)

−1]

= α

2
r2
nρα−2

n

(
1 + 2

rn

ρn

)α/2−1[
1 + (α − 2)

(
1 − 2

rn

ρn

)−1]
,

which converges to 0 by the conditions of the lemma. Now consider the integral in (A.7). First
make the change of variable u = t + 1 and then set v = λαrnρ

α−1
n u to obtain

Gn = θd−1e−λρα
n

∫ 1

−1
exp(−λαrnρ

α−1
n t)(1 − t2)(d−1)/2 dt

= θd−1 exp(−λ(ρα
n − αrnρ

α−1
n ))

∫ 2

0
exp(−λαrnρ

α−1
n u)u(d−1)/2(2 − u)(d−1)/2 du

= θd−1 exp(−λ(ρα
n − αrnρ

α−1
n ))(λαrnρ

α−1
n )−(d+1)/22(d−1)/2Mn, (A.8)

where

Mn =
∫ 2λαrnρα−1

n

0
e−vv(d−1)/2

(
1 − v

2λαrnρ
α−1
n

)(d−1)/2

dv ≤ �

(
d + 1

2

)
. (A.9)

We will show that the integral in (A.9) converges to �((d + 1)/2) as n → ∞, and also
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estimate the error in this approximation. Note that rnρ
α−1
n → ∞ as n → ∞. Write En =

Mn − �((d + 1)/2) = An − Bn, where

An =
∫ 2λαrnρα−1

n

0
e−vv(d−1)/2

[(
1 − v

2λαrnρ
α−1
n

)(d−1)/2

− 1

]
dv,

Bn =
∫ ∞

2λαrnρα−1
n

e−vv(d−1)/2 dv,

and

|An| ≤ sup
0≤v≤2λαrnρα−1

n

{
e−v/2

∣∣∣∣1 −
(

1 − v

2λαrnρ
α−1
n

)(d−1)/2∣∣∣∣
} ∫ ∞

0
e−v/2v(d−1)/2 dv.

Since (1 − x)a ≥ 1 − Cx, 0 ≤ x ≤ 1, with C = 1{0<a≤1} +a 1{a>1}, we obtain

0 ≤ 1 −
(

1 − v

2λαrnρ
α−1
n

)(d−1)/2

≤ Cv

2λαrnρ
α−1
n

, 0 ≤ v ≤ 2λαrnρ
α−1
n .

Therefore,

|An| ≤ C

2λαrnρ
α−1
n

sup
0≤v<∞

{ve−v/2}
∫ ∞

0
e−v/2v(d−1)/2 dv = C′

rnρ
α−1
n

,

where C′ is some constant. Furthermore, |Bn| ≤ exp(−λαrnρ
α−1
n /2)

∫ ∞
0 e−v/2v(d−1)/2 dv,

and, hence, decays exponentially fast in rnρ
α−1
n . Putting the above two estimates together, we

obtain

|En| ≤ C1

rnρ
α−1
n

→ 0 as n → ∞. (A.10)

The result now follows from (A.6), (A.8), and (A.10).
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