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COMMUTATIVE SYSTEMS OF COVARIANCE AND 
A GENERALIZATION OF MACKEY'S 

IMPRIMITIVITY THEOREM 

BY 

S. T W A R E Q U E A L I 

ABSTRACT. TWO results are obtained in this paper. The first is a 
generalization of the imprimitivity theorem of Mackey, when the 
associated projection-valued measure is replaced by a commutative 
positive operator valued measure. The second is a necessary and 
sufficient condition for such a system of covariance to possess an 
overcomplete, covariant family of coherent states. 

1. Introduction. In the recent mathematical and physical literature there 
have appeared several papers [1, 2, 3, 4, 5] on systems of covariance (also 
termed generalized systems of imprimitivity), and an associated generalization 
of the imprimitivity theorem of Mackey [6]. The technique used for such a 
generalization has so far been to embed the positive operator valued (POV)-
measure into a projection valued (PV)-measure in a minimally extended 
Hilbert space, in the sense of Naimark [7], and then to extend the correspond­
ing group representation also to this enlarged space. One ends up in this way 
once more with a Mackey system of imprimitivity on the enlarged space. It is 
then possible to characterize the original group representation as necessarily 
being a subrepresentation of an induced representation. Conversely, it can be 
shown that every subrepresentation of an induced representation gives rise to a 
system of covariance. 

In this paper we look at a somewhat different type of a generalization of the 
Mackey imprimitivity theorem, in the special case where the POV-measure 
associated to the system of covariance is commutative. We have proved 
elsewhere [5] that every regular commutative POV-measure can be written 
uniquely, using Choquet's integral representation theorems, (cf. for example, 
[8]) as an integral over PV-measures. We use this result in the present note to 
characterize the associated system of covariance. Specifically, we prove that the 
corresponding group representation for each such system is one which is 
induced from a subgroup, and that the system both determines and is deter­
mined by a unique probability measure which is invariant under the action of 
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the inducing subgroup. This result is contained in Proposition 1. We also prove 
an allied result on the possible existence of densities for such a POV-measure 
and show that a commutative system of covariance does not admit a set of 
generalized coherent states in the sense of Scutaru [2], Proposition 2, unless 
the representing measure for the associated POV-measure in the system of 
covariance, is absolutely continuous with respect to the invariant group 
measure. 

2. Commutative systems of covariance; representing measures. Let X be a 
metrizable, locally compact topological space, 98 (X) the set of all Borel sets of 
X, G a metrizable locally compact topological group, W a separable Hilbert 
space and «SP(Sif) the set of all bounded operators on df£. Let E—>a(E) be a 
normalized POV-measure [2, 5] defined on 98 (X) and taking values in S£($C). 
Throughout this paper we shall assume that a is commutative, i.e., for all 
E, F G S 8 ( X ) , a(E) and a(F) commute. Let g-> Ï7g, geG, be a strongly 

continuous unitary representation of G on 'M. Let X be a transitive G-space 
[6] and let us denote the action of G on X by x »-> g [x], for g e G and x e X. 

DEFINITION 1. The pair {a, U} is said to form a commutative system of 
covariance if, for all geG and E e 9& (X) 

(2.1) t/ga(E)I/£ = a(g[E]). 

REMARK 1. As is well known, in the special case where a is a PV-measure, 
the pair {a, U} reduces to the usual Mackey system of imprimitivity. It has been 
common in the literature to impose a further continuity condition on the 
POV-measure a. This condition has then been used to continuously extend the 
representation 17 to a canonically enlarged Hilbert space. However, as shown 
in [3] this condition is always satisfied, and hence is redundant. 

Let sd(a) be the commutative von Neumann algebra generated by the 
operators a{E), for all EeS8(X), and denote by Mi(X; sd(a)) the set of all 
POV-measures b defined on 98(X), such that b(E)eM(a) for all Eeââ(X) , 
and which satisfy the normalization condition, b(x) = I ( = identity operator on 
W). It has been shown in [5] that Mi(Xi si{a)) has a natural topology under 
which it is compact and convex. Furthermore, the set of its extreme points @ is 
a Gs, and consists of all the PV-measures in it. The following theorem, which 
has been proved in [5], will be used in the sequel. 

THEOREM. If a is a normalized, regular, commutative POV-measure defined 
on the Borel sets of the metrizable, locally compact space X, there exists a unique 
probability Borel measure v carried by ©, such that, for all E E ^ ( X ) , 

(2.2) a(E)= f P(E)dv(P) 
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the integral converging weakly. The measure v is unaltered if we replace © by 
any larger set ©' (=^@) of PV-measures. 

Let Coo(X) denote the commutative C*-algebra (under the sup norm) of all 
bdd. complex continuous functions which vanish at infinity. For any fe CC)0(X), 
let 

(2.3) a(/) = f f(x)da(x) 

and let s£c(a) be the commutative C*-algebra of operators in ££($£) generated 
by the a(/)'s, for all fe CUX). Then it follows from (2.1) and the continuity of 
the action x »-» g[x] of G on X that both the algebras sic(a) and si (a) are left 
invariant by G, i.e., for all geG, 

(U,Mc(a)Ut = Mc(a) 

[Ugsd(a)U^ = si(a) 

It can then be proved [5] that sic(a) is contained densely, in the weak operator 

topology, in sd(a). If Y denotes the spectrum of sic(a), the following state­

ments hold [9, 10]: 
1) There exists an algebraic isometry 

i:sic{a)^CJX) 

which is bijective, and which can be extended to 

i : ^ ( a ) ^ L ° ° ( Y , A ) , 

where À is a basic measure on Y This latter algebraic isometry is also bijective 
and if u eL°°(Y, A) is the image of A esi(a) under i, then 

||A|| = EssSup|w(y)| 
y e Y 

2) The action (2.1) of the group G induces an action on Y, making it into a 
homogeneous G-space. Let us denote this action by y •-> g[y], (g, y)e G'X Y, 
and assume that it is transitive. Then there exists a closed subgroup M of G for 
which the topological homeomorphism 

(2.5) Y = G/M 

holds, and the measure À is quasi-invariant under the action of G. Hence 

(2.6) f u(g[y]) dk(y) = f w(y)f(g, y) dA(y), 

where u is an integrable Borel function on Y and £ is the usual Radon-
Nikodym derivative [9] for the quasi-invariant measure A. 
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3) The representation g »-» Ug is induced [6] from a unitary representation 
m »-» V(m) of M. 

DEFINITION 2. The commutative system of covariance {a, U} is said to be 
transitive if the action y »-» g[y] of G on Y = Spectrum [sdc(a)] is transitive. 

REMARK 2. Note that our definition of transitivity is different from that of 
[ 2 - 4 ] , where transitivity of the action x *-> g[x] of G on X is required. 

3. An extended imprimitivity theorem. The objective of this section is to 
prove in Proposition 1 our main result, which is an extended version of 
Mackey's imprimitivity theorem. 

PROPOSITION 1. Let g*-+Ug be a strongly continuous unitary representation of 
the metrizable, locally compact group G, on the separable Hilbert space %t, and 
let X be a metrizable, locally compact, homogeneous G-space. Then there exists 
a normalized POV-measure a on £$(X) for which {a, U} is a transitive com­
mutative system of covariance if and only if Ug is a representation which is 
induced from some subgroup M of G and there exists a probability measure v on 
£ft (X) which is invariant under M. Furthermore, given a, v is uniquely fixed and 
vice versa. 

Proof. Let g •-> (7g be induced from the unitary representation m >-> V(m) 
of M, acting on the Hilbert space %CQ, and let Y be as in (2.5). Corresponding 
to M, let 

(3.1) g = kgmg 

be the Mackey decomposition for any element geG, such that fcg eG, mge M. 
The coset representative kg e G/M is to be chosen in such a way that ke = e, the 
neutral element of G. Let 

j 3 : Y ^ G 

be the Borel section, for which, for all y e Y, 

(3.2) 0(y) = W 

Then, following [6] we write Vt in the form 

(3.3) ^ = ^ 0 ®L 2 (Y,A) 

and Ug as, 

(3.4) (U,ct>)(y) = B(g,y)<t>(g-1[y]), 

for all 4>effl, where the multiplier B(g, y) is given by 

(3.5) B(g, y) = K(g, y)]1 '2 V(mg_1 0 ( y ))- \ 

| as in (2.6) 
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Suppose now that v is a probability measure on 38 (X) which is invariant 
under M, i.e., 

(3.6) i/(m[JE]) = i/(E), 

for all EeSbÇX) and meM. For each X G X , and Eeâ8(X) , consider the 
operator PX(E) on $?, 

(3.7) (Px(E)4»)(y) = XE(/3(y)[x])^(y), 

where ^E is t n e characteristic function of the set E. It is then straightforward to 
check that for fixed x, E*->PX(E) is a PV-measure on 3if. Moreover, for fixed 
E, the function x »->XE(|3(y)M) is measurable. Hence consider 

(3.8) a(E)= I Px(E)dv(x), 

the integral being defined strongly. Once again, straightforward manipulations 
show that £ i - ^ a ( E ) is a normalized commutative POV-measure. Further­
more, {a, U} is a system of covariance. Indeed, by (3.4) and (3.7), for all <£> e 9i?, 

(l/ga(E)U*<«(y) = f dv(x)XE^(g'1[y])M)cf)(y) 

= I ^U)^E(g"1p(y)m-1
l3 (y )[x])c/)(y) 

Jx 

= ^(x)x(g-3(y)r1[E](m8 l l3(Y)[x])^(y) 
Jx 

Hence, since v is invariant under meM, 

(C/ g a(E) l /^) (y) = f di>(x)xg[E](|3(y)[x])<Ky) Jx 
so that 

^ a ( E ) U Î = a(g[E]). 

From the Theorem stated in Sec. 2 above, it follows that the POV measure a 
in (3.8) is uniquely determined by v. 

Next suppose that {a, U} is a commutative transitive system of covariance. 
Then, since the commutative von Neumann algebra sd(a) is invariant under the 
action of G (cf. (2.4)) and the spectrum Y of sd(a) is a transitive G-space, it 
follows from Takesaki's extension of Mackey's Imprimitivity Theorem to 
invariant von Neumann algebras [9], that g •-» (7g is induced from a unitary 
representation of M (where Y and M are related by (2.5)). The existence of 
the measure v, satisfying (3.8), is then established by Theorem 6 in [5], while 
its uniqueness follows again from the uniqueness of the representation 
(2.2). Q.E.D. 
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4. A result on coherent states. For the discussion in this section, we shall 
assume that X is a homogeneous space under the action of G, so that 

(4.1) X^GIH, 

for some closed subgroup H <= G. Also let 

(4.2) y.X^G 

be the Borel section, defined analogously to |8 in (3.2). We shall assume that X 
admits the invariant measure a. Let 5T($0| denote the set of all positive 
trace-class operators on ^t with unit trace. Furthermore, let x 0 e X be the 
element for which 

(4.3) y(x0) = e, 

so that for arbitrary xeX, 

(4.4) x = y(x)[x0l 

DEFINITION 3. A weakly measurable map x •-» px from X into ÏÏ{^€)X is 
called an overcomplete, covariant family of coherent states for the system of 
covariance {a, U} if 

(4.5) 1) I (<t>9px*)dcr(x) = (<l>,*li) 

for all faifreX 

(A~ 2 ) ^ g P x ^ g = Pg[x] 
(4.6) 

for all x eX and geG 

(4.7) 3) I Pxdcr(x) = a(E), 

for all E € â8(X), the integral converging weakly 
(hence strongly). 

We find in Proposition 2 below the necessary and sufficient conditions for a 
commutative system of covariance to possess an over-complete, covariant 
family of coherent states. 

In view of (4.4) and (4.6), we have, 

(4.8) Px = UyMpU%M, 

where we have written p for pXo. Also, since a is commutative, it follows from 
(4.7) that px commutes with px> for all x,x'eX, while (4.8) implies that the 
operators px all have the same spectrum, namely the spectrum of p. Addition­
ally, p being a positive trace class operator, its spectrum consists of a discrete 
positive sequence of points {an}n=o> converging to zero, and such that 

(4.9) t rp= £ an = l. 
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On the other hand, from the general theory of commutative von Neumann 

algebras [10] it follows that the spectrum Y of dc(a) is homeomorphic to 

{<xn}n=o (the latter being considered as a topological space with the obvious 

topology). Hence, Y consists of a convergent sequence {yn}n=o of real numbers. 

Also, 

(4.10) (p<Myn) = p(yn)<Myn) 

for all <j>e3K, and where p(yn) = an for all n. Next, for any x e X , there exists a 
positive valued function yn »-»px(yn) satisfying 

(px4>)(yn) = Px(yJ<Myn), 

and (in virtue of (3.4), (4.8) and (4.10)), 

(4.11) Px(yn) = p(7U)-1[yn]). 

We note, in addition, that (in virtue of (4.11) and (4.3)), for all heH, 

(4.12) UhPU*h = p 

Let v be the measure associated with a through (3.8). We then have: 

PROPOSITION 2. The commutative system of covariance {a, U} possesses an 
overcomplete, covariant family of coherent states x ^ p x // and only if the 
measure v has a continuous density f with respect to the invariant measure or on 
X, and the spectrum of s£c(a) is discrete. 

Proof. Suppose that for all E G S S ( X ) 

(4.13) v(E)= f f(x)da(x), 
JE 

where / is a positive, real, continuous function on X. Since v{X)= 1, 

(4.14) I f(x)da(x) = l 

and, since v is invariant under M, 

(4.15) f(m[x]) = f(x) 

for all me M and xeX. Now, from (3.7) and (3.8), for all <f>eX9 

(4.16) (a(E)ct>)(y) = f xEU)/0(y)"1[x])^>(y) da(x) 
Jx 

Hence, defining an operator p on 3if via 

(4.17) (p<t>)(y) = f(P(yr1[x0])<t>(y), 

it is easily checked (using (4.15), and the fact that x0 is stable under H) that p 
satisfies (4.12) and leads to a family of trace class operators px, satisfying (4.11). 
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Conversely, suppose a possesses such a coherent family of states x »-» px. 
Then (4.7) and (4.11) imply that, for all 4>e2£, 

(4.18) (a(E)4>)(y) = f xE(x)p(y(x)-1[y])ct>(y) da(x), 
•'x 

so that defining 

(4.19) f(x) = p(y(x)-\yo}), 

the result follows. Q.E.D. 
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