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Reflexive homology is the homology theory associated to the reflexive crossed
simplicial group; one of the fundamental crossed simplicial groups. It is the most
general way to extend Hochschild homology to detect an order-reversing involution.
In this paper we study the relationship between reflexive homology and the
C3-equivariant homology of free loop spaces. We define reflexive homology in terms
of functor homology. We give a bicomplex for computing reflexive homology together
with some calculations, including the reflexive homology of a tensor algebra. We
prove that the reflexive homology of a group algebra is isomorphic to the homology
of the Ca-equivariant Borel construction on the free loop space of the classifying
space. We give a direct sum decomposition of the reflexive homology of a group
algebra indexed by conjugacy classes of group elements, where the summands are
defined in terms of a reflexive analogue of group homology. We define a
hyperhomology version of reflexive homology and use it to study the Ca-equivariant
homology of certain free loop and free loop-suspension spaces. We show that
reflexive homology satisfies Morita invariance. We prove that under nice conditions
the involutive Hochschild homology studied by Braun and by Fernandez-Valéncia
and Giansiracusa coincides with reflexive homology.
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Introduction

Reflexive homology is the homology theory associated to the reflexive crossed sim-
plicial group. It is the most general way to extend Hochschild homology to detect
an order-reversing involution.

The study of involutive structures in algebraic topology has been very fruitful in
recent years with the development of real topological Hochschild homology [1, 18,
20, 21, 23, 44, 45|, real algebraic K-theory [19, 22, 43] and a renaissance in the
study of Hermitian K-theory [8-10].

In this paper we study the relationship between reflexive homology and the Cs-
equivariant homology of free loop spaces. The study of free loop spaces occurs
widely in topology and geometry. In topology they play an important role in string
topology [12] and topological Hochschild and cyclic homology [3, 60]. See also [13]
for more on both of these topics. In geometry, the free loop space is intimately
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connected with the study of closed geodesics on manifolds [54], [41]. See also [61]
for a survey of results in this area.

Crossed simplicial groups were introduced independently by Fiedorowicz and
Loday [31] and Krasauskas [47] in order to study equivariant homology. One way
of thinking about a crossed simplicial group is as the structure required to build
group actions into Hochschild homology in the same fashion as the cyclic homology
theory due to Connes [14] (see also [51]). Since their introduction, crossed simplicial
groups have been well-studied and have found applications in other areas such as the
categorification of monoids in symmetric and braided monoidal categories [36-38,
49, 63] and combinatorial models for marked surfaces with a G-structure [25].

A classification result [31, 3.6], [47, 1.5] tells us that any crossed simplicial group
occurs as an extension of a fundamental crossed simplicial group. These funda-
mental crossed simplicial groups are subobjects of the hyperoctahedral crossed
simplicial group [31, Section 3]: trivial; reflexive; cyclic; dihedral; symmetric; and
hyperoctahedral. Most of these crossed simplicial groups have been well-studied.
Whilst the associated homology theories have a range of interesting applications,
for the purposes of this introduction we will restrict ourselves to results about loop
spaces.

The homology theories associated to the trivial crossed simplicial group and
the cyclic crossed simplicial group are Hochschild homology and cyclic homology
respectively. These homology theories, when applied to the group algebra of a dis-
crete group, calculate the homology and the S'-equivariant homology of the free
loop space on the classifying space of the group respectively [51, 7.3.13]. Indeed,
the connections between the cyclic homology theory and free loop spaces is well-
established [6, 7, 11, 35, 46, 69]. The dihedral homology theory [48, 50] is used
to calculate the O(2)-equivariant homology of free loop spaces [24, 53, 68].

In spite of the fact that crossed simplicial groups and their associated homol-
ogy theories are well-studied, the reflexive crossed simplicial group appears only
ephemerally in the literature; usually only being considered insofar as it relates
to the dihedral crossed simplicial group. For example, Krasauskas, Lapin and
Solov’ev [48, Section 3] give a definition of reflexive homology in terms of hyper-
homology in order to obtain a dihedral version of Connes’ periodicity long exact
sequence. Spaliniski [66, Section 3] shows that the category of reflexive sets admits
a model structure that is Quillen equivalent to the category of Cs-spaces with the
fixed-point model structure and uses this as a tool for giving a discrete model
of O(2)-equivariant homotopy theory, which also arises from the dihedral crossed
simplicial group.

In this paper we study the reflexive homology theory in its own right. The
term ‘reflexive’ for this crossed simplicial group was first used in [47, Proposition
1.5]. As the homology theory associated to a crossed simplicial group, reflexive
homology is defined as functor homology over a small category which we will
denote ARCP. The structure of the indexing category AR can be thought of
as encoding an order-reversing involution compatible with a unital, associative
multiplication. In this sense, the reflexive homology theory offers the most gen-
eral framework for extending Hochschild homology to detect the action of an
involution.
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The paper is structured as follows.

In § 1 we define reflexive homology in terms of functor homology and use this to
define the reflexive homology of an involutive algebra over a commutative ring. We
provide the necessary background material on functor homology and Hochschild
homology and survey the results that currently exist in the literature.

In § 2 we define a bicomplex that can be used to calculate reflexive homol-
ogy. We use this to show that our functor homology definition coincides with the
hyperhomology definition of [48]. We also show that when working over a field of
characteristic zero, reflexive homology can be calculated using the quotient of the
Hochschild complex by the involution action.

In § 3 we define reflexive hyperhomology for chain complexes of left ARP-
modules in terms of hyper-derived functors and recall some important examples.

In § 4 we prove that reflexive homology satisfies Morita invariance. Explicitly, we
show that for an involutive algebra A, the reflexive homology of the involutive alge-
bra of (m x m)-matrices with entries in A is isomorphic to the reflexive homology
of A.

In § 5 we provide some computations. We calculate the reflexive homology of the
ground ring and describe degree zero reflexive homology for commutative algebras
with involution.

In § 6 we calculate the reflexive homology of a tensor algebra. We show that
this can be described in terms of the group homology of Cy with coefficients in
the Hochschild homology of the tensor algebra, as calculated by Loday and Quillen
[62]. As a consequence, we show that the reflexive homology of a tensor algebra
has a grading.

In § 7 we calculate the reflexive homology of a group algebra. We prove that
this is isomorphic to the homology of the Cs-equivariant Borel construction on
the free loop space of the classifying space of the group. By combining this with
the cyclic homology of a group algebra [51, 7.3.13], we show that the dihedral
homology of a group algebra is isomorphic to the homology of the O(2)-equivariant
Borel construction on the free loop space of the classifying space of the group.
Furthermore, we give a direct sum decomposition of the reflexive homology of a
group algebra, indexed over the conjugacy classes of the group, where the summands
are given in terms of a reflexive analogue of group homology.

In § 8 we use our reflexive hyperhomology to prove that we can calculate the Cs-
equivariant homology of certain free loop spaces and free loop-suspension spaces in
terms of the singular chain complex on certain Moore loop spaces.

Other constructions that build an involution into Hochschild homology exist in
the literature. Braun [4] introduced involutive Hochschild homology in order to
study involutive algebras and involutive A.,-algebras. The homological algebra of
this theory was developed by Fernandez-Valéncia and Giansiracusa [29]. In par-
ticular, they show that under nice conditions involutive Hochschild homology can
be described as Tor over an involutive analogue of the enveloping algebra. In § 9
we show that under these conditions there is an isomorphism between involutive
Hochschild homology and reflexive homology.

In § 10, we provide some exposition on how the structure of the reflexive crossed
simplicial group appears in the study of real topological Hochschild homology. In
particular, we observe that real simplicial objects in a category are precisely the
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same as reflexive objects in a category. An important example of this is the dihe-
dral nerve construction, which plays an important role in defining real topological
Hochschild homology.

Conventions

Throughout the paper we will let k£ be a commutative ring. An unadorned tensor
product symbol, ®, will denote the tensor product of k-modules. The category of
k-modules will be denoted by Mody. We will denote by Top the category of com-
pactly generated weak Hausdorff topological spaces. Let Top, denote the category
of based compactly generated weak Hausdorff topological spaces. We will usually
refer to a ‘topological space’ or a ‘based topological space’. When referring to a
weak equivalence of topological spaces we mean a m,-isomorphism. Several of our
results relate to free loop spaces so we will introduce notation for this here. Let £
denote the functor Maps(S!, —), which sends a based topological space X to the
space of unbased continuous maps S* — X.

1. Reflexive homology

In this section we recall the definition of the reflexive crossed simplicial group and
define its associated homology theory.

1.1. Functor homology and Hochschild homology

We start by recalling some constructions from functor homology, using Hochschild
homology as an example.

For a small category C there are abelian categories CMod = Fun(C, Mody)
and ModC = Fun(C°?, Mody). There is a tensor product

— ®c —: ModC x CMod — Modj

defined as the coend
CeOb(C)
G®cF:/ G(C) e, F(CO)

as in [55, Section 3|. It is well-known that this tensor product is right exact with
respect to both variables and preserves direct sums [62, Section 1.6]. The left derived
functors of this tensor product are denoted by TorS(—, —). When G = k*, the
constant functor at k, we write H,(C, F) = TorS (k*, F).

As an example, we can recover Hochschild homology of a simplicial k-module.
Recall the category A, whose objects are the sets [n] = {0, ..., n} for n > 0 and
whose morphisms are order-preserving maps [51, B.1]. If we take C = A° and a
simplicial k-module F': A°? — Modj, we recover Hochschild homology. One exam-
ple that we will be particularly interested in is studying k-algebras so we recall the
Loday functor.
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Let A be an associative k-algebra and let M be an A-bimodule. There is a functor
L(A,M): A’ — Mody

given on objects by [n] — M ® A®™ and determined on morphisms by

(ma1 ® as ® -+ @ ay) 1=0
OimRar® - Qap) =8 (MRa; @ Qaja41 @ - Ray) 1<i<n—1
(axm®@a; @+ @ anp_1) i=n
and
MR1aRa @ Qay) j=0

si(mP®a; @ Ray) = .
J( 1 ) {(m®a1®®a]®114®aj+1®®an) ]21

The chain complex associated to this simplicial k-module is the Hochschild complex
C,(A, M) and its homology is Hochschild homology, H H,(A, M). In particular we
have

HH, (A, M) = H, (A", L(A, M)) = Tor2®" (k*, L (A, M)).

1.2. Reflexive homology

An important source of functor homology theories come from crossed simplicial
groups, introduced independently by Fiedorowicz and Loday [31] and Krasauskas
[47].

In this paper we will study the homology theory associated to the reflexive crossed
simplicial group.

DEFINITION 1.1. Let R, = (1, | 72 = 1) = Cy for n > 0.

The family of groups {R,} forms a crossed simplicial group [31, Example 2],
whose geometric realization is Cs.

DEFINITION 1.2. The category AR has the sets [n] ={0, ..., n} for n>0 as
objects. An element of Homagr([n], [m]) is a pair (¢, g) where g € R, and ¢ €
Homa ([n], [m]). The composition is determined as follows. For a face map 6; €
Homa ([n], [n + 1]) we define ry41 00; = §,—; o1y, and for a degeneracy map o; €
Homa ([n], [n — 1]) we define 1, 0 0j = 0y j 0 Tp_1.

REMARK 1.3. The category AR also appears in [48, Section 1] with the notation
AXZ/2.

DEFINITION 1.4. Let F' € Fun(AR°?, Mody). We define the reflexive homology of
F to be HR,(F) = Tor>®" (k*, F), where k* € Fun(AR, Mody,) is the constant
functor at k.

We can extend the Loday functor to a functor £(A, M): AR°? — Mody, in two
different ways but first we require some definitions.
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DEFINITION 1.5. A k-algebra is said to be involutive if it is equipped with an anti-
homomorphism of algebras A — A of order two, which we will denote by a — a. In
other words, we equip A with a k-linear endomorphism which reverses the order of
multiplication and squares to the identity.

Following Loday [51, 5.2.1] we recall the notion of an involutive A-bimodule.
DEFINITION 1.6. Let A be an involutive k-algebra. An involutive A-bimodule is an
A-bimodule M equipped with a map m — m such that aymas = azmay for ay,
as € A.

ExAMPLE 1.7. Taking M = A gives one example of an involutive A-bimodule. If
A is equipped with an augmentation €: A — k we can also take M = k with the
trivial involution.

With these definitions we can extend the Loday functor to AR in two ways.

DEFINITION 1.8. Let A be an involutive k-algebra and let M be an involutive A-
bimodule. We extend the Loday functor L(A, M) to a functor

LY (A, M) : AR — Mod,,
by defining
Tm(MmM®a®---Qa,) =M, - Qar).

DEFINITION 1.9. Let A be an involutive k-algebra and let M be an involutive A-
bimodule. We define

HR (A, M) = Tor® " (&, £+ (A, M)) .

DEFINITION 1.10. Let A be an involutive k-algebra and let M be an involutive
A-bimodule. We extend the Loday functor L(A, M) to a functor

L™ (A, M) : AR’ — Mod,
by defining
rm(MRa @ - Ray)=—(MRa, - -Qay).

DEFINITION 1.11. Let A be an involutive k-algebra and let M be an involutive
A-bimodule. We define

HR; (A, M) = Tor® ™" (k*, £7 (A, M)).

REMARK 1.12. When we take M = A we will omit the coefficients from the notation
and write £*(A) and HRE(A).
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REMARK 1.13. These reflexive homology groups fit into long exact sequences with
the dihedral homology groups by [48, Proposition 3.1]. There exist long exact
sequences

-— HR}(A) — HD}(A) — HD;, ,(A) — HR! [(A) — ---
and
-— HR, (A) — HD, (A) — HD} ,(A) — HR, (A) — -

where the dihedral homology groups HD/(A) and HD; (A) are defined in [48,
Section 1]. Furthermore, as discussed in [51, 5.2], if the ground ring k contains Q
then the direct sum of these long exact sequences is Connes’ long exact sequence
connecting Hochschild homology and cyclic homology [51, Theorem 2.2.1].

REMARK 1.14. For an involutive k-algebra A, there is natural map HR}(A) —
HO,(A), where HO, denotes the hyperoctahedral homology theory of [39] and [30,
Section 2]. One can obtain this map by composing the map HR} (A) — HD} (A)
from the previous remark with the map HD,(A) — HO,(A) of [39, Subsection
3.3].

2. Biresolution

We begin this section by defining a biresolution of the k-constant right ARP-
module k*. Fiedorowicz and Loday [31, 6.7] give a general construction for such
a biresolution using the homogeneous bar resolution for a group [56, VIL.6]. The
bicomplex defined here is smaller, making use of the periodic resolution of the
group Cs. It is also worth noting that our bicomplex includes into the tricomplex of
Krasauskas, Lapin and Solov’ev [48, Section 2] for computing dihedral homology.

DEFINITION 2.1. We define a bicomplex C., . of right AR°?-modules as follows.
Firstly we set

Cp,q = k[Homar ([g], —)]

for all p, ¢ > 0.
The horizontal differential d: Cp g — Cp_1,4 for ¢ =2 0 and p > 1 is given by

1-r, ¢=0,3(mod4), p=1(mod2)
Je 1+r, g=1,2(mod4), p=1(mod2)
1+r, ¢=0,3(mod4), p=0(mod2)
1-r, g=1,2(mod4), p=0(mod2)

where the map rq is defined by pre-composition.
The vertical differential b: Cp g — Cp g—1 forp 20 and g > 1 is given by

q

b=> (~1);

=0

where the maps §; are defined by pre-composition.
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PROPOSITION 2.2. The bicomplex C., . of definition 2.1 is a biresolution of the
k-constant right AR°P-module k*.

Proof. Tt suffices to show that the bicomplex of k-modules obtained by evaluating
C « on each object [n] of ARP is a resolution of k.

We fix an object [n]. We observe that C), ,([n]) is a free k[C5]-module on the set
of generators Homa ([g], [n]) for each p > 0.

Consider the E'-page of the spectral sequence obtained by taking the horizon-
tal homology of the bicomplex C, ,([n]). The rows are exact complexes of finitely
generated k[Cs]-modules. Therefore, the E'-page is isomorphic to the complex

k [Homa ([+], [n])]

with differential b concentrated in the column p = 0. This is the complex associated
to the standard simplicial model of the n-simplex, which is acyclic. We deduce that
the E2-page of the spectral sequence is isomorphic to a copy of k concentrated in
bidegree (0, 0) as required. O

In the introduction we said that Krasauskas, Lapin and Solov’ev [48, Section 3]
had given a definition of reflexive homology in terms of hyperhomology. We now
demonstrate that the functor homology definition coincides with that definition.

PROPOSITION 2.3. Let F' € Fun(AR°P, Mody). The reflexive homology HR,(F) is
naturally isomorphic to the hyperhomology of the group Cy with coefficients in the
Hochschild complex Cy(F).

Proof. We observe that for F' € Fun(AR°P, Mody,), the Hochschild complex C (F)
is a complex of k[C3]-modules. Consider the bicomplex Cy » ®Ager F. On the one
hand, by definition, the homology of this bicomplex is H R, (F"). On the other hand,
it is a bicomplex of k-modules with the Hochschild complex C,(F) in the column
p = 0 such that the homology of row n for n > 0 is the group homology of Cs with
coefficients in F'([n]). In other words, it is a bicomplex of k-modules which computes
the hyperhomology of Cy with coefficients in the complex C, (F). O

PROPOSITION 2.4. Suppose that 2 is invertible in the ground ring. Let A be an invo-
lutive k-algebra and let M be an involutive A-bimodule. There exist isomorphisms
of graded k-modules

C.(A, M)
(1=7)

Proof. Consider the horizontal homology spectral sequences of the bicomplexes
of k-modules C, » @ager LT(A, M) and Cy 4 @agrer L™ (A, M). In each case, the
homology of the rows of the bicomplex is H,(Cy, M ® A®™), for the given actions
of Cy on M ® A®™. Since 2 is invertible in k and Cy is finite, H, (Co, M @ A®™) =0
for n > 1. Therefore, in each case, the E'-page consists of the Hochschild complex
with the Cy action factored out, concentrated in the column p = 0. (]

HR}(A, M)~ H, (

) and HR; (A, M) = H, (C(AM))

(1+7)
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3. Reflexive hyperhomology

We can extend the definition of reflexive homology to chain complexes of left A R°P-
modules by defining reflexive hyperhomology. This is a property common to all
crossed simplicial groups, as described in [24, Section 3] for example. We define
reflexive hyperhomology in terms of hypertor functors (see [70, 5.7.8] for instance)
over the category AR°P. In our case, these can be described explicitly as the hyper-
derived functors of the tensor product k* @ A gor — where k* is the k-constant right
AR°P-module.

DEFINITION 3.1. A non-negatively graded reflexive chain complex is a functor
F: AR? — ChCpx, where ChCpx, is the category of non-negatively graded chain
complexes of k-modules. Equivalently, a reflexive chain complex is a non-negatively
graded chain complex of left AR°P-modules.

ExXaMPLE 3.2. One example of a reflexive chain complex arises by composing
a reflexive topological space X: ARP — Top with the singular chain complex
functor S,(—, k).

EXAMPLE 3.3. Another important example of a reflexive chain complex arises from
involutive DGAs. Recall that a DGA (differential graded algebra, or sometimes chain
algebra), (A, d), is a graded k-algebra, A, equipped with a k-linear map d: A — A
satisfying the following properties. The map d has degree —1, it squares to zero and
it satisfies the graded Leibniz rule: d(ab) = (da)b + (—1)!*la(db), where |a| denotes
the degree of a homogeneous element a.

An involutive DGA, (A4, d, i), is a DGA, (A, d), equipped with a chain map

i: (A, d) — (A, d),
written i(a) =@ The map i must square to the identity and satisfy ab =
(—1)lel1¥i3g,
Given an involutive DGA (A, d, i), we can form its reflexive bar construction,
T'(A, d, i), using the simplicial and reflexive structure described in [24, Section 3].

The n-simplices are given by (A, d)®™*D. Let a = ag ® - -- ® a,,. The face maps
are given by

05(a) = ap @+ @ ailip1 @+ X ap 0<isn—1
! (=1)lanllaolt+lanalg gy @ a1 @ - @an_1 i=n.

The degeneracy maps are given by
Sj(a):a0®"'®aj®1®aj+1®...®an

for 0 < j < n.
The reflexive operators are defined by

r(a) = (—1)||a||'n("71)/2a70®a7n® eQar

—1
where [|a|] = 3717, Z;'L:i-i-l lag| - |aj].
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This is another example of a reflexive chain complex.

One example that will be of particular interest in § 8.2 is the following. If M is an
involutive topological monoid, the singular chain complex S, (M, k) is an involutive
DGA with the involution induced from the one on M.

We now define reflexive homology of a chain complex of left A R°P-modules

DEFINITION 3.4. Let ki denote the right AR°P-module k* thought of as a chain
complex concentrated in degree zero. Let F, be a non-negatively graded chain com-
plex of left AR°P-modules. For each n > 0, we define the n'* reflexive homology of
F, by

HR, (F,) = Tor2E" (ki F,).

REMARK 3.5. We can use the biresolution of definition 2.1 to construct a chain
complex for computing the reflexive homology of a reflexive chain complex. Since
the chain complex £ is concentrated in degree zero, the tensor product of chain
complexes kg @aror Fy is equivalent to applying the functor £* @apre»r — to the
chain complex F, degree-wise. Replacing k* by the biresolution of definition 2.1
we obtain a chain complex of bicomplexes, that is, a tricomplex. Applying the
total complex functor for tricomplexes we obtain a chain complex which calculates
Tor5 B (ki F)).

REMARK 3.6. We observe that if we consider a left A R°P-module as a chain complex
concentrated in degree zero then the reflexive hyperhomology given in definition 3.4
coincides with the definition of reflexive homology given in definition 1.4.

4. Morita invariance

In this section we prove Morita invariance results for reflexive homology. It is
a remarkable property of Hochschild homology [17, Theorem 3.7] (see also [51,
Section 1.2]), cyclic homology [52, Corollary 1.7] and dihedral homology [48,
Theorem 3.4] that the given homology theory applied to the algebra of (m x m)-
matrices with entries in a k-algebra A, involutive in the case of dihedral homology,
is isomorphic to the homology of A. We prove that reflexive homology shares this
property. We also prove a more general result. We show that if two algebras are
Hermitian Morita equivalent and satisfy a compatibility condition, then they have
the same reflexive homology. It is worth remarking that Morita invariance is not a
property shared by every homology theory associated to a crossed simplicial group.
For example, it is shown in [2, Remark 88] and [40, Corollary 5.11] that neither
symmetric homology nor hyperoctahedral homology satisfy Morita invariance.

4.1. Morita equivalence and Hermitian Morita equivalence

We begin by recalling the definition of Morita equivalence for two (not necessarily
involutive) k-algebras.

DEFINITION 4.1. Two wunital k-algebras, A and B, are said to be Morita
equivalent if there is an A-B-bimodule P and a B-A-bimodule @Q together
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with an isomorphism of A-bimodules, u: P®p Q — A, and an isomorphism of
B-bimodules, v: Q @ P — B.

The concept of Morita equivalence can be extended to involutive k-algebras. This
notion is known as Hermitian Morita equivalence. This was introduced by Frolich
and McEvett [33, Section 8] (see also [42] and [27, Section 2]).

DEFINITION 4.2. Let A and B be two unital, involutive k-algebras. We say that A
and B are Hermitian Morita equivalent if:

e A and B are Morita equivalent in the sense of definition 4.1;

e the isomorphisms u and v satisfy
—ulp@q)p =pv(g@p’) and

—v(g®p)d =qulp@q)
forallp,p' € P and q, ¢ € Q;

e there exists an additive bijection 0: P — Q) satisfying
— O(apb) =b0(p)a for alla€ A, b€ B andp € P,

—u(peo(p') =u(p ®0(p)) and
—v(p) @p) =vOp)p).

REMARK 4.3. It follows from the fact that v and v are isomorphisms that there

exist sets of elements in P, say {p1, ..., pi} and {p, ..., p,,}, and sets of elements
in @, say {q1, ..., ¢} and {¢}, ..., g}, }, such that
l m
U(ij®qj>:1,4 and v Zq;@pﬁc =1p5.
i=1 j=1

DEFINITION 4.4. Let A and B be two unital, involutive k-algebras. Suppose that A
and B are Hermitian Morita equivalent. Suppose that the additive bijection 6 sends
the set {p1, ..., pi} to the set {qi, ..., q}. In this case we say that A and B are
compatible.

4.2. The case of involutive matrix algebras

In this subsection we prove that reflexive homology satisfies Morita invariance
for matrix algebras.

Let A be an involutive k-algebra. The algebra of (m x m)-matrices with entries
in A, M,,(A), is an involutive k-algebra with involution defined by (z;;) = (T};).
In other words, we take the transpose and apply the involution of A entry-wise.

For n > 0, we define a k-module morphism

Tr,, : M7n(A)®(n+1) — A®(M+D)

by
Tr,, (X(0)®...®X(”)) = Z 332(-231 ®.€C(1) ®"'®$(n)

i1%2 int0
1<ig,...,in <M
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where xz@ is the element in the " row of the j" column of the matrix X(*). As

noted in [48, Section 3] this map is compatible with simplicial structure and the
involution operators r,, for n > 0. It follows that there are induced maps

Tr.: HR; (M (A)) — HR; (A)
on reflexive homology for all m > 1 and n > 0.

THEOREM 4.5. The morphism
Tr,: HRE (M,,(A)) — HRE(A)

on reflexive homology induced from the trace map is an isomorphism for all m > 1
andn > 0.

Proof. By proposition 2.3 we can consider Tr, as a morphism on hyperhomology. By
the Morita invariance for Hochschild homology the trace maps induce isomorphisms
HH.(Myn(A)) — HH,(A).

Consider the bicomplexes Cy  @Agrer LT (M, (A)) and C, » @apger LT (A). The
isomorphisms HH, (M, (A)) — HH,(A) ensure that the vertical homology spec-
tral sequences for these bicomplexes have isomorphic E'-pages. The result now
follows from the comparison theorem [70, 5.2.12]. O

4.3. A more general result

In this section we prove a more general Morita invariance statement for reflexive
homology. We show that if two algebras are Hermitian Morita equivalent and are
compatible in the sense of definition 4.4, then they have the same reflexive homology.

DEFINITION 4.6. Let A and B be two unital, involutive k-algebras. Suppose that A
and B are Hermitian Morita equivalent, so there exist bimodules P and Q and an
additive bijection 0: P — Q as in definitions 4.1 and 4.2. Let M be an involutive
A-bimodule. We define an involution the the B-bimodule Q ® 4 M ® 4 P by

q@mep="0(p)me 0~ (q).

THEOREM 4.7. Let A and B be two unital, involutive k-algebras. Suppose that
they are Hermitian Morita equivalent and that they are compatible in the sense of
definition 4.4. Let M be an involutive A-bimodule. There exist natural isomorphisms
of graded k-modules

HRE(A,M) = HRE(B,Q®s M @4 P),
where Q @4 M @4 P is equipped with the involution of definition 4.6.
Proof. In [51, 1.2.7], Loday defines a chain homotopy equivalence
Vet Co(A, M) — C (B,Q ®a M ®4 P)

between the Hochschild complexes. One can check that this is compatible with
the involutions on both complexes, yielding a Cs-equivariant chain homotopy
equivalence, from which the result follows. O
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5. Calculations

In this section we provide some computations of reflexive homology. We can cal-
culate the reflexive homology of the ground ring in two different ways; using the
theory of crossed simplicial groups and direct computation from our bicomplex
in the previous section. We demonstrate that our calculations agree with what is
already known when working over a field of characteristic zero. We also give explicit
descriptions of reflexive homology in degree zero for a commutative algebra.

PROPOSITION 5.1. There is an isomorphism of graded k-modules HR} (k) =
H,(BCs, k).

Proof. Let T: AR°? — Set denote the trivial reflexive set. Explicitly, 71" sends every
object in AR°P to the one point set {*} with trivial involution. Using [31, Corollary
6.13] we have

HR} (k)= HR} (k[T)) =2 H, (ECy x¢, |T|,k) = H, (ECy x¢, *,k) = H, (BCy, k)

as required. O

We can also obtain this calculation directly from the bicomplex defined in the
previous section.

PROPOSITION 5.2. Let k be a commutative ring with trivial involution. Then

. " k/2k
HRI(IC) = k/2]€ n odd HR; (k?) ~ n even
2k n odd
ok n > 0 even

where ok denotes the 2-torsion of k.

Proof. We will prove the result for HR;' (k). The result for HR,, (k) is similar.
Consider the bicomplex Cy , ®ager LT (k). Since the Hochschild homology of k is
isomorphic to k concentrated in degree zero [51, 1.1.6], taking the vertical homology
yields the complex
0k Lk rlrlrd. ..

in row zero. The result now follows by taking homology of this complex. O

COROLLARY 5.3. If 2 is invertible in the ground ring then HR} (k) is isomorphic
to k concentrated in degree zero and HR, (k) is zero in all degrees.

Proof. If 2 is invertible in k then the quotient module k/2k and the 2-torsion ok
are both zero and the result follows from proposition 5.2. g

REMARK 5.4. Recall from remark 1.13 that when we work over a field of character-
istic zero, the direct sum of HR} and H R is isomorphic to Hochschild homology,
HH,. We note that our calculations for the ground ring k& agree with this. When
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k is a field of characteristic zero we see that H R} (k) & H R} (k) is isomorphic to k
concentrated in degree zero, which is isomorphic to HH, (k) [51, 1.1.6].

THEOREM 5.5. Let A be a commutative k-algebra.

e If A has the trivial involution then HR§ (A) = A and HRy (A) = A/2A.

e If A has a non-trivial involution then H R (A) is isomorphic to the coinvariants
of A under the involution.

Proof. One can deduce these results directly from the bicomplex that computes
reflexive homology. O

6. Reflexive homology of a tensor algebra

In this section we calculate the reflexive homology of a tensor algebra. Let M be
a k-module and consider a module automorphism m +— 7 which squares to the
identity. The identity automorphism is an example of such.

Consider the tensor algebra

TM = é Me"
n=0

where M®° = k. The product is given by concatenation, see [51, A.1] for instance.
The tensor algebra has an involution determined on the n'” summand by

r(mi @ @my) =M, M,1® @My 7).

Note that the involution on k is trivial.
Taking A =TM in the definition of the Loday functor £*(A), we obtain an
induced involution on £*(A)([n]) = (TM)®"*+! given by

r(apg® -+ ®ap) =0 @Gy @ -+ @@y,
where each A; € T'M.

THEOREM 6.1. Let M be a k-module with a module automorphism m — m which
squares to the identity. There is a natural isomorphism of k-modules

" | H.1 (Co, HH(TM)) @ H,, (Co, HHo(TM)) n > 1.

Proof. Consider the reflexive bicomplex for 7M. By taking the vertical homology
we obtain the E'-page of a spectral sequence whose entries are the Hochschild
homology groups of T'M with horizontal differentials induced from 1 + r.
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Loday and Quillen [52, Lemma 5.2] have calculated the Hochschild homology of
a tensor algebra as follows:

M®a
D=0 =) n=0
HH,(TM) = (@ o, (M®)" n=1
0 otherwise,

where (M®7)" are the invariants of the action of the cyclic group Cy on M®? and
M®4/ (1 — 1) are the coinvariants.

Therefore the E'-page of our spectral sequence is concentrated in rows zero and
one as follows:

HH(TM) < HH\(TM) <+~ HH,(TM) < HH(TM) <= ...

HHy(TM) <=~ HHy(TM) +— HHy(TM) +—— HHy(TM) «++— ...
An argument similar to [53, Lemma 2.2.1] tells us that in row zero we have
rm - @my) = (M1 @M - @ Ma)
and in row one we have
r(mi@---@mg) =— (M QMg ® - M3) .

Furthermore, an argument similar to [53, Lemma 2.3.2] tells us that the differentials
on the E2-page are zero and so the spectral sequence collapses.
Taking homology on the E'-page yields

E}, = H,(Co, HHy(TM)) and E., = H,(Cy, HH,(TM))

with all other Ei,q = 0, from which we can read off the result. O

REMARK 6.2. We deduce from the theorem that the reflexive homology of a tensor
algebra has a grading induced from the grading on the Hochschild homology. In
homological degree zero, for ¢ > 0, we have

HR§ (TM), = Hy (02, <]1W_®i>> .

Note that when ¢ = 0 we have
HR{ (TM), = Hy (Ca, k) & Ho(BCa, k) = HR (k)
and when ¢ = 1 we have
HR§ (TM), = Hy (Co, M).
In homological degree p we have

HR}(TM)o = H, (Cy, k) = Hy(BCy, k) = HR} (k)
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and
M®a .
HR}(TM), = H, (C% <1_t>) © Hy (02, (M®9) )
for ¢ > 1.

We note that, as mentioned above, our grading on the reflexive homology of
a tensor algebra is induced from the grading on the Hochschild homology of a
tensor algebra. For cyclic homology [52, Proposition 5.4] and dihedral homology
[63, Theorem 2.1.1] there is a grading induced directly from the grading on a tensor
algebra. In both of these cases this follows from analysis of the norm map N (see
[51, 2.1.0] for instance) which we do not have in the reflexive case.

7. Reflexive homology of a group algebra

In this section we will study the reflexive homology of the group algebra of a
discrete group. We will recall simplicial models for the bar construction and for the
classifying space on a group. We will show that these extend to reflexive sets. We
will show that the reflexive homology of a group algebra is isomorphic to the Ca-
equivariant homology of the free loop space on BG. As a consequence we will deduce
the analogous result for dihedral homology, namely that the dihedral homology of
a group algebra is isomorphic to the O(2)-equivariant homology of the free loop
space on BG. We will then show that we can decompose the reflexive homology of
a group algebra in terms of the conjugacy classes of the group.

These results fit into a broader story of using the homology theories associated
to crossed simplicial groups to calculate interesting information about loop spaces.
Hochschild homology and cyclic homology of k[G| are known to coincide with the
homologies of LBG and the S'-equivariant Borel construction on £LBG respectively
[51, 7.3.13]. The symmetric and hyperoctahedral theories are known to compute
the homology and Cs-equivariant homology of certain infinite loop spaces on BG,
see [2, Corollary 40] and [39, Theorem 8.8].

The decomposition we provide fits into a bigger picture of decomposing homology
theories associated to crossed simplicial groups in the case of a group algebra.
Results of this form were proved by Burghelea [7, Theorem 1] for Hochschild and
cyclic homology (see also [51, Theorem 7.4.6]) and by Loday [50, Proposition 4.9]
for dihedral homology.

7.1. Bar construction and classifying spaces

We recall some simplicial models for the bar construction [51, 7.3.10] and
classifying space [51, B.12] of a group and extend them to reflexive sets.

DEFINITION 7.1. Let G be a discrete group. For n >0, let I',,G = G"T', the (n +
1)-fold Cartesian product. The face maps are defined by

o ) (g0s--+59i-1,9iGit1,Git2, -5 9n) 0<i<n—1
i(goa 7gn)_ .
(9n90, 915> Gn—1) i=n.
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The degeneracy maps insert the identity element of G into the tuple. We extend
this to a reflexive set by defining

Tn (907"'7977.) - (galaggla"'agfl) .
REMARK 7.2. Loday has already shown that I',G is a cyclic set, by defining

tn (907"'7gn) = (gn7g0>"'7gn71) .

One can easily check that the reflexive structure and the cyclic structure are com-
patible, giving I',G the structure of a dihedral set. The fact that the reflexive
structure that we have defined is compatible with the cyclic structure of I', G is key
to proving Theorem 7.7.

DEFINITION 7.3. Let B,,G = G"™ for n > 0. The face maps are given by

(92, +59n) i=0
0i (g15---9n) = (91, -, GiGi+1s---»0n) 1<i<n
(gl;---agn—l) ’L:’n

The degeneracy maps insert the identity element into the tuple. We can extend this
to a reflexive set by defining

Tn(gla”'?gn) = (grzla'~'7g;1)'

DEFINITION 7.4. Let G be a discrete group. We define the reflexive homology of G
to be

HR} (G,k) = HR} (k[B.G)).

REMARK 7.5. Note that we have a projection map, which is a map of reflexive
sets,

p: I',G — B,.G,
determined in degree n by (go, ..., gn) = (g1, -+, gn)-

REMARK 7.6. As for I',G, B,G has a cyclic structure. This is given by

—1
tn(glaagn):((glgn) 7917---7971—1)7

as described in [51, 7.3.3] (with z = 1) for example. This is compatible with the
reflexive structure on B,G, as described in [24, 2.3], giving B, G the structure of a
dihedral set.

7.2. Reflexive homology of a group algebra

Let G be a discrete group. In this subsection we prove that the reflexive homology
of a group algebra k[G] is isomorphic to the homology of the Cy-equivariant Borel
construction on the free loop space of BG.
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THEOREM 7.7. Let G be a discrete group. Let k|G] denote its group algebra and let
BG be its classifying space. Let LBG denote the free loop space on BG. There is
an isomorphism of graded k-modules

HR} (K[G)) & H, (EC, x¢, LBG, k),

where the Cy-action on LBG is induced from the reflexive structure of B,G and
reversing the direction of loops.

Proof. In [51, 7.3.11], Loday shows that there is a homotopy equivalence
v: [TwG| — LBG. This is done by considering the adjoint functors S! x — and
L(—). In particular, there is a map

St x |T.G| — |T.G| — |B,G]

where the first map is induced from the cyclic structure of I',G, as described in
[31, Section 5], and the second is induced from the projection map p: I',G — B,G
described in remark 7.5. The adjoint map is -y, the necessary homotopy equivalence.

We extend this to a Cy-equivariant homotopy equivalence. As noted in remark
7.2, the reflexive structure of I'yG is compatible with the cyclic structure. Explic-
itly, the circle S* is the geometric realization of the cyclic crossed simplicial group,
{C,}, by [51, 6.3.6]. The level-wise involution determined by sending the generator
of the cyclic group to its inverse induces a Cy-action on the geometric realization.
Similarly, the reflexive structures on I',G and B,G induce Cs-actions on the real-
izations. Note that the involution on geometric realizations also flips the simplex.
One easily checks that with these definitions the map

St x |G| — |B.G|
is Cy-equivariant. Under the adjunction between S' x — and £(—) this yields that
v: |[TLWG| — LBG

is a Cy-equivariant map, with the involution on LBG given by applying the involu-
tion on BG and reversing the direction of loops. Combining this with [51, 7.3.11],
we see that v is a Cy-equivariant homotopy equivalence.

Using [51, 7.3.13] and [31, 6.13], we have

HR} (k]G)) = H, (ECy x¢, [T.G|) = H, (ECy x¢, LBG)

as required. O

Using the fact that the reflexive structure that we have described is compatible
with the cyclic structure of [51, 7.3.11] we can deduce the analogous result for

dihedral homology.

THEOREM 7.8. Let G be a discrete group. Let k|G| denote its group algebra and let
BG be its classifying space. Let LBG denote the free loop space on BG. There is
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an isomorphism of graded k-modules
HD} (k[G]) = H, (EO(2) Xo(2) LBG, k) ,

where the O(2)-action on LBG is induced from the dihedral structure of B,G and
the action of O(2) on loops.

Proof. Since the reflexive structure of I'yG and B,G used in Theorem 7.7 is com-
patible with the cyclic structures used in [51, 7.3.11], we can deduce that v is an
O(2)-equivariant map, from which the result follows. O

7.3. Decomposition by conjugacy classes

In this subsection we prove that the reflexive homology of the group algebra of a
discrete group can be decomposed into a direct sum indexed by the conjugacy classes
of the group, where the summands are defined in terms of a reflexive analogue of
group homology. We prove that under nice conditions, for example when the group
is abelian, we can give a simple description of the summands.

DEFINITION 7.9. Let G be a discrete group.

e Let k[G] denote k|G| considered as a right k[G]-module with the action hx g =
-1
g~ hg.

e Let (G) denote the set of conjugacy classes of G. We will choose a representative
z in each class and denote the class by (z).

e for ze€ G we denote by G, the centralizer of z in G, that is, G, =
{g€G:gz=2zg}.

DEFINITION 7.10. For a group G and a right k[G]-module M we denote by
C.(G, M) the Filenberg-Mac Lane complex [51, C.2, C.5]. We will denote an
element in degree n by h ® [g1, ..., gnl-

In order to prove our decomposition of the reflexive homology of a group algebra
we need to recall certain reflexive sets. The involutions defined here can be found

in the proof of [50, Proposition 4.9].

DEFINITION 7.11. Let G be a discrete group.

e We define the action of r, on k[G]®"*! to be determined by
Tn (g(h cee 7gn) = (_1)n(n+1)/2 (96179517 v 79;1) :

e Let M = k[G]. The action of r,, on Cp,(G, M) is given by

r (h® g1, ga]) = (=1)"TV2 (g g @ (g0t 91 t])

where g = g1+ gn-
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e We define the action of v, on

D C.(G.k[G/G)

(2)€(G)
by
rn (W@ g1, ga]) = (=1)"" 2 (g7 g @ (gt g t])

where g = g1+ Gn.-

THEOREM 7.12. Let G be a discrete group. For each n > 0 there is an isomorphism
of k-modules

HR; (KG]) = €D HR] (G.K[G/G.]).
(2)€(@)

Proof. Let M = k[G]. Recall the Mac Lane isomorphism
®: k[G]" — C, (G, M)

from [51, Section 7.4] for example. The Mac Lane isomorphism is compatible with
the actions described in definition 7.11. Recall from the proof of [50, Proposition
4.7] that there is an isomorphism of right k[G]-modules

& kG - P kGG
(z)€(G)

This isomorphism is also compatible with the actions described in definition 7.11
We therefore have isomorphisms

KG 2 0 (G, M) S @D Ca(GLRIG/GL)
(2)€(G)

compatible with the reflexive k-module structures and the result follows upon taking
reflexive homology. O

COROLLARY 7.13. If G is an abelian group then

HR] (k[G)) = @ HR} (G, k).
G|

Proof. If G is abelian, then each element z € G has its own conjugacy class and the
centralizer GG, is isomorphic to G. O

For non-abelian groups we can also identify some of the summands in the
decomposition.

PROPOSITION 7.14. Let G be a discrete group. The (1)-component of HR} (k[G])
is isomorphic to HR} (G, k).
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Proof. The centralizer G is equal to G so the reflexive homology of C\ (G, k[G/G1])
is the reflexive homology of C, (G, k). O

PRrROPOSITION 7.15. Let G be a discrete group. Let z € G be a central element of
order two. The (z)-component of HR} (k[G]) is isomorphic to HR} (G, k).

Proof. Recall from the proof of [50, Proposition 4.7] that there is a quasi-
isomorphism

kE®C,(G,) — Ek[G/G.]® C,(G)

for any z € G. When z is a central element of order two this quasi-isomorphism
is compatible with the reflexive structure described in definition 7.11, whence the
result. O

8. Reflexive homology of singular chains on a Moore loop space

Goodwillie [35, Section V] proved that for a sufficiently nice space X, the cyclic
homology of the singular chain complex of the Moore loop space of X is isomorphic
to the S'-equivariant homology of the free loop space on X. Dunn [24, 3.6] proved
that this result can be extended to a result for the dihedral homology theory and
O(2)-equivariant homology. In this section we will prove the analogous theorem for
the reflexive homology theory and Cs-equivariant homology. We will also provide
a Cy-equivariant analogue of Lodder’s result for free-loop suspension spaces [53,
3.3.3].

8.1. Locally equiconnected spaces

In this brief subsection we recall what it means for a space to be locally equicon-
nected, commonly abbreviated to LEC. Our results rely on the work of Dunn [24],
which requires this assumption in relation to Milnor’s simplicial group model for
loop-suspension spaces (see [34, 59]). Local equiconnectivity was introduced by Fox
[32] as a strengthened form of local contractibilty and a weakened form of the abso-
lute neighbourhood retract property. There are several equivalent definitions but
we will use the definition in terms of Hurewicz cofibrations. The reader is directed to
[67], where the definition originally occurred, and [5, Chapter VII], for a textbook
account of Hurewicz cofibrations.

DEFINITION 8.1. A topological space is said to be locally equiconnected if the
diagonal map X — X X X is a Hurewicz cofibration.

ExaAMPLE 8.2. The notion of LEC space also appears in work of Serre, where it is
called ULC [64, p. 490]. All CW-complexes are LEC spaces [26, Corollary I11.2].

8.2. Moore loops and free loop spaces

We begin by recalling the definition of the Moore loop space.
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DEFINITION 8.3. Let M: Top, — Top, denote the Moore loop functor. For X €
Top, with basepoint x, the topological space M(X) is the subset of

Homep, ([0,00),X) x [0, c0)

consisting of all pairs of the form (f, r) such that f(t) = x for allt > r. In general
we will omit the r and refer to a Moore loop f.

Let Y be a group-like LEC topological monoid with involution. As noted in
example 3.3, the singular chain complex S, (Y, k) is an involutive DGA, with the
involution induced from Y. Recall the reflexive bar construction, I'(S,(Y, k)), on
S, (Y, k) from example 3.3.

THEOREM 8.4. LetY be a group-like LEC topological monoid with involution. There
18 an isomorphism of graded k-modules

HR, (T (S, (Y,k))) = H, (ECs x¢, LBY, k)

where the Cy-action on LBY is induced from the involution on'Y and reversing the
direction of loops.

Proof. This follows directly from [24, 3.6]. We note that the given theorem relies
on Dunn’s propositions 2.10, 3.2, 3.3 and 3.5. One can check that these results
hold when we only consider the simplicial and reflexive structure from the dihedral
objects considered in that paper. O

COROLLARY 8.5. Let X be a connected, LEC topological space. There is an
isomorphism of graded k-modules

HR, (T (S, (MX,k))) = H, (ECy x¢, LX, k),

where X is equipped with the trivial involution and MX is equipped with the
inwvolution which reverses the direction of loops.

Proof. May [58, 15.4] shows that there is a map £: BMX — X, which is a weak
homotopy equivalence if X is connected. As noted in [24, 2.9], with the given
involutions the map £ is Cs-equivariant. The corollary now follows from Theorem
8.4 by setting Y = M X. O

8.3. Moore loops and free loop-suspension spaces

In this section we prove a reflexive analogue of Lodder’s result for free loop-
suspension spaces [53, 3.3.3]. We identify the Ch-equivariant homology of a free
loop-suspension space LY X as the reflexive homology of the singular chains on a
reflexive space constructed from the Moore loop space of X. In this case we can
use a smaller construction than the reflexive bar construction on a DGA since the
suspension of a topological space is always path-connected.

We begin by recalling the definition of the suspension functor.

DEFINITION 8.6. Let ¥.: Top, — Top, denote the suspension functor S* A —.
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DEFINITION 8.7. Let X be a based topological space. Let XX = S* A X be equipped
with the involution (t, ) = (1 —t, x), given by reversing the suspension co-ordinate.
We define a reflexive topological space

MYX(—): AR — Top,

as follows.

For each n >0, we have MXX ([n]) = (MXX)"*1 the (n+ 1)-fold Cartesian
product of the Moore loop space on XX .

The face maps 0;: MEX([n]) = MXX([n—1]) are given by concatenation of
loops:

i (fo, ... .
(fo (fn'anfla“wfnfl) 1 n.

f ): {(f07"'7fi17f’i'fi+17fi+27"'7fn) 0<’L<'I’L-1

The degeneracy maps s;: MEXX([n]) — MEX([n+1]) are given by inserting the
trivial loop:

Sj (an"'afn):(va'"7fjalafj+17~~'afn)

for0<j < n.

The reflexive operators rn,: MEX([n]) — MEX([n]) for n >0 are given by
reversing the direction of loops and applying the involution on XX :

——1 ——1 ——1
rn<f07"'7fn):(f0 7f’l’7, 7"'?f1 )'

DEFINITION 8.8. Let S denote the reflexive chain complex obtained by taking
the singular chain complex S,(MYXX(—), k) on the reflexive topological space
MYX(-).

THEOREM 8.9. Let X be a based topological space. Let S denote the singular chain
complex on the reflexive topological space MY X (—). There is an isomorphism of
graded k-modules

HR, (S) = H, (ECy x¢, LYX, k).

Proof. By combining the constructions in [51, Appendix B] for singular homology
with results on homotopy colimits for crossed simplicial groups [31, Section 6] we
see that given a reflexive space Y, there are isomorphisms

HR,, (8(Y,)) = H, (hocolimager (Y3)) = H,, (ECs x¢, |Y4|),

where the Cy-action on |Y;| is induced from the reflexive structure.

Goodwillie [35, Section V] has constructed a weak equivalence |[MXX(—)| —
LY X. By incorporating the reflexive action defined in [53, Section 3.4] we extend
this to a Cs-equivariant weak equivalence. The proof of this fact follows by mim-
icking [53, 3.4.1], replacing the dihedral crossed simplicial group with the reflexive
crossed simplicial group.
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We therefore have a weak equivalence
ECy x¢, IMEX(=)| — ECy X, LEX
which yields
HR, (S) @ H, (ECy X¢, |MEX(—-)|) 2 H. (ECy X, LYX k)

as required. O

9. Relationship to involutive Hochschild homology

Involutive Hochschild homology was introduced by Braun [4] to study involutive
algebras and involutive A.c-algebras. Fernandez-Valencia and Giansiracusa [29]
developed the homological algebra of involutive Hochschild homology. In particular,
they showed that involutive Hochschild homology can be expressed as Tor over an
involutive version of the enveloping algebra. The original motivation for construct-
ing involutive Hochschild homology was to extend work of Costello [15] to study the
connection between unoriented two-dimensional topological conformal field theories
and involutive Calabi-Yau A..-algebras [4], [28]. Involutive Hochschild homology
also arises in the study of the (co)homology of involutive dendriform algebras [16].
We show that under certain conditions involutive Hochschild homology coincides
with reflexive homology.

Let k be a field. Let A be an involutive k-algebra and let A = A ® A°P denote the
enveloping algebra. For this section only, let Cy = <t | t2 = 1>. The group Csy acts
on A€ by the rule t(a; ® as) = @3 ® a7. Fernandez-Valéncia and Giansiracusa define
the involutive enveloping algebra A to be A° ® k[Cy] with the product determined
by

(a1 @) (a @17) = (a1 - #'(a2)) @ .

The involutive Hochschild homology of A with coefficients in an involutive A-

bimodule M, denoted by iHH,(A, M), is defined to be Tor" (4, M) [29,
3.3.1]. Recall that an involutive vector space is projective if, when viewed as a
E[C3]-module, it is a direct summand of a free module.

THEOREM 9.1. Let k be a field of characteristic zero. Let A be a projective involutive
k-algebra and let M be an involutive A-bimodule. There exists an isomorphism of
graded k-modules

HRF (A, M) = Tor™™ (4, M).

Proof. Proposition 2.4 and [29, 3.3.2] tell us that, under these conditions, both
HR} (A, M) and iHH,(A, M) are isomorphic to the homology of the quo-
tient of the Hochschild complex by the involution action, from which the result
follows. O

10. Reflexive structure in real topological Hochschild homology

The structure of the reflexive crossed simplicial group arises implicitly in the litera-
ture on real topological Hochschild homology, although the category AR very rarely

https://doi.org/10.1017/prm.2023.69 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2023.69

1402 D. Graves

explicitly arises. In this expository section we explain how certain constructions in
real topological Hochschild homology can be stated in terms of the reflexive crossed
simplicial group.

We begin by recalling the definition of a real simplicial object from [18, 1.4.1],
21, 1.2], [45, 1.1], [1, 2.3].

DEFINITION 10.1. A real simplicial object X in a category C is a functor X : A°P —
C together with maps wy,: X([n]) — X ([n]) such that w} = idxj,)) and

4 dz O Wwnp = wn—ldn—iy

® S;0Wp = Wnt1Sn—i-

REMARK 10.2. By comparing with definition 1.2 we see that a real simplical object
X in a category C is precisely a functor X: AR’ — C. In other words, it is the
same thing as a reflexive object in C. We note that the category AR does appear
in [21, 1.2] with the notation A% .

ExaMmpPLE 10.3. If we take C = Set, we obtain the category of reflexive sets or real
simplicial sets. As noted in the introduction, Spaliniski [66, Section 3] has shown that
the category of reflexive sets admits a model structure that is Quillen equivalent
to the category of Cy-spaces with the fixed-point model structure. Furthermore,
reflexive sets play an important role in the homotopy theory of dihedral sets (see
[65] and [66]).

It is worth remarking that, using the crossed simplical group structure, we can
use a result of Fiedorowicz and Loday [31, 6.13] to calculate the homology of
Cs-equivariant Borel constructions. Let X be a reflexive set and let k[X] be the
composition with the free k-module functor. There is an isomorphism of graded
k-modules HR} (k[X]) & H,(ECy X¢, | X|, k).

ExampLE 10.4. Let C = Spo7 the category of orthogonal ring spectra as introduced
in [57]. Let (A, w) be an orthogonal ring spectrum with anti-involution in the sense
of [21, Definition 2.1] and let (M, j) be an A-bimodule in the sense of definition
2.5 of the same paper. The dihedral nerve N¥ (A, M) of [21, Definition 2.9] is a
functor AR? — Sp?. In other words, it is a reflexive object in the category of
orthogonal spectra or a real simplicial orthogonal spectrum. We note that this is
called dihedral because, in the case where we take M = A, there is also an action
of the cyclic groups, giving the structure of a functor AD? — Sp©.

The dihedral nerve plays an important role in the construction of THR,(A; M)
(see [21, Definition 2.18]) whose geometric realization is the real topological
Hochschild homology of A with coefficients in M. We note that THRe(A; M) is
itself a real simplicial orthogonal spectrum and therefore can be considered as a
functor AR? — Sp©.

REMARK 10.5. Our reflexive homology theory, as defined in § 1, takes as input a
k-algebra with involution and gives a graded k-module as output. In recent work,
Angelini-Knoll, Gerhardt and Hill [1] have introduced another theory for rings
with involution, called real Hochschild homology. This theory takes as input the
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Mackey functor associated to a ring with involution (see [1, 6.12]) and gives a
graded equivariant Mackey functor as output (see [1, 6.15]). They also prove that
their theory is related to real topological Hochschild homology via a linearization
map [1, 6.20].
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