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HILBERT SPACES HAVE
THE BANACH-STONE PROPERTY
FOR BOCHNER SPACES

PETER GREIM

Let (Qi’ Zi’ ui] be two positive finite measure spaces, V a

non-zero Hilbert space, and 1 =p <®® , p# 2 . 1In this

article it is shown that each surjective linear isometry between
the Bochner spaces Lp(ui, V) induces a Boolean isomorphism
between the measure algebras Ei/“i , thus generalizing a result
of Cambern's for separable Hilbert spaces.

This Banach-Stone type theorem is achieved via a description of

the Lp—structure of Lp(ui, V)

1. Introduction

In analogy to the Banach~Stone property [1, p. 142] a Banach space ¥
is said to have the p-Banach-Stone property, if for any pair of positive

finite measure spaces @Di, Zi’ ui) the existence of a surjective linear

isometry between the Bochner spaces Lp(ui, V] implies that the measure

algebras Zi/“i are isomorphic. (See [5] for the definition and

properties of Lp(ui, V] .) By Lamperti's extension of Banach's classical

result [§] the scalar field KK has the p-Banach-Stone property for
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p # 2 . The first vector-valued generalization is due to Cambern who
showed that separable Hilbert spaces have this property for 1 = p < = |
p#2 [3) and for p =<« [4]. Cambern's theorem has been extended to
larger classes of separable spaces [9], [6], and [7]; however, for all
these Banach-Stone type theorems the separability of V was essential. In
this paper we give a generalization of Cambern's theorem for non-separable

Hilbert spaces.

THEOREM 1. A4ll non-zero Hilbert spaces have the p-Banach-Stone
property (L <p <®, p#2).

We shall achieve this result via a description of the Lp—structure of
IP(u, v) (see Theorem 2).

As to our method, the proofs in [é], [7], and [9] use some kind of

lifting of Lp(u, V) in order to deal with functions instead of
equivalence classes. In this paper we employ a representation of

Lp(u, V) as a space of [P-1like functions with values in Banach spaces Vk
that may vary from point to point, a so-called "integral module",
introduced by R. Evans. The virtue of this representation is the fact that
all norm-functions k> |lx(k)|| are continuous, which might turn out to be

useful also in the investigations of other geometric relations between V

and IF(yu, V)

2. An integral module representation

We need some definitions and notations. From now on let 1 <p <

p#2 . By XM we denote the characteristic function of a set as well as

the corresponding multiplication operator; the constant function with
value v 1is denoted by V . 1In both cases the domains of the functions

will be clear from the context. A projection P in a Banach space X is

called an Lp-projection, if
(1) lelP = 1PlP + |Jx-PfP

for all x € X . The set of all Lp-projections of X 1is a complete
Boolean algebra [Z, p. 11] denoted by Pp(X)
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REPRESENTATION THEOREM. Let (R, I, uw) be a finite measure space and
V a real Banach space, K the Stonean space of the measure algebra I/u ,
and ¢ the Boolean isomorphism of L/u onto the clopen subsets of K .
Then there is a regular Borel measure m on K satisfying

(2) m(®M) = n(M)

for all M €L and

(3) m(D) =0
for all measurable nowhere dense D C K . Furthermore, there is a system
(Vk)k & of Banach spaces containing V and an embedding

xH(x)

of I[P(n, V) into the cartesian product | | (Vk v {=}) such that
kex

(i) for each =x € Lp(u, V) the norm function

k= |z|(k) = [{z) (Rl

(flell := =) is a continuous numerical Lp(m)-fmction with
IP-norm equal to |zl ,

(i1) addition and scalar multiplication on Py, v > when
embedded into the cartesian product, coincide with the

m-almost everywhere pointwise operations, precisely:

for each k € K the evaluation mapping
x = (x) (k)
is linear on the preimage of Vk (observe that

(xX(k) €V, m-almost everywhere since lz| € P(m) ),

(1i1) for each v € V the constant function v on Q 1is

mapped onto the constant function v on K ,

(iv) for each =x € P(m, V) and M€,
()(M'x:) = X@M(x) (0e0 := 0) .

The proof is a simple combination of Theorems 3.7 and 7.3 in [2]. We
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only have to verify the assumption that the set A of characteristic

projections (M €8) in IP(y, v) is a complete Boolean algebra of

Xy
projections in the sense that each increasing net converges strongly to its
supremum. This, however, is an immediate consequence of the fact that the

set of characteristic projections (M € £) in the scalar-valued

Xy
Lp(u) has this property as it is the whole of Pp(Lp(u)) [2, 4.9 and

1.61. ]

The image of Lp(u, V) under ¢+? is called an integral module;
clearly it is a Banach space isometrically isomorphic to Lp(u, vy .

PROPOSITION. For each =x € Lp(u, V) there is an open dense subset U
of K such that

(v) (x>|U takes its values in V ,
(vi) (x)|U is continuous.

Proof. By (Zi1) and (Zv) the simple functions are represented as
continuous V-valued simple functions, and the latter ones are dense in the
integral module. An application of Egorov's theorem shows that (z) is an
m-almost uniform limit of continuous functions. Thus for each € > 0

there is a set Ue such that {(x) restricted to Ue is continuous and
m(K\UE) < € . By the regularity of m we may choose Ue clopen.

(Observe that an open set and its closure have the same measure.) The

union U of all Ua'é has the desired properties: 1its complement has

measure zero, so that it cannot contain a non-void clopen subset. As K

is O-dimensional, this means that K\U has void interior. 0

3. The IP-structure of IP(y, v)
We prove the following theorem.

THEOREM 2. Let V be a non-zero Hilbert space, (§, I, u) a finite

positive measure space, 1 <p <o, p# 2. Then

Pp(Lp(u, V) =3/u.

https://doi.org/10.1017/50004972700011540 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011540

The Banach-Stone property 125

Since each surjective isometry T between two Banach spaces X1 and

X2 induces a Boolean isomorphism Y of Pp(Xl] onto Pp(x2) via

‘l’P:=T°P0T—l,

we have an improvement of Theorem 1 as an immediate consequence of Theorem

2.

COROLLARY. For each isometry T of Lp(ul, V) onto Lp(uz, V)

there is a Boolean isomorphism Y of El/ul onto 22/p2 such that

Xgy © T =T ° Xy
for all M € Zl . That is, the restriction of T to Xy * Lp(ul, ) is
an isometry onto ¥ p(u V)
wuf o
Proof of Theorem 2. Since the characteristic projections Xy are
trivially Lp—projections, it remains to show that for each
P ¢ Pp(Lp(u, V) there is an M € I such that Pz = x@ for all
x € Lp(u, V) . Of course we may assume without loss of generality that the

scalars are real. We represent Lp(u, V) as an integral module as in
Section 2 and we show first that P splits into Lp—projections Pk of

Vk , that is,

() (Px)(k) = Pk((x)(k)) almost everywhere

for all x € Lp(u, V) . Since the Lp-projections P and XM commute
(M € L) , we have

x|P = P - P, - X P = x| +|x-Px .
LMI Pan = lIx,#=IP = I2x,zlP + lixz-x,pel LM (1 221P+] 2-Px|P) dm

Observe that &M runs through all clopen subsets of K . Consequently the

continuous (numerical) integrands coincide,

(5) |z|P = |P2|P + |x-Px|P .

https://doi.org/10.1017/50004972700011540 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011540

126 Peter Greim

In particular (Px)(k) # ® for (z)(k) # ® and

(Px)(k) - (Py)k)

(P(x-y) k) =0

for (xXk) ={(yXk) # ® . Thus

P,Cx)(k)

X { Px)(k)

is well-defined on Vk = {(x)(k) | :1:'6 Lp(u, =} [2, 3.10], and (5)

says that the projection Pk is an Lp—projection on Vk . Since
(x)(k) = © only on a set of measure zero, we have (U4).

Now we claim P, € {0, 1a} for all k € K (Id the identity
operator). Then B := {k | Pk = Id} is clopen, for if we choose v € V
with |lv|]l = 1 , then

B

1
=
s}

Wwo=vh =kl vl = 1),

and |Pv| is a continuous function into the discrete set {0, 1} . Now
take M € LI with @M = B . PFrom (1) and the definition of B we have
m—almost everywhere, namely for all k with (z)(k) # = ,

lpx._XMx|(k) = [k Px)(K)=xgf 2) (K| = HPk[(x)(k))-xB(k) s (xX k)|l =0 ;
that is, IIPx—XMrII =0 .

Now let us prove our claim. Hilbert spaces have only the trivial

P-projections 0 and Ia [2, 1.3). So it suffices to verify the
parallelogram equality for all components Vk . Let (xXk), (y)k) be

two arbitrary elements of Vk . By (v), for all I 1in a dense subset U

of K , (xX1) and (y)(l) are elements of the Hilbert space V . Thus

lzey] (2)2 + |z=y| (D)2 = 2(]2](1)%+|y] (1))

for all L € U , hence, by continuity, everywhere. This shows that <{(x)(k)
and (y)(k) satisfy the parallelogram equality, thus completing the proof
of Theorem 2. a

REMARK 1. The method of this proof applies to all Banach spaces V

where a norm (in-)equality involving only finitely many vectors can be
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shown to imply trivial Lp—structure, for example all Lq—spaces (q # p) .

REMARK 2. The finiteness of the measures in Theorems 1 and 2 is not

essential. They hold for O-finite measures as well and, if we replace

r/u

by Pp(Lp(u)) , even for arbitrary positive measures. To see this,

2 P_gs & p .
observe that each L7 (p) is an I -direct sum ) L (pi) with finite

1€T

measures M. . Evidently we have also Lp(u, V) = E Lp(ui, V) . The

1€l

fact that a projection in an Zp-direct sum is an Lp—projection if and

only if its restrictions to the summands are Lp—projections of the

summands [2, 2.6] and an application of Theorem 2 show that

Pp(Lp(u, V)) o p[Lp(u)) . For o-finite M the latter is Z/u (2, L4.9].

(11

(2]

(3]

(4]

(5]
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