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A NOTE ON PERMANENTS

BY
MORTON ABRAMSON

Let A=(a;) be an mxn matrix and let K={s,,...,s,} be a k-subset from
{1,2,...,n}. For 0<t<k<n define the (¢, K)-permanent of 4 to be

(1) per(t,K)(A) = z 14,034y « Ay,
the summation taken over all m-tuples (iy, iy, ..., i,) (repetitions allowed) of
1,2,...,n each containing exactly ¢ distinct entries from K and any number of

distinct entries from the remaining n—k integers. For example, (4,4,7,1, 1, 2),
(4,4,6,6,6,5) are 6-tuples, each containing exactly two distinct entries from
K={2, 4, 5} for n>7. We define the -permanent of A4 to be the case K={1,2,...,n}
and write

)] pery(4) = pery (4), K={1,2,...,n},
each m-tuple (iy, . . ., i,) in the summation in (1) containing exactly ¢ distinct entries
of {1,2,...,n}. When t=m=n, (2)is the ““ordinary’’ permanent of a square matrix
(see [1] for a survey article), while t=m<n is the generalization to rectangular
matrices described by Ryser [3].

Let A4, denote a matrix obtained from A by replacing r of the k£ columns
S1, S, - - ., 8 Of A by zeros, S(4,) the product of the row sums of 4, and > S(4,)

the sum of all the (’:) numbers S(4,). Then per ,(4) can be evaluated by

©) pereod) = 3 (=07 ) 3 Sty
and hence
@ perd) = 3 ("7} ) 3 Stu-i0.

Formula (4) in the case m=t<n was first observed by Ryser [3, p. 26] and his
elegant proof (based on the Principle of Inclusion and Exclusion) suffices, with
minor modification, to establish (3), so we omit the proof.

When ¢t=k, (3) becomes

k
(5) perer(4) = 2 (=1 3 S(4).
Let ,4 be a submatrix of 4 obtained by deleting n— ¢ columns of 4. It follows that
(6) per(A) = > per(.4),
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the summation taken over all the (’;) choices of ;4. In the case t=m<n, per,(A4)

is therefore equal to the sum of permanents of square submatrices of order m. It
is clear that

%) >: per(d) = Aq,

A, being the product of the row sums of 4. In the case m<t<n, per(4)=0.

We describe several of many possible applications.

Suppose that m distinct objects ds, . . ., d,, are to be distributed into » distinct
cells ¢, ..., c,. An mxn (0,1) matrix 4=(a;;) can be interpreted as describing
restrictions on the distribution, namely object d; can be placed in cell ¢; if and only
if @;;=1. Suppose furthermore that ¢ is given, and we insist that exactly ¢ cells are
nonempty. Then the number of such distributions (each satisfying conditions
described by 4 and exactly ¢ cells nonempty) is per,(4). For a fixed subset
K={s,..., 83 0f{1,2,...,n}, perg, () is the number of distributions each satis-
fying conditions described by 4 and exactly ¢ of the cells ¢, ¢s,, . . ., ¢;, nonempty.

It is easy to see that per,(4) >0 if and only if » is equal to the term rank of A,
i.e., there is a way of distributing the objects with no cell empty if and only if the
maximal number of 1’s in 4, no two in a row or column, is n. Equivalently,
per,(4) >0 if and only if the n subsets of {1, 2, . . ., n} whose incidence matrix is the
transpose of 4 have a system of distinct representatives.

If any object is permitted into any cell, the matrix 4 becomes J,, , all of whose
entries are 1. Then the number of distributions each with exactly ¢ of the first k
cells nonempty (the remaining n—k cells may or may not be empty) is, by (3) with

K={1,2,...,k}, k<n,
¢ k—t+i k
® et = 3 GO,

1
_ (’;) ﬁo (—l)i(:)(t+n—i—k)"‘.

In the case 1=k, (8) becomes,

)(t+n—-i——k)"‘

N k . 0 iflsm<k
_ — 1) — 7\ = -
(9) per(k.K)(Jm,n) - 1;0( 1) (i)(n l) k! ifm — k.
Formula (9) may also be obtained directly using the principle of inclusion and
exclusion or by noting that pery, x(Jn,») is the coefficient of x™/m! in the expression
(e* —1)*(e*)"~¥, k <n. The number of distributions with none of the n cells empty
is formula (9) with k=n, namely the well-known formula

10 perlnd =3 (1(})a-i -

This is also the number of ordered partitions of a finite set of m objects into n
disjoint nonempty subsets, while the number of unordered partitions is

(1 S(m, n) = (1/n!) pery(Jn,n)

0 ifl<m<n,
n! ifm=n.
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the numbers S(m, n) usually being called Stirling numbers of the second kind [2].
By (6) and (7) we have

n

(12) 3, perna) = 3 () pering = "

=1

and therefore using (11)
(13) i S(m, t)(n), = n", (n);, =nm—-1)...(n—t+1), (see [2]).

If object d; is placed into cell ¢; with probability p,;, then, letting P=(p,,), the
probability that exactly ¢ of the cells are nonempty is per;(P).

A generalization of Montmort’s ““probleme des rencontres” is obtained by
taking A=(a;;) with a;=0, i=1,2,...,k,k<min (m, n) and a;=1 otherwise.
Then the number of distributions of m objects into the » cells such that for i=1,

., k cell ¢; is nonempty and object d; is not in cell ¢;, is by (5) with K={1, 2,
..k},

(14)  pergrf(d) = D(m,n) = z (—1)1( )(,,_,)m ki (— i 1)1,

with Dy(m, n)=n™ while,
(15) D(m, n) = per,(4) = Dy(m, n)

= 3 Co(Na-irrro-icry mz,

is the number of distributions with none of the cells empty and object d; not in cell
¢,i=1,2,..., n Thus, the ordinary rencontres numbers are given by

(16) D) = 3 (= 1(})m-iYa—i=1y-"
i=0
an expression noted by Ryser [3, p. 28]. It is easily seen that
a7 S (';)D(m, f) = (n—1ymm-n,
t=1

The expression for D(m, n) given by (15) may be easily obtained directly using the
principle of inclusion and exclusion. Denote by g(m, n) the number of distributions
of m objects into # cells with object d; not in cell ¢;, i=1, ..., n. Clearly

glm,n) = (n—1)"n™"" and D(m,n) = Z (—1)’( )g(m n—i), mz=>=n,

giving (15). Similarly (14) may be obtained directly. A second expression may be
obtained for D(m, n) (also by the use of inclusion and exclusion), namely

(18) D(m, n)

3 0H(}) petamsmlnonn K= (L2

Z D()S (")

https://doi.org/10.4153/CMB-1971-001-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1971-001-3

4 MORTON ABRAMSON

SO

n-

30 ()'S ot

j=
ano (- l)k(Z)(n—k)! ~ ! éo (—1)¥/k.

The last expression of (19) is the most common one given for the rencontres num-
bers [3, p. 23). Denote by D(m, n, r), m>n, the number of m-permutations of
1,2,...,n, repetitions allowed, such that each of the » integers appears at least
once in each permutation with exactly » of them being in natural position. Then
D(m, n, 0)= D(m, n) and

(19) D(n, n)

(20) Dim,n,r) = (’:)Du_,(m—r, n, r=01,...,n,
while
(21 i D(m, n,r) = n! S(m, n)

r=0

the numbers D,(m, n) and S(m, n) given by (14) and (11) respectively.
In the case 4 is a (0, 1) matrix with m <n and all entries on the main diagonal
zero and one elsewhere,

22)  per,(d) = kz: (1) u§O (';’) (’;:21)(n—-k)“(n—k—l)’"'" — 0.

With regard to matching problems we have the following. Let A4,,..., 4,, be
subsets of an n-set S and define a system of f-representatives of (4,, ..., 4,) to be
an m-tuple (ay, ..., a,) containing exactly ¢ distinct elements of S with g, € 4,,
i=1,..., m. Then the number of systems of t-representatives of (4, ..., 4,) is
equal to the t-permanent of the corresponding (0, 1) incidence matrix of size m by
n. Putting t=min (m, n), we have the number of systems of maximum distinct
representatives and when ¢ =m < n, the number of systems of distinct representatives
[3, p. 54, Theorem 4.1].
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