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Abstract

Rational sequences are possibly infinite sequences with a finite number of distinct suffixes.

In this paper, we present different implementations of rational sequences in Martin–Löf

type theory. First, we literally translate the above definition of rational sequence into the

language of type theory, i.e., we construct predicates on possibly infinite sequences expressing

the finiteness of the set of suffixes. In type theory, there exist several inequivalent notions

of finiteness. We consider two of them, listability and Noetherianness, and show that in the

implementation of rational sequences the two notions are interchangeable. Then we introduce

the type of lists with backpointers, which is an inductive implementation of rational sequences.

Lists with backpointers can be unwound into rational sequences, and rational sequences can

be truncated into lists with backpointers. As an example, we see how to convert the fractional

representation of a rational number into its decimal representation and vice versa.

1 Introduction

Rational sequences, also called ultimately periodic sequences, are possibly infinite

sequences with a finite number of distinct suffixes. The paradigmatic example of

rational sequences that most people are familiar with is the decimal representation

of rational numbers. For example, the decimal representation of 2/8 is 0.25, and

the one of 21/26 is 0.807692307692307 . . . , which is typically written 0.8076923

or 0.8(076923). The set of suffixes of 0.25 is {0.25, 25, 5, []}, where [] is the empty

sequence, while the one of 0.8(076923) is

{0.8(076923), 8(076923), (076923), (769230), (692307), (923076), (230769), (307692)}

Both sets of suffixes are finite. This is not the case for the set of suffixes of irrational

numbers like π or
√
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2 T. Uustalu and N. Veltri

More generally, rational sequences arise as solutions of systems of equations of

the form

x1 ∼ a1 :: xi1
x2 ∼ a2 :: xi2

...

xn ∼ an :: xin

(1)

where a1, . . . , an are constants from a given alphabet, :: is a constructor, x1, . . . , xn
are variables and i : {1, . . . , n} → {1, . . . , n}. The system of equations in Equation (1)

is an example of a system of iterative equations. Such systems have been studied in

the 1970s in connection with potentially infinite computations (Elgot, 1975; Bloom

and Elgot, 1976; Elgot et al., 1978; Ginali, 1979), and have more recently received

a categorical generalization (Adámek et al., 2003).

In this paper, we present two different implementations of rational sequences

in Martin–Löf type theory. The first is the literal translation of the definition

of rational sequence into the language of type theory, i.e., the set of possibly

infinite sequences with finitely many suffixes. What does it mean for a set to

be finite in type theory? Constructively, several inequivalent notions of finiteness

exist (Coquand and Spiwack, 2010). In this paper, we focus on two notions:

listability and Noetherianness. Intuitively, a set A is listable, if one is able to

construct a list xs containing all the elements in A; a set A is Noetherian, if one

is eventually able to find a duplicate when given arbitrary elements from A one

after the other. Listability and Noetherianness are classically equivalent predicates,

but constructively listability is strictly stronger than Noetherianness. Interestingly,

given a possibly infinite sequence xs, we will see that, if the set of suffixes of

xs is Noetherian, then it is also listable. In fact, there exists a class of subsets

of a given set, that we call orbits, for which Noetherianness implies listability,

and the subset of all sequences over A given by suffixes of xs happens to be an

orbit.

Afterwards, we also give an inductive implementation of rational sequences,

reminiscent of the decimal representation of a rational number. We consider the

type of lists with backpointers, i.e., lists with possibly an index at the very end,

revealing the position in the list where the period starts. We show how a list with

backpointers can be unwound into a rational sequence and how a rational sequence

can be truncated into a list with backpointers. Rational sequences and lists with

backpointers turn out to be isomorphic types in the appropriate proof-relevant

sense.

We have fully formalized the results of this paper in the dependently typed

programming language Agda (Norell, 2009). The formalization is available at

http://cs.ioc.ee/∼niccolo/rational/.

1.1 Structure of the paper

This paper is organized as follows. In Section 2, we give an overview of the type

theory we are working in and we introduce some datatypes and terms that we use
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Finiteness and rational sequences, constructively 3

throughout the paper. In Section 3, we discuss listable and Noetherian sets. We show

how to extend these notions to subsets represented by predicates and prove that

Noetherianness implies listability for orbits. We also introduce an alternative but

equivalent implementation of finiteness specific for orbits. In Section 4, we introduce

rational sequences as possibly infinite sequences with a rationality proof. We show

that the choice of the notion of finiteness does not matter in this definition. In

Section 5, we construct a corecursion principle for rational sequences. In Section

6, we introduce lists with backpointers and show their connection with rational

sequences. In Section 7, we implement the decimal expansion of rational numbers

as an example of programming with rational sequences and lists with backpointers.

In Section 8, we describe related work, to finally draw some conclusions and discuss

future work in Section 9.

2 Preliminaries

We consider Martin–Löf type theory with inductive and coinductive types with one

universe U. To define functions from inductive types or to coinductive types, we

use guarded (co)recursion. When we write statements like “A is a type” or “A is a

set”, we mean A : U. We allow dependent functions to have implicit arguments and

indicated implicit argument positions with curly brackets (as in Agda). We write

≡ for propositional equality (identity types) and = for judgmental (definitional)

equality. A type A is said to be a proposition, if it has at most one inhabitant, i.e., if

the type

isPropA = Πx, y : A. x ≡ y

is inhabited.

Let A be a type. The type ListA of lists over the type A is inductively defined by

the rules

[] : ListA
x : A xs : ListA
x :: xs : ListA

The length of a list can be recursively defined as follows:

length : ListA → �
length [] = zero

length (x :: xs) = suc (length xs)

Membership in a list is introduced as a relation ∈ between elements of A and lists

over A, and it is inductively defined by the rules

here : x ∈ x :: xs

p : x ∈ xs

there p : x ∈ y :: xs

We construct a function index∈ that given a proof of x ∈ xs, returns the position of

x in the list xs.

index∈: Π{xs : ListA}Π{x : A}. x ∈ xs → Fin (length xs)

index∈ here = zero

index∈ (there r) = suc (index∈ r)
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Given a proof p : x ∈ xs, we can construct the list remove xs p which is xs without

the occurrence of x in the position specified by p:

remove : Πxs : ListAΠ{x : A}. x ∈ xs → ListA

remove (x :: xs) here = xs

remove (x :: xs) (there p) = remove xs p

We say that a list has its head duplicated, if the head appears also in the tail.1 The

duplicate predicate Dup is defined by the rule

x ∈ xs
Dup (x :: xs)

We indicate with 1 the unit type, whose only inhabitant is ∗ : 1, with � the type

of natural numbers and with Fin n the type of the first n natural numbers. The type

Vecn A of vectors over the type A with length n is inductively defined by the rules

[] : Veczero A

x : A xs : Vecn A

x :: xs : Vecsuc n A

Membership in a vector (denoted ∈V ) is introduced similarly to membership in a

list ∈. We also introduce a function index∈V : Π{n : �}Π{xs : Vecn A}Π{x : A}.
x ∈V xs → Fin n, defined analogously to index∈.

Possibly infinite sequences over a given type A, that we simply call sequences,2 are

defined coinductively by the rules

[] : SeqA

x : A xs : SeqA

x :: xs : SeqA

The type SeqA is the final coalgebra of the functor F X = 1+A×X. Given another

F-coalgebra f : C → 1 + A × C , the coalgebra morphism given by the finality of

SeqA is typically called unfold f. We give here an explicit definition of it.

unfold : (C → 1 + A × C) → C → SeqA

unfold f z with f z

unfold f z | inl ∗ = []

unfold f z | inr (x, z′) = x :: unfold f z′

Extensional equality for sequences is called strong bisimilarity, and it is coinduc-

tively defined by the rules

[] ∼ []

xs ∼ ys

x :: xs ∼ x :: ys

While it ought to be the case morally, one cannot prove that strongly bisimilar

computations are equal in Martin–Löf type theory. Therefore, we postulate an

inhabitant for

SExt = Π{A : U}Π{xs, ys : SeqA}. xs ∼ ys → xs ≡ ys

1 It is also meaningful to allow detection of duplicates deeper inside the list, but for the purposes of this
paper, it is more appropriate to be concerned with duplication of the head.

2 They are often also called colists.
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3 Finiteness

In order to define rational sequences in type theory, we need to first define what it

means for a set to be finite. In this section, we consider two notions of finiteness:

listability and Noetherianness. More notions of finite set have been proposed and

analyzed. We give a brief overview of finiteness in constructive mathematics in

Section 8.

3.1 Listability

A set A is called listable, if the type

ListableA = Σxs : ListA.Πx : A. x ∈ xs

is inhabited. Listability says that we can fit all elements of A into a list. The length

of the list is an upper bound on the size of the set A. Note that in general, a proof

of ListableA does not give the exact size of A since the list may contain duplicates.

Nonetheless, the exact size of the set can be inferred: Since propositional equality

on listable sets is always decidable, as shown for example in Firsov and Uustalu

(2015), we can remove all duplicates from the given list.

Proposition 1

Propositional equality on listable sets is decidable.

Proof

Let A be a listable set, i.e., there exists xs : ListA such that p : Π x : A. x ∈ xs.

Let x, y : A. In order to check if two elements x and y are equal terms of type

A, it is sufficient to check if index∈ (p x) and index∈ (p y) are equal terms of type

Fin (length xs) (notice that propositional equality on Fin n is decidable, for all n : �).

If index∈ (p x) ≡ index∈ (p y), then x and y occupy the same position in xs and

therefore they are equal. If index∈ (p x) 
≡ index∈ (p y), then x 
≡ y. Indeed, if x and

y were equal, then also index∈ (p x) would be equal to index∈ (p y), which is not the

case. �

3.2 Noetherianness

A set A is said to be Noetherian, if the type

NoethA = Noeth′
[] A

is inhabited, where the auxiliary predicate Noeth′ is inductively defined by the rules

d : Dup acc

dup d : Noeth′
acc A

n : Πx : A.Noeth′
x::acc A

ask n : Noeth′
acc A

Noetherianness says that, if we are shown elements from A one after another, sooner

or later we will have seen some element twice.3 From a proof of Noetherianness, we

3 The standard definition of Noetherianness (Coquand and Spiwack, 2010) uses a version of Dup that
accepts duplicates anywhere in the given list and not only duplication of the head. The corresponding
version of Noeth is logically equivalent to the one considered here.
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cannot generally infer a bound on the size of A. Nevertheless, propositional equality

on Noetherian sets is always decidable (Firsov et al., 2016).

Proposition 2

Propositional equality on Noetherian sets is decidable.

Proof

We describe an informal proof of the proposition, a detailed proof can be found in

our Agda formalization.

Let A be a Noetherian set and let x, y : A. First, we repeatedly feed x into the

Noetherianness proof until we reach a leaf. The Noetherianness proof tells us that

we fed the same element at the last iteration and at some earlier, say pth, iteration.

Next, we repeat the procedure described above, i.e., we repeatedly feed x into the

Noetherianness proof, but at the pth iteration we feed y instead. The Noetherianness

proof now tells us that, in the new experiment, we fed it the same element at

whichever was now the last iteration and at some earlier, say p′th, iteration.

If p ≡ p′, then clearly x ≡ y, since the element fed in the p′th (i.e., pth) iteration in

the second experiment was y, but the element fed last in the same experiment was

x, however these must have been the same element. But if p 
≡ p′, then x 
≡ y, since

if x ≡ y were the case, the two experiments would have been identical and ought to

have given the same result, i.e., we should have p ≡ p′. �

Listability is stronger than Noetherianness.

Proposition 3

Every listable set is Noetherian, i.e., the type

ΠA : U. ListableA → NoethA

is inhabited.

Proof

Let A be a type. We construct an inhabitant f of the type

Πxs, acc : ListA.(Πx : A. x ∈ xs + x ∈ acc) → Πx : A.Noeth′
x::acc A

The statement of the Proposition then follows easily. In fact, if we have xs : ListA

with r : Πx : A. x ∈ xs, we consider the term ask (f xs [] (λx. inl (r x)) of type NoethA.

So fix two lists xs and acc containing together all elements in A, and fix x : A. We

have the following two cases:

• x ∈ acc, therefore the list x :: acc has a duplicate and we are done.

• q : x ∈ xs, then by inductive hypothesis we have a term g = f (remove xs q)

(x :: acc) p of type Πy : A.Noeth′
y::x::acc A, where p is a proof that the lists

remove xs q and x :: acc together contain all elements of A. Therefore, we are

done, since ask g : Noeth′
x::acc A.

�

The converse of Proposition 3 is generally not true. In fact, there exists a

Noetherian set X such that, from a given proof of listability of X, one is able to
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derive the limited principle of omniscience (Coquand and Spiwack, 2010). Another

weak counterexample is the following: Let A be a proposition, then such a general

A is Noetherian but not listable. If every proposition were listable, then one could

derive the law of excluded middle for propositions.

Next, we see how to extend listability and Noetherianness to subsets represented

by predicates.

3.3 Finite subsets

Given a set A, a predicate P : A → U should intuitively specify a subset of A, i.e.,

a set such that, for all x : A, x is a member if and only if the type P x is inhabited.

But we do not have a subset type former in type theory. The type Σx : A. P x comes

close, but is not a faithful implementation of such a set. The reason is that the

predicate P can be proof-relevant, i.e., for some x : A, the type P x may fail to be

a proposition. This has bad consequences. If for some x : A, we have two proofs

p, p′ : P x, then this implementation has two “copies” of the element x, namely (x, p)

and (x, p′). In connection to finiteness, this has the further effect that, if A is finite

(either listable or Noetherian), then Σx : A. P x is not generally so.4

As we do not have a type former for subsets, in the rest of this paper, we work

with sets with a predicate as a poor man’s substitute for subsets. But for lucidity,

we can informally refer to these representations as subsets proper.

If we want to reason about finiteness of subsets on the level of sets with a

predicate, we need to fine-tune the definitions introduced above.

Let A be a set and P : A → U a predicate on it. We call the subset listable, if the

type

ListableSubP = Σxs : ListA.Πx : A. P x → x ∈ xs

is inhabited.

We call the subset Noetherian, if the type

NoethSubP = NoethSub′
[] P

is inhabited, where the auxiliary predicate NoethSub′ is inductively defined by the

rules

d : Dup acc

dup d : NoethSub′
acc P

n : Πx : A. P x → NoethSub′
x::acc P

ask n : NoethSub′
acc P

Notice that the above definitions define finiteness of a subset of A meaningfully,

even if the predicate P representing the subset is proof-relevant. In fact, both

listability and Noetherianness are closed under subsets in the following sense5:

ΠA : U ΠP : A → U. ListableA → ListableSubP

ΠA : U ΠP : A → U.NoethA → NoethSubP

4 With propositional truncation, we could define the subset for P by Σx : A. ‖P x‖.
5 For subsets implemented with propositional truncation, this is not true: Noetherianness is closed under

subsets while listability is not.
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For subsets, listability is still stronger than Noetherianness. The proof is similar

to the one of Proposition 3.

Proposition 4

Every listable subset of a set A is Noetherian, i.e., the following type is inhabited:

ΠA : U ΠP : A → U. ListableSubP → NoethSubP

The converse of Proposition 4 is generally not true. However, there exists a non-

trivial class of subsets for which the two notions of finiteness are logically equivalent.

We call such subsets orbits.

3.4 Finiteness of orbits

Let A be a set. Let f : A → 1+A and x : A. The function f and the value x generate

a subset of A, containing all the elements of A that are obtained from repeated

applications of the function f on x. Formally, the orbit of x wrt. f is represented by

the predicate Orb f x = λy. x ⇒∗
f y, where the relation ⇒∗

f is inductively defined by

the rules

first : x ⇒∗
f x

p : x ⇒∗
f y q : f y ≡ inr z

next p q : x ⇒∗
f z

The relation ⇒∗
f is the reflexive–transitive closure of the relation λy, z. f y ≡ inr z,

that we write ⇒f for short. For the subset Orb f x of A, listability and Noetherianness

are logically equivalent notions.

Proposition 5

For orbits, Noetherianness implies listability, i.e., the type

ΠA : U Πf : A → 1 + AΠx : A.NoethSub (Orb f x) → ListableSub (Orb f x)

is inhabited.

Proof

Let A be a set, f : A → 1 + A and x : A. We construct an inhabitant g of the type

Π y : AΠ p : x ⇒∗
f y.NoethSub′

genAcc p (Orb f x) → ListableSub (Orb f x)

where the list genAcc p is the list of elements of A between x and y in p, i.e., if p is

of the form

x = x0 ⇒f x1 ⇒f x2 ⇒f . . . ⇒f xk = y

with k � 0, then genAcc p = [xk, . . . , x1, x0].

genAcc : Π{y : A}. x ⇒∗
f y → ListA

genAcc first = x :: []

genAcc (next p q) = y :: genAcc p

After constructing such term g, we can prove the proposition. First, apply g to x

and first, obtaining a term of type NoethSub′
x::[] (Orb f x) → ListableSub (Orb f x),

and from this the statement of the proposition follows easily.
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Fix y : A such that p : x ⇒∗
f y. Suppose n : NoethSub′

genAcc p (Orb f x). The proof

proceeds by induction on the Noetherianness proof n.

If n = dup d, then genAcc p contains a duplicate. In this case, the proof p is of

the form

x ⇒∗
f y ⇒f y1 ⇒f . . . ⇒f yk = y

with k � 1, therefore genAcc p = [y, . . . , y1, y, . . . , x]. Notice that every element z

such that y ⇒∗
f z is already a member of genAcc p. Moreover, every element z

such that x ⇒∗
f z is already a member of genAcc p. Therefore, the subset Orb f x is

listable.

Otherwise, we have n = ask n′ with n′ : Πz : A. x ⇒∗
f z → NoethSub′

z::genAcc p

(Orb f x). The proof now proceeds by case analysis on f y. There are following two

cases:

• If we have f y ≡ inl ∗, then there is no element z such that y ⇒∗
f z. Therefore,

every element z such that x ⇒∗
f z is already a member of genAcc p, so the

subset Orb f x is listable.

• If we have q : f y ≡ inr z, then we can conclude by taking g z (next p q)

(n′ z (next p q)) : ListableSub (Orb f x) given by the inductive hypothesis.

�

3.5 An alternative notion of finiteness for orbits

Orbits admit a special notion of finiteness. In fact, intuitively, in order to claim that

the subset represented by Orb f x is finite, it ought to be sufficient to establish that

the iterated application of f on x either terminates or outputs the same element

twice. Formally, we introduce a predicate FinOrb as

FinOrb : Π{A : U}. (A → 1 + A) → A → U
FinOrb f x = FinOrb′

[] f x

where the auxiliary predicate FinOrb′ is inductively defined by the rules

d : x ∈ acc

dup d : FinOrb′
acc f x

p : f x ≡ inl ∗
nil p : FinOrb′

acc f x

p : f x ≡ inr y r : FinOrb′
x::acc f y

cons y p r : FinOrb′
acc f x

A function f and a value x satisfy the predicate FinOrb if, visiting all the elements

generated by f starting from x, eventually we either find an element x′ such

that f x′ ≡ inl ∗ or we encounter the same element twice. The

inhabitedness of the type FinOrb f x expresses the finiteness of the orbit, since

it is equivalent to NoethSub (Orb f x) (and then also ListableSub (Orb f x) by

Proposition 5).

Proposition 6

The types FinOrb f x and NoethSub (Orb f x) are logically equivalent, for all

f : A → 1 + A and x : A.
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10 T. Uustalu and N. Veltri

Proof

(⇐) Let f : A → 1 + A and x : A. We construct an inhabitant g of the type

Π acc : ListAΠ{y : A}Π y′ : A. x ⇒∗
f y → y ⇒f y′

→ NoethSub′
y::acc (Orb f x) → FinOrb′

acc f y

The statement of the Proposition then follows easily as a corollary.

So fix two elements y and y′ such that p : x ⇒∗
f y and p′ : y ⇒f y′, and let

acc : ListA. Suppose we have a proof n : NoethSub′
y::acc (Orb f x). The proof

proceeds by induction on n.

• If n = dup d, i.e., there is a duplicate in y :: acc, i.e., y ∈ acc. Therefore, we are

done.

• If n = ask n′, with n′ : Πz : A. x ⇒∗
f z → NoethSub′

z::y::acc (Orb f x), we proceed

by case analysis on f y′.

— If q : f y′ ≡ inl ∗, then we conclude by taking cons y′ p′ (nil q).

— If q : f y′ ≡ inr z, then by inductive hypothesis, we have a term h =

g (y :: acc) z (next p p′) q (n′ y′ (next p p′)) : FinOrb′
y::acc f y

′. Then we con-

clude by taking cons y′ p′ h.

(⇒) We prove FinOrb f x → ListableSub (Orb f x). We then conclude using Propo-

sition 4. Fix f : A → A + 1. We first construct a list that collects all the elements

of A visited in a proof of FinOrb f x.

orbList : Π x : A. FinOrb f x → ListA

orbList x r = orbList′ x [] r

where the auxiliary function orbList′ is defined as follows:

orbList′ : Π x : AΠ acc : ListA. FinOrb′
acc f x → ListA

orbList′ x acc (dup d) = x :: acc

orbList′ x acc (nil p) = x :: []

orbList′ x acc (cons y p r) = x :: orbList′ y (x :: acc) r

Let x, y : X such that x ⇒∗
f y. In order to conclude, it is sufficient to construct an

inhabitant g of the type

Π{w : A}Π p : w ⇒∗
f xΠ r : FinOrb′

genAcc2 p f x. y ∈ orbList′ x (genAcc2 p) r

where genAcc2 is the following variation of genAcc introduced in the proof of

Proposition 5:

genAcc2 : Π{y : A}. x ⇒∗
f y → ListA

genAcc2 first = []

genAcc2 (next p q) = genAcc p

The proof proceeds by induction on r. We describe the proof for the case r =

dup d, for d : x ∈ acc. In this case, we have that the list orbList′ x acc (dup d) =

x :: acc = genAcc p has a duplicate. Therefore, as already discussed in the proof

of Proposition 5, we know that y ∈ orbList′ x acc (dup d).
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The proof of Proposition 6 is completed: Given r : FinOrb f x, we conclude by

taking g first r : y ∈ orbList x r.

�

In the next section, we introduce rational sequences over a type A as sequences

with finitely many suffixes where “finite” could mean either Noetherian or listable.

The suffix predicate turns out to be an orbit. Therefore, Propositions 5 and 6 both

apply to it, which means that the two notions of finiteness become equivalent.

4 Rational sequences

The definition of rational sequence is based on the notion of suffix. Formally, we

introduce a binary relation � between sequences that is satisfied whenever the first

sequence is a suffix of the second. The relation � is inductively defined by the rules

here : xs � xs

p : ys � xs

there p : ys � x :: xs

The set of all suffixes of xs is represented by the predicate Suffix xs = λys. ys � xs.

A sequence is rational, if it has a finite number of distinct suffixes. In Section

3, we have introduced two generally inequivalent notions of finiteness, listability

and Noetherianness. Therefore, we can write down two different proof-relevant

definitions of rational sequences:

SeqRLA = Σxs : SeqA. ListableSub (Suffix xs)

SeqRNA = Σxs : SeqA.NoethSub (Suffix xs)

Interestingly, the types SeqRLA and SeqRNA are isomorphic up to the first

projection (i.e., ignoring proofs of finiteness)—this is how we can express that

the intended subsets of SeqA are isomorphic. Therefore, it does not matter which

notion of finiteness we pick in the definition of rational sequence.

Proposition 7

Let xs be a sequence over the type A. The types ListableSub (Suffix xs) and

NoethSub (Suffix xs) are logically equivalent.

Proof

By Proposition 4, we already have the left-to-right direction. For the other direction,

we show that the subset given by Suffix xs is an orbit and conclude using Proposition

5. We define a function tail that returns the tail of a sequence whenever the sequence

is non-empty.

tail : SeqA → 1 + SeqA

tail [] = inl ∗
tail (x :: xs) = inr xs

It is easy to see that the type ys � xs is isomorphic to the type xs ⇒∗
tail ys, which

proves that the subset Suffix xs is the orbit of xs wrt. tail. �
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Since Suffix xs is an orbit, rational sequences admit an additional encoding:

SeqROA = Σxs : SeqA. FinOrb tail xs

By Proposition 6, the types SeqROA,SeqRNA and SeqRLA are all isomorphic up

to the first projection.

We present a variation of the predicate FinOrb specific for rational sequences that

will become handy in Section 6. First, we construct the function prefixes that, given

a vector ys = [y1, y2, . . . , yn] and a sequence xs (both over a certain type A), returns

the following vector of supersequences of xs:

[y1 :: xs, y2 :: y1 :: xs, . . . , yn :: . . . :: y2 :: y1 :: xs]

prefixes : Π{n : �}.Vecn A → SeqA → Vecn (SeqA)

prefixes [] xs = []

prefixes (y :: ys) xs = (y :: xs) :: prefixes ys (y :: xs)

The rationality predicate FinOrbV is given as

FinOrbV xs = FinOrbV′
[] xs

where the auxiliary predicate FinOrbV′ is inductively defined by the rules

d : xs ∈V prefixes acc xs

dup d : FinOrbV′
acc xs nil : FinOrbV′

acc []

r : FinOrbV′
x::acc xs

cons r : FinOrbV′
acc (x :: xs)

The predicate FinOrbV′ takes as argument an accumulator acc : Vecn A, while

FinOrb′ would take an accumulator acc : List (SeqA) when applied to tail. In fact,

when checking whether a sequence is rational, we only need to store the heads of

the suffixes we visit. In order to prove that we have seen the same suffix twice, we

reconstruct the vector of sequences we visited using the function prefixes and show

that it contains a duplicate. The type of the accumulator is Vecn A instead of ListA

because in Section 6 we work with vectors.

Another possible encoding of rational sequences is the following:

SeqROVA = Σxs : SeqA. FinOrbV xs

Proposition 8

Let xs be a sequence over the type A. The types FinOrb tailxs and FinOrbV xs

are logically equivalent. As a consequence, the types SeqROA and SeqROVA are

isomorphic.

5 Corecursion

In this section, we describe a corecursion principle for rational sequences. Let A and

X be types. The corecursion principle can be formulated as follows: if X is finite,

then every sequence of the form unfold f x is rational, for any f : X → 1+A×X and

x : X. In Section 4, we have seen that it does not matter which notion of rationality

we choose, they are all equivalent. But what do we mean by the statement “X is

finite”? It turns out that it is enough to require X to be a Noetherian set in order

to prove the corecursion principle.
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Proposition 9

There is an inhabitant (which we will denote unfoldR) of the following type,

describing the corecursion principle for rational sequences:

Π{A,X : U}.NoethX → (X → 1 + A × X) → X → SeqRNA

Proof

Fix f : X → 1 + A × X. We define a function elemUnfold as follows:

elemUnfold : Πx : X Π{xs : SeqA}. xs � unfold f x → X

elemUnfold x p with f x

elemUnfold x p | inl ∗ = x

elemUnfold x here | inr (a, x′) = x

elemUnfold x (there p) | inr (a, x′) = elemUnfold x′ p

Given a value x : X and a suffix xs of unfold f x, the function elemUnfold constructs

an element y : X such that unfold f y ≡ xs, i.e., elemUnfold x p is the initial value

that by corecursion generates the sequence xs.

Now fix x : X. We construct an inhabitant g of the following type:

Π acc : ListX.Noeth′
acc X → NoethSub′

map (unfold f) acc (Suffix (unfold f x))

Having such g, we can define corecursion as unfoldR n f x = (unfold f x, g [] n). So let

acc : ListX be an accumulator and n : Noeth′
acc X. The proof proceeds by induction

on n.

• If n = dup d, then acc contains a duplicate. Also, map (unfold f) acc contains

a duplicate, therefore we are done.

• Otherwise, we have n = ask n′ with n′ : Πy : X.Noeth′
y::acc X. It is sufficient

to construct an inhabitant of NoethSub′
xs::map (unfold f) acc (Suffix (unfold f x)), for

all xs : SeqA such that p : xs � unfold f x, and then conclude using the

constructor ask on this construction. Let y = elemUnfold x p, by inductive

hypothesis, we have a term

g (y :: acc)(n′y) : NoethSub′
unfold f y::map (unfold f) acc (Suffix (unfold f x)).

As we observed after the definition of the function elemUnfold, we have

unfold f y ≡ xs and therefore we are done.

�

We will see an application of the corecursion principle in Section 7, where we will

build the decimal representation of a rational number starting from its fractional

representation.

6 Lists with backpointers

We now move to an inductive implementation of rational sequences. One can think

of this as a syntactic representation of rational sequences (the one a programmer

would actually like to work with), as opposed to the more semantic representation
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14 T. Uustalu and N. Veltri

given in Section 4. In this section, we introduce the type of lists with backpointers, i.e.,

lists with possibly an index at the very end, pointing to the position in the list where

the period starts. Formally, we introduce a type ListPA of lists with backpointers

over A as follows:

ListPA = ListP′
zero A

where the auxiliary predicate ListP′ is inductively defined by the rules

i : Fin n

ptr i : ListP′
n A [] : ListP′

n A

x : A xs : ListP′
suc n A

x :: xs : ListP′
n A

As a convention, the argument i : Fin n of the constructor ptr points to the position

in the list where the period starts, counting from the end of the list. For example,

the term x0 :: x1 :: x2 :: x3 :: ptr 2 represent the sequence [x0, x1, x2, x3, x1, x2, x3, . . . ].

So the index 2 refers to the element at distance 2 from the end of the list, in this

case x1 (the last element of the list having distance 0).

A term xs : ListPA can be unwound into a possibly infinite sequence over A.

listp2seq : ListPA → SeqA

listp2seq = listp2seq′ []

where the auxiliary function listp2seq′ is defined (by mutual corecursion with the

function listp2seqRewind) as follows:

listp2seq′ : Π{n : �}.Vecn A → ListP′
n A → SeqA

listp2seq′ acc (ptr i) = listp2seqRewind acc (ptr i) i

listp2seq′ acc [] = []

listp2seq′ acc (x :: xs) = x :: listp2seq′ (x :: acc) xs

listp2seqRewind : Π{n : �}.Vecn A → ListP′
n A → Fin n → SeqA

listp2seqRewind (x :: acc) xs zero = x :: listp2seq′ (x :: acc) xs

listp2seqRewind (x :: acc) xs (suc i) = listp2seqRewind acc (x :: xs) i

The function listp2seq′ takes as arguments a vector acc of length n and an element

p : ListP′
n A. One has to think at the pair (acc, p) as a location inside an element

of ListPA, i.e., a zipper in the sense of Huet (1997). Therefore, the vector acc

corresponds to a context containing the elements that we have already visited,

while p is still to be explored. The function listp2seq′ calls listp2seqRewind in the

case p = ptr i. The function listp2seqRewind rewinds the zipper back i steps, and

then calls listp2seq′. For example, the function listp2seq proceeds as follows when

applied to the input x0 :: x1 :: x2 :: x3 :: ptr 2:

listp2seq (x0 :: x1 :: x2 :: x3 :: ptr 2) = listp2seq′ [] (x0 :: x1 :: x2 :: x3 :: ptr 2)

= x0 :: x1 :: x2 :: x3 :: (listp2seqRewind (x3 :: x2 :: x1 :: x0 :: []) (ptr 2) 2)

= x0 :: x1 :: x2 :: x3 :: x1 :: (listp2seq′ (x0 :: []) (x2 :: x3 :: ptr 2))

= x0 :: x1 :: x2 :: x3 :: x1 :: x2 :: x3 ::

(listp2seqRewind (x3 :: x2 :: x1 :: x0 :: [])(ptr 2) 2)

= . . .
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A sequence constructed using listp2seq can be proved rational, in the sense that

it satisfies one of the rationality predicates introduced in Section 4. Here, we use the

predicate FinOrbV since the accumulator in listp2seq′ is a vector and not a list. The

proof of rationality is constructed as follows:

listp2rat : Πxs : ListPA. FinOrbV (listp2seq xs)

listp2rat = listp2rat′ []

where the auxiliary function listp2rat′ does all the work:

listp2rat′ : Π{n : �}Π acc : Vecn AΠxs : ListP′
n A. FinOrbV′

acc(listp2seq′ acc xs)

listp2rat′ acc (ptr i) = dup r

listp2rat′ acc [] = nil

listp2rat′ acc (x :: xs) = cons (listp2rat′ (x :: acc) xs)

The term r above is a consequence of the fact that the sequence listp2seqRewind acc

xs i is a member of the vector prefixes acc (listp2seq′ acc xs), a statement easily

provable by induction on the index i and the accumulator acc.

From a rational sequence, it is also possible to construct a list with backpointers.

Again, we choose FinOrbV as the rationality predicate.

seqrat2listp : Πxs : SeqA. FinOrbV xs → ListPA

seqrat2listp = seqrat2listp′ []

where the auxiliary function seqrat2listp′ is defined as follows:

seqrat2listp′ : Π{n : �}Πacc : Vecn AΠ xs : SeqA. FinOrbV′
acc xs → ListP′

n A

seqrat2listp′ acc xs (dup r) = ptr (index∈V r)

seqrat2listp′ acc [] nil = []

seqrat2listp′ acc (x :: xs) (cons r) = x :: seqrat2listp′ (x :: acc) xs r

In the case where the rationality proof is dup r, the function seqrat2listp′ returns a

list with backpointers ptr (index∈V r). (Remember that the list version of index∈V

was introduced in Section 2.) The proof r tells us that the current sequence xs is a

member of the vector prefixes acc xs, and index∈V r tells us the position of xs in

the vector. This position corresponds exactly to the period of the sequence.

Not only can we move between the inductive and the coinductive implementation

of rational sequences, but the two implementations (ListPA and SeqROA) are

isomorphic, in the sense that the following types are inhabited:

ListPIso1 : Π{A : U}Π xs : SeqAΠ r : FinOrbV xs.

(xs, r) ≡ (listp2seq (seqrat2listp xs r), listp2rat(seqrat2listp xs r))

ListPIso2 : Π{A : U}Π xs : ListPA. xs ≡ seqrat2listp (listp2seq xs) (listp2rat xs)

We do not present here the proofs of ListPIso1 and ListPIso2. They can be found in

our Agda formalization.
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7 Rational numbers

We now proceed to an example. We show how to convert the fractional representa-

tion of a rational number into a decimal expansion and vice versa. We restrict our

study to positive rational numbers between 0 and 1.

The conversion between fractions and decimal expansion has type:

decimal : Π d : �. Fin d → SeqRN (Fin 10)

Here, we represent fractions using the type Π d : �. Fin d. An element (d, n)

corresponds to the fraction n/d, and by construction n is strictly less than d.

Notice that this representation forbids division by zero, since the type Fin zero is

empty. The result of decimal d n is the decimal expansion of n/d together with a

proof that the expansion is rational (as a sequence). Such expansion is necessarily

of the form 0, x1x2x3 . . . and decimal d n is the sequence x1 :: x2 :: x3 :: . . . .

We consider two functions, div and mod, calculating the quotient and remainder

after integer division of two natural numbers, respectively. Both functions are already

available in Agda’s standard library. We construct decimal using the corecursion

principle of rational sequences (described in Section 5). A fundamental ingredient

for doing so is to have a Noetherian state space. Given a denominator d : �, we

take Fin d as the state space. The set Fin d is listable, and therefore Noetherian by

Proposition 3. We define a function divmod that, given a number d and n with

n < d, returns the pair (q, r) with 10 ∗ n = q ∗ d + r whenever n 
= 0.

divmod : Π d : �. Fin d → 1 + Fin 10 × Fin d

divmod zero ()

divmod (suc d) zero = inl ∗
divmod (suc d) (suc n) = inr (q′, r)

where

q = (10 ∗ to� (suc n)) div suc d

q′ = from�� (divfin< d 9 (suc n))

r = (10 ∗ to� (suc n)) mod suc d

The infix operations div and mod take natural numbers as arguments, therefore we

convert the index suc n using the function to� : Π {n : �}. Fin n → �. Moreover,

notice that the quotient q is a natural number, while we have to return an inhabitant

of Fin 10. But we know that q is strictly smaller than 10. Formally, we construct a

term divfin< of type:

Π d, m : �Π n : Fin (suc d). (sucm ∗ to� n) div(suc d) < sucm

Therefore, using the map from�� : Π {m, n : �} → m < n → Fin n we are done. We

can now apply the corecursion principle.

decimal : Π d : �. Fin d → SeqRN (Fin 10)

decimal d n = unfoldR NoethFin (divmod d) n

The term NoethFin is the proof of Noetherianness of Fin d. We give an explicit

description of the behavior of the function decimal. We divide 10 ∗ n by d. This

produces a quotient q0 (the first digit of the decimal expansion) and a remainder r0.
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If r0 = 0, we halt, otherwise we divide 10 ∗ r0 by d. This produces a quotient q1

(the second digit of the decimal expansion) and a remainder r1. If r1 = 0, we halt,

otherwise we continue dividing 10 ∗ r1 by d. Proceeding in this way, we obtain the

decimal expansion of the fraction n/d, together with a proof of rationality.

We now move to the conversion of rational decimal expansions into fractions.

The construction is performed using the recursion principle of ListP. Formally, the

conversion is defined as follows:

fraction : Π{k : �}. ListP′
k (Fin 10) → � × �

fraction (ptr i) = 1 , 0

fraction [] = 1 , 0

fraction (x :: xs) with startPeriod xs
?
= 1 | fraction xs

fraction (x :: xs) | yes p | d , n = 10 ∗ d − 1 , to� x ∗ d + n

fraction (x :: xs) | no p | d , n = 10 ∗ d , to� x ∗ d + n

The term
?
= is a decider for propositional equality on natural numbers. The map

startPeriod returns a natural number that tells us whether in a list with backpointers

we are visiting an element of the period or not. In particular, when startPeriod xs

changes from 0 to 1, it means that we are entering the period.

startPeriod : Π{k : �}. ListP′
k (Fin 10) → �

startPeriod (ptr i) = suc (to� i)

startPeriod [] = zero

startPeriod (x :: xs) with startPeriod xs

startPeriod (x :: xs) | zero = zero

startPeriod (x :: xs) | suc n = n

In the definition of fraction, when we have a list with backpointers x :: xs, we first

check whether we are entering the period by checking if startPeriod xs is equal to 1.

If this is the case, we multiply the denominator by 10 and we subtract 1, otherwise

we just multiply by 10. We subtract 1 when we enter the period, because for a

periodic number z = 0.(x1 . . . xk) the following equation holds:

(10k − 1) ∗ z = 10k−1 ∗ x1 + · · · + 10 ∗ xk−1 + xk

Remark 1

What about 0.5 and 0.4(9)? They both refer to the same rational number 1/2, but

using our encoding (either rational sequences or lists with backpointers) they are

distinct terms. Notice that the type � of rational numbers can be defined as � × �
quotiented by the equivalence relation: (d1, n1) ≈ (d2, n2) iff n1 ∗ d2 ≡ n2 ∗ d1. If

we want terms like 0.5 and 0.4(9) to be equal, we have to quotient ListP (Fin 10)

by the equivalence relation: xs ≈ListP ys iff fraction xs ≈ fraction ys. Similarly, we

would have to quotient the type SeqRO (Fin 10) (and analogously SeqRN (Fin 10)

and SeqRL (Fin 10)) by the equivalence relation: xs ≈SeqRO ys iff seqrat2frac xs ≈
seqrat2frac ys, where seqrat2frac is the following composite map:

seqrat2frac : SeqRO (Fin 10)
seqrat2listp �� ListP (Fin 10)

fraction �� � × �
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Remark 2

Notice that the function decimal (more precisely its curried form) has input type

Σ d : �. Fin d, while the return type of fraction is � × �. The codomain of fraction

cannot be tightened to Σ d : �. Fin d, since e.g. fraction (0.99(999)) = (99900, 99900).

In general, all elements xs : ListP (Fin 10) that represent 1, i.e., periodic xs made up

of 9s only, are problematic in this sense. We can tighten the codomain by restricting

the application of fraction to lists with backpointers with period not consisting of 9s

only. Formally, we can define a predicate Period9s on ListP′
k (Fin 10), for all k : �,

as follows:

Period9s (ptr i)

Period9s xs (startPeriod xs > 0 → x ≡ 9)

Period9s (x :: xs)

Then we can define ListP¬9s (Fin 10) = Σ xs : ListP (Fin 10). (Period9s xs → ⊥) and

we can construct a map fraction¬9s : ListP¬9s (Fin 10) → Σ d : �. Fin d.

Notice that if we generally work with the type ListP¬9s (Fin 10) instead of

ListP (Fin 10), we can avoid the problem discussed in Remark 1. For example,

0.4(9) is not a representative of 1/2 anymore. Equality on ListP¬9s (Fin 10) can be

defined as (xs, p) ≈¬9s (ys, q) iff listp2seq xs ∼ listp2seq ys. Moreover, every rational

number x in [0, 1) has a canonical representative xs : ListP¬9s (Fin 10): among all

the elements ys such that fraction¬9sys ≡ x, xs has the shortest length.

8 Related work

Finiteness in constructive mathematics has been investigated by various authors

recently. Coquand and Spiwack (2010) studied four constructively inequivalent

notions of finite sets in set theory à la Bishop: enumerated sets (that we call listable

sets), bounded size sets, Noetherian sets and streamless sets. They showed how these

different notions are connected and proved several closure properties. The study of

streamless sets was furthered by Parmann (2014) in the setting of Martin–Löf type

theory. He showed that streamless sets are closed under Cartesian product if at least

one of the sets has decidable equality. Firsov et al. (2016) further studied a number

of variations of Noetherianness in detail. Firsov and Uustalu (2015) developed a

toolbox for practical programming with listable subsets of base sets with decidable

equality in Agda. Bezem et al. (2012) focused on the interrelationships between

specializations of different notions of finiteness for decidable subsets of natural

numbers.

Rational trees (also known as regular trees) were thoroughly studied in the 1970s

in the context of solving finite systems of guarded equations describing potentially

infinite computations (Elgot, 1975; Bloom and Elgot, 1976; Elgot et al., 1978; Ginali,

1979; Courcelle, 1983). Adámek et al. (2003) reworked the algebraic treatment into

a categorical analysis.

Turbak and Wells (2001) and Ghani et al. (2006) investigated representation and

manipulation of rational data in functional programming. Ancona (2013) studied

rational corecursion in the context of logic programming.
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Jeannin et al. (2013) were specifically interested in recursion on rational or non-

well-founded data.

Spadotti (2015; 2016) described an implementation of rational trees in Coq.

Similarly to us, he characterized rational trees both coinductively, as a subset of

the coinductive type of non-well-founded trees with finitely many distinct subtrees,

and inductively, as well-founded trees with backpointers. Our paper focuses on the

relation between listability, Noetherianness and rational sequences. Such analysis is

missing in Spadotti (2015; 2016), where only listability is considered.

9 Conclusions

In the paper, we introduced rational sequences in type theory. The different

rationality predicates presented in Section 4 are all logically equivalent. Particu-

larly noteworthy is the isomorphism between SeqRN and SeqRL, a consequence

of Proposition 7. We did not discuss basing rationality on streamlessness and

boundedness. But bounded size is between listability and Noetherianness and is

hence also equivalent to them for orbits. Streamlessness is generally weaker than

Noetherianness, but for orbits it is again equivalent.

A user of this rational sequences library would prefer to program with lists with

backpointers (a finitary representation, a kind of syntax) and then possibly evaluate

the results into rational sequences (the intended denotation or semantics). It is

also possible to view general sequences as the intended denotations, but then one

should not forget that the types NoethSub (Suffix xs), ListableSub (Suffix xs) and

FinOrb tail xs are not propositions. This means that in general, when constructing a

map f of type SeqRNA → X, for some type X, one should prove that f (xs, r) ≡
f (xs, r′), where r and r′ are two proofs of rationality of the sequence xs. The same

holds for maps out of SeqRLA and SeqROA. For maps out of ListPA, one should

prove that equivalent lists with backpointers are mapped to the same result.

This paper serves as a starting point for an implementation of general rational trees

in Martin–Löf type theory. Rational trees are non-well-founded trees with a finite

number of distinct subtrees. They arise as solutions of systems of guarded iterative

equations. The representations of rational sequences described in this paper (the

ones in Section 4 and lists with backpointers in Section 6) have been chosen because

they scale well to general rational trees. Lists with backpointers are isomorphic

to pairs of lists, and those could even work smoother for the example of decimal

expansions of rational numbers. But this isomorphism does not scale to rational

trees.
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