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Notes on the Apollonian Problem and the allied theory.

By JOHN DOUG ALL, M.A.

1. This paper contains a number of investigations, more or less
connected, on the theory of systems of circles. In such a well-worn
field one does not expect to have hit upon much that is absolutely
new, but it may be hoped that there is sufficient freshness of treat-
ment to give the paper some interest even where it deals with results
already known.

The possibility of some of the elements of a figure being imaginary
is contemplated throughout, not only in the analytical proofs but
also in the few which are purely geometrical in form. It need not
be said that, if we are building on the foundation of the ordinary
real geometry, say, as contained in Euclid, much is required in the
way of definition and deduction before proofs of the latter kind can
be considered complete, and unfortunately it is still the practice in
our elementary text-books to leave this to be supplied by the reader.
Partly to fill some of the blanks, but chiefly to put in relief the
point of view from which the subject is considered, one or two
paragraphs dealing with the most elementary matters have been
inserted at the commencement of the paper.

The ambiguity of certain elements associated with a circle or a
system of circles, as, e.g., the radius of a circle, the common tangent
of two circles, the axis of similitude of three circles, is the source of
inconvenience in the statement of many general theorems, and an
attempt has been made to remove this ambiguity by laying down
suitable definitions. As one application the inversion invariant of
two circles is investigated and a current error pointed out in the
statement of Casey's important extension of Ptolemy's Theorem.

Several methods are given for determining the centres and radii
of the circles touching three given circles. Two generalisations of
the problem are also discussed, and the circles are found which have
given common tangents with three given circles, or which intersect
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them at given angles. The solution of the latter problem is based
upon a relation, which appears not to have been noticed before,
between the angles of intersection of any five circles. This relation
leads directly to

(i) the equation of the two circles satisfying the conditions,
(ii) the equation for the radii of these circles,
(iii) the equation of either circle in a form involving its radius.

The single equation of the two circles is a homogeneous quadratic
in what may be called tricircular coordinates, any such coordinate
being the square of the tangent from the variable point to one of
the given circles, divided by the radius of that circle, and the
equation involves, besides these coordinates, only the angles of
intersection of the given circles with each other and with the
required circles.

Several particular cases are worked out, as, for instance, the
equations of the four pairs of circles which go through the points of
intersection of the given circles, and the equations of the four pairs
of Hart circles, each pair of which touches every Apollonian pair.

It is proved that the four pairs of circumscribing circles are also
touched by other four pairs of circles. The corresponding proposition
in spherical geometry is easy to prove, and perhaps known, but
what suggested the theorem was a certain result due, I think, to
Cayley and given by Salmon,* in the theory of conies having double
contact with a given conic. In fact, the equation in tricircular
coordinates of a pair of circles inverse to each other with respect to
a given circle is identical in form with the equation in trilinears of a
conic touching a given conic at two points. The relation between
the theory of such conies and that of circles on a sphere has been
noticed and used to advantage by Casey.* Some of the aspects of
the connection between the three theories I hope to consider in a
supplement to the present paper.

I have to thank my friend, Dr Muirhead, for his kindness in
looking up some references, and in placing at my disposal a collection
of abstracts of papers on the subject which he drew up for his own
use some years ago.

* Salmon's Conic Sections, Sixth Edition, Arts. 386, 387.
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SECTION I.

Definitions and Theorems.

2. (a) A right line is the assemblage of pairs of values (x, y), or,
as we say, of points (x, y), satisfying an equation of the
first degree.

(6)Twolines Ax + By + C = 0, A'cc + B'y + C = 0
are parallel if AB' — A'B = 0; they are at right angles,
or perpendicular, to each other if AA' + BB' = 0.

(c) The square of the distance between T(x}, yt) and Q(«2, y2)

The distance itself is two-valued, but we shall distinguish
beween PQ and QP so as to have PQ + QP = 0, and, if
P, Q, R are in a line, PQ + QR + RP = 0, as follows.

In the first place, if PQ is parallel to one of the axes, say,
to Ox, we take PQ = x^ - xl.

The line through P, Q being Ax + By + C = 0, then,
if A2 + Ba = 0, the formula gives PQ2 = 0 and therefore
PQ = 0.

In any other case, since A(a^ - a;i) + B(y2 - y^) = 0,
we have (a, - x,f + (y, - Vlf = (^ - x,)\\ + A'/B2).

Fix upon one of the square roots of 1 + A2/B2 and take

If B,(xs, ys) and S(x4, yt) lie on the line PQ or a parallel
to it, take also

and the product PQ. RS and ratio PQ: RS are definite,
whichever square root of 1 + A2/B2 we may have fixed
upon.

(d) From Def. (6) the line through "P(xu yt) perpendicular
to Ax + By + G = 0, is

The/oo< of the J.r, N, satisfies both equations.
Writing Ax + By + 0 = 0 in the form

A(* - a,,) + B(y - y.) - - (A*. + Byj + C)
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we get by squaring and adding

(A2 + B2){(x - x,f + (y - Vl)
s} = (Ax, + By, + Cf

that is P N =

As in (c) one of the square roots is to be selected, and
adhered to.

(e) If P is (xu yj, Q(a ,̂ y2) and N(a4, y4)
the equation of PN is

(a; - x1){yi - yt) -('!/- 2/i)(*i - a;4) = 0
and of QN (* - x^y., - y4) - (y - y2)(x, - a:4) = 0.

PN, QN will therefore be at right angles, by (b), if
(a, - xt){Xi - «4) + (y, - y,)(y2 - y,) = 0,

which is equivalent to
(*! - a-,)5 + (y, - ys)

3 = (*, - x4)
2 + (^ - y4)

2 + (a;, - x4f + (y3 - y4)»
or PQ2 = PN2 + QN2. (Euc. I. 47).

Now let N be the foot of the _|_r from P to QR, where
R is (x3, y3), then, attending to (c)

2QN . QR = QR2 + QN2 - (QR - QN)"-
= QR2+ QN2-NR-
= QR2 + (QN- + NP2) - (NR2 + NPJ)
= QR2+ Q P - P R 3 . (Euc. II. 12, 13).

( /) A circle is the locus of points satisfying an equation of
the form a? + y1 + 2gx + 2/y + c = 0.

When the equation is brought to the form

(a, 3̂) is the centre, and r is the square of the radius.
The radius itself, which is «7#2 + / - - c is two-valued.

We fix on one of these values arbitrarily, and call that
the radius r.

(g) The centre of similitude of two circles, radii a, b and
centres A, B is that point S in the line AB for which

Hence if A is (xlt y,) and B(aVj, ys), S is
bxt ay3 - b

\ a-b ' a-b
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For two real circles with positive radii, S is thus what is
usually called the external centre of similitude. In the
same case the internal centre of similitude is the centre
of similitude of the circles o, - b, or of - a, b. Note
that the centre of similitude of a circle, radius a and
the same circle, radius - a, is the centre of the circle.
The centre of similitude of a, a is indeterminate, that is,
any point is a centre of similitude.

The axis of similitude of three circles a, b, c is that line
the _!_** on which from the centres are proportional to
the radii. It therefore passes through the three centres
of similitude of the circles taken in pairs.

(h) Two circles of radii a, b, or, as we shall usually say for
brevity, two circles a, b will be said to touch if the
square of the distance between the centres, D2, is equal
to (a-A)2.

The circles have two coincident points in common not
only when D2 = (a - b)- but also when D* = (a + bf, but
in the latter case we say that it is the circles a, - b or
-a,b that touch. It may sometimes be convenient to
state, in the ordinary sense, that two circles touch, but
in such a case we shall take care that the radii are not
specifically mentioned.

It follows from the definition that when two circles, with
radii assigned, touch, the point of contact is the centre
of similitude. Also, if two real circles touch internally
(concavely), their radii have the same sign; if they
touch externally (convexly), their radii have opposite
signs.

(i) There are four lines which ctit each circle in two coincident
points.

The common tangents of a, b are the two which pass
through the centre of similitude.

The square of the length of a common tangent is defined
to be D2 - (a - bf.

It vanishes when, and only when, the circles touch.
For the length itself, either root of its square may be

taken.
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(j) The cosine of the angle between two circles a, b is

2ab '
Here we follow Salmon, but for some purposes it would

be a good deal more convenient to take the cosine with
the opposite sign. For instance, the analogy between
certain formulae for circles, and the corresponding
formulae for right lines would thus be more apparent.

For two real intersecting circles, the cosine as defined
belongs to the angle subtended at a common point by
the line joining the centres.

For the angle itself, we fix on any one of the infinite
number of angles whose cosines have the value specified.

The angle between two circles which touch may thus be
taken as zero, the angle between a circle and itself as
zero, and the angle between a and - a as ir.

(k) The angle 6 between a line L and a circle a is given by
p=acosO

where p is the J_r (of definite sign) from the centre to
the line.

A line L. touches a circle a if it meets it at angle zero,
that is, if p = a.

If the signs of all the ±" to the line L be changed, we
may speak of the line in the altered circumstances as
the line - L. If L touches a, then - L touches - a,
but not a.

(1) Two points P, Q are inverse to each other with respect to
a circle of centre 0 and radius k, if O, P, Q are in a line
and OP . OQ = k\

( iffy* A*-7/ \

— ; ) ., „ ) .

The inverse of the circle
x> + y*+2gx+2fy + c = Q (1)

is thus the circle
x2 + r + 2gxk-jc + 2fyk*ic + k*/c = 0. (2)

Consider another pair of inverse circles
x> + y"- + 2g'x + 2f'y + c'=0 (3)

and xl + y2 + 2g'xk2lc' + 2f'yk'!/c' + kllc' = 0. (4)
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Let the radii of the four circles be r u r2, r,, r4; the angle
between (1) and (3) 0, and that between (2) and (4) 6».

Then by (j) 2r1r.icos61 = 2gg' + Iff - c - c ,

2r2r4cos0., = (2gg' + Iff - c - c')k4jcc'.

Now r2 = + /rr^lc and r4 = + krrjc.

If we take r2 = +irr1/c and r4 = + AV3/e'
we shall have cos#, = cosft,; also according to (#) O will
be the centre of similitude of each inverse pair.

Two circles will not be called inverse to each other, when
their radii are definite, unless the centre of inversion is
their centre of similitude.

Then we have the theorem that two circles "cut at the
same angle as their inverses.

By a remark made under (g) the circle of inversion k is
not inverse to itself but to the circle - k ; also a circle
will be inverse to itself if the square of the tangent
from O is equal to &8. Hence the circle of inversion k
cuts two inverse circles at supplementary angles; a self-
inverse circle cuts them at equal angles.

(m) If, in (1) of (I), c = 0, instead of (2) we have the line

We prove in the same way that cos01 = cos02 provided
k-= - 2r,p, where/) is the _Lr from O on the line. The
line will be said to be inverse to the circle (1) when the
signs of its A." are so determined that that relation is
fulfilled.

(n) Let Dj be the distance between the centres of (1), (3) of (I);

D2 that between the centres of (2), (4).

Since cos0, = cos#2 we have

_
2r,r, 2r2r4

and therefore ! ^ " i ' - ' 2=
2r,r3 2r2r4

or the quotient of the square of the common tangent of
two circles by the product of their radii is not altered
by inversion.
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The statement of the theorem in the usual unconventional
language is much less simple.

Thus let a, 6, c, d be the real positive radii of the real circles
(1), (2), (3), (4).

To fix the ideas, we may suppose &2 positive, but the final state-
ment will not be affected if &2 be negative. Then if O is outside (1)
it will be the external centre of similitude of (1), (2), but if O is
inside (1) it will be their internal centre of similitude. Similarly
with (3), (4).

If O is outside both of (1), (3) then for the purposes of the
theorem the radii of (2), (4) are +b, + d; if O is inside both of
(1), (3) the radii of (2), (4) are -b, -d; it being supposed that the
radii a, c are kept fixed. In these cases, then, we have

p ^ _ (q _ ey _ D* - (6 - df
ac bd

If we had taken the radius of (3) as - c, that of (4) would have
been - d, and therefore

ac bd

These two relations, which obviously are not independent, show
that if the centre of inversion is inside all the circles, or outside
them, all, then

(sq. of either com. tang.)/prod. of radii inverts into
(sq. of similar com. tang.)/prod. of radii.

But if O is outside one of the two original circles, and inside the
other, the radii of the inverse circles will have opposite signs, and
therefore

D, 2 - (q -c ) 2 _ D.2
2 - (b + df

ac bd

« bd '

that is to say, if the centre of inversion is inside one inverse pair,
but outside the other inverse pair, then

(sq. of either com. tang.)/prod. of radii inverts into
- (sq. of the dissimilar com. tang.)/prod. of radii.

In the case of two intersecting circles, it is easy to verify the
result from a figure, by comparing the angles between the original
and inverted circles.
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In the first case it will be readily seen that cos#, = cos&;, but in
the second that cos^= — cos<?2.

Casey, to whom the theorem is due, states simply that " if two
circles be inverted into two others, the square of the common
tangent of the first pair, divided by the rectangle contained by their
diameters, is equal to the square of the common tangent of the
second pair, divided by the rectangle contained by their diameters."
This is vague, but from the way in which he applies the theorem it
seems clear that he understands the common tangent to be direct in
both cases, or else transverse in both cases.

He is thus led into an inaccurate statement of his theorem
12-34+13-24 ±14-23 = 0

respecting the common tangents of four circles touched by a fifth.
He states that the direct tangent is to be taken between two circles
which are on the same side of the fifth circle, the transverse between
two which are on opposite sides of it. This is wrong and ought to
be that the direct tangent is taken when two circles are both touched
concavely, or both convexly, by the fifth circle; the transverse when
one is touched concavely and the other convexly.* Two circles
touched convexly are necessarily on the same side of the fifth circle,
namely, the outside; but a circle touched concavely may be either
outside or inside of it. Salmon, in giving an account of the matter,
uses different methods from Casey, but repeats the defective
enunciation of the theorem. (Salmon's Conic Sections, last 3 Arts,
of Chap. VIII., Sixth Edition.)

SECTION II .

First solution of the Apollonian and allied problems.

3. To find the centres and radii of the circles touching three given
circles a, b, c.

We do not assume that a, b, c are positive, even if they are real.

First Method.

Let D(a^, y,), E(a^, ys), F(a ,̂, y3) be the centres of a, b, c.

We take the origin at the radical centre O so that
x? + y*-«s = «.* + Vt -Vs = xs* + y3*-c* = P.

* See Art. 16 below.
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The circle, centre O and radius k, will be referred to throughout
as the orthogonal circle simply.

Let P(£, ?}) be the centre of a circle p touching a, b, c.
Then from Art. 2 (A) we have three equations, of which the first is

or 2$x1 + 2Vyl + (p*-F -if-V)-lap. - - (1)
This and the two similar equations may be regarded as asserting
that the _L™ from (xlt y^, (x2, y2), (xs, y3) on the line

2& + 2Vy + (p>-?-rf-i*) = 0 - - - (2)
are as a: b : c.

The line (2) is therefore the axis of similitude.
Let the actual i " on it from D, E, F, O be a/X, 6/A, c/A., p.
Then by 2 (d) 2ap: a/A. = p2 - f -rf-k?:p

thatis 2A.p/> = p s - £ a - f - A ? - - - - (3)
and Ay = ? + ?'. (4)

Eliminating £" + if from (3), (4) we get the equation for p, viz.,
(ki-iy+2\pp + tr = 0. - • - (5)

The line OP which is £y-7/a; = 0, is _Lr to (2), the axis of
similitude.

The _!_';>, from P on (2) is

and if OP = <T, taken with definite sign as a segment on the same
line asp and pu

= - V (6)
We have thus defined precisely the centres and radii of two circles
plt Pi touching a, b, c.

Since cr/p is the same for both, O is their centre of similitude.
Also from (3) which is 2<rp = a3 + k% - ps

it follows from Euclid II., 12, 13 proved in 2 (e) that the points of
intersection of p, k are on the axis of similitude.

The circles p1, ps are therefore inverse to each other with respect
to k, and the axis of similitude is their radical axis. The first part
of this statement is proved more simply by observing that the
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inverse of px with respect to k will, by 2 (I), cut a, 6, c which are
self-inverses at the same angle as plt that is, will also touch them.

Again if X is the point of contact of p, a; and if the _L' from
D to the axis of similitude meets it at L, and OX at G ; we have
from the similar triangles OPX, GDX, attending to signs

OP:GD = X P : X D

= /. :a , by 2 (g),(h).

.: GD = aa-jp= - Xa, by (6).

Also DL = a/X ;

.-. DL. DG = o!, and G is the pole of the axis of
similitude with respect to the circle a. Hence Gergonne's con-
struction, viz., we find X u X2 as the intersections of a with OG ;
then Plt P2 are the intersections of the J_r to the axis of similitude
through 0 with XJ), X2D.

4. Second Method.

If X, Y be the centres of two circles x, y;

T,2, T2
2 the squares of the tangents from a point U, that is

and if UN be the ±T from U to the radical axis, we have the
fundamental theorem

T , 2 - T / = 2 U N . Y X .

Apply the theorem to the circles k, p taking U, first at D, then
at O, and putting pa, p for the J.™ from D, 0 on the radical axis
of k, p .

Thus a2 - { (a - Pf - p2} = 2/>a( - <r))

and ~k2-{as-pi) =2p(-«r)j

that is ap= - <rpa

oz + tf-p^ 1<rp

The first of these, and the two similar equations

bp= -<rpb, cp= -<rpc

show that the radical axis of k, p is the axis of similitude of a, b, c;

and if we put pa = ajX we have the two equations

<r= — Xp

}•

L and the whole theory as before.
2<rp f
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5. Third Method.

Take P an undefined point on the _Lr from O to the axis of
similitude; OP = cr; J.™ from 0, D to axis of similitude = p, ajk.

By Euclid II . 12, 13

PD2 = OD2 + OP2 - 20P(p - ajk)

= a? + A2 + a2 - 2<rp + 2<rpajk.
We shall have

if 0

We shall therefore also have

(6-p)2 and

if we take tf + o3 - 2<rp - p- =

p + a-jk = •}•
6. The last method may be used to solve a more general problem,

viz., if the radii of the three circles with centres D, E, F are changed
to o - x, b - x, c - x, to find the new axis of similitude and the new
orthogonal circle.

We assert in the first place that as x varies the axis of similitude
moves parallel to itself, and the radical centre in a line J_r to it.
This is obvious if we assume the results just proved, for the centres
of the circles touching a-x, b-x, c-x will remain fixed,their radii
being pi — x, pt — x. For an independent proof, note first that the
parallel to the axis of similitude of a, 6, c at distance - xjk from it
will be at distances (a - x)/X, (b - x)/X, (e - x)j\ from D, E, F, and
will therefore be the axis of similitude oi a-x, b-x, c-x.

Next take 0 ' a point on the _Lr to the axis of similitude from O ;
00 ' =y.

We have O'D2 = OD1 + OO'2 - 200'(jo - ajk)

and O'D* - (a - xf = (V + y2 - 2yp - ar) + 2o(x + y/k).

Hence if we define y by the equation x + y/k = 0

we shall have
O'D2 - (a - xf = O'E2 - (6 - xf = O'F - (c - a;)2
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.'. O' is the radical centre of a - x , b - x, c-x and the square of the
radius of their orthogonal circle is given by

k' will be zero when the circles have a common point which mast be
either P, or P2.

The radius of the touching circle is then zero, i.e., x is equal to
pt or p2; hence the equations for <r, p as before.

The new radical centre 0' will be on the new axis of similitude
when 00' =p -x/X

or (A 2 -1 )3= -Xp.

Since with this value of x, the centre of similitude of the touching
circles is on their radical axis, it is geometrically obvious that their
radii are equal and of opposite signs, that is,

Of course this also follows immediately from the quadratic for p.
The result will be used in Art. 13.

7. The equation (A2 - \)p2 + 2Xpp + A2 = 0

may be partially verified as follows.

(i) When A2 = 0 ; the three circles have a common point, which
is a touching circle of radius zero; the equation gives one
value of p = 0.

(ii) When A.= l ; the ±" from the centres to the axis of
similitude are a, b, c and the axis of similitude is a common
tangent.

When A.= - 1 ; the _|_™ are - o , -b, -c and the axis of
similitude with the signs of all its _L n changed is a common
tangent.

In either case one of the touching circles is a line; the
equation gives one value of p infinite.

(iii) When p = 0 ; the radical centre lies on the axis of similitude,
and therefore as at the end of Art. 6, the radii of the
touching circles are equal but of opposite signs; the
equation gives pl + pt = 0.

8. Suppose that the three circles are real, and that the absolute
values of their radii are rxt r8) r3.
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If in the above analysis we take a = rlt b = r2, c = rs the axis of
similitude is that which has D, E, F all on one side of it. To a
positive real root of the equation for p corresponds a circle touching
all the circles concavely; to a negative real root a circle touching
them all convexly. (2 (A), last remark.)

If we take a= -rlt b = rs, c = rs the axis of similitude is that
which has D on one side of it, and E, F on the other. A positive
real value of p gives a circle touching the first circle convexly, the
other two concavely ; a negative real value of p gives a circle
touching the first circle concavely, the other two convexly.

Similarly for the cases
a = rlt 6= - rs, c = r3 and a = rlt 6 = r2, c = - r 3 .

Since a, b, c have the same axis of similitude and orthogonal
circle as - a, —b, — c, the other four permutations of signs of the
radii do not yield further solutions.

A very persistent form of erroneous statement of these results
should be noticed. For the first case, as an instance, it is frequently
said that when the values of p are real, a pair of tangent circles
exists each of which has the three given circles all on the same side
of it. The error is analogous to that which was noticed at the end
of Art. 2.

9. To jind the centres and radii of the circles cutting a, b, c at
given angles a, /?, y.

We can proceed precisely as in Art. 3 till we come to equation (1)
which will now be

2£e, + 2i/yx + (p2 - £* - if - A2) = 2ap coso.

The X™ on the line (2) will therefore be as acosa: 6cos/3 : ccosy.
This property defines that line ; it cuts the circle at angles with

cosines proportional to cosa, cos/3, cosy, and we may call it the
a, /?, y axis.

If the actual X" on it from D, E, F, O are

acosa/A.', 6cos/2/A', ecosy/V, p',

we find equations of the same form as before

o-= -k'p

The circles />,, pj are inverse with respect to k, and the o, /?, y
axis is their radical axis.
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10. To find the centres and radii of the circles the squares of
whose common tangents with a, b, c have given values u2, ir, ur.

Following again the lines of Art. 3, we choose the origin O' so
that

x? + y? -a? -ui = x2 + y2 -b2 -v* = x* + y* - c- -u? ( = V say).

O' is therefore the radical centre of the circles with centres
D, E, F and squares of radii a2 + w2, b* + v*, c2 + tirl, and k* is the
square of the radius of their orthogonal circle.

The line (2), with k'2 for A2, is still the axis of similitude of a, b, c.
If the J_p from 0' to it is p", we have

- Xp )

The circles plt p.z are inverses with respect to k' and the axis of
similitude of a, b, c is their radical axis.

Either of the two problems just discussed may be reduced at once
to the other, for

p2 — 2apcosa + a2 = (p - acosa)2 + o2sin2o

and therefore a circle which cuts a, b, c at angles a, /?, y will have
a9sin:a, 62sin2/J, c2sin2y for the squares of its common tangents with
the circles whose centres are D, E, F and radii acosa, bcosfi, ccosy.

The other methods given for the case of contact may easily be
adapted to the more general problems.

11. The methods of this section fail in certain cases; notably
when the centres of the circles are in a line, a case requiring
exceptional treatment in most general methods for the contact
problem, including Gergonne's. The other cases of failure arise
when the axis of similitude or the a, ft, y axis is at an infinite
distance, but these cases are easily met. Thus in 3, when a = b = c,
equations (1) give at once

£ = 0, , = 0 ; P
8 - A s = 2a/,.

In 9 when acosa = bcos/3 = ccosy, we have similarly

£ = 0, 17 = 0 ; />1!-#' = 2a/9cosa.

The equations obtained in this section involve coefficients whose
geometrical meaning, as we have seen, is very simple; but results
may be required in terms of more fundamental constants of the
system of given circles, as for instance, the radii and distances
between the centres. It is not difficult, but certainly tedious, to
deduce such results directly from those found here. One way is to
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use trilinear coordinates with the triangle of centres as triangle of
reference. In the investigation I found the following formula
useful; it gives the trilinear coordinates a, p, y of a point F in
terms of the squares of its distances from the vertices A, B, G of the
triangle of reference, whose sides are a, b, c.

4 A a = - a. A P + 6cosO. B F + ccosB. CP2 + aiccosA

with similar expressions for fi and y.

But much more powerful methods are available.

SECTION III.

Miscellaneous methods for the Apollonian problem.
12. To fond the radii of the circles touching a, b, c.
It has been remarked by numerous writers that the relation

between the six mutual distances of four points in a plane furnishes
a natural and immediate solution of this problem.

If ]
then

0

,1
1

i l

1

1

0

P
e3

1

P
0

d*

y1

-.3?,

1

e-

d1

0
s»

PI

1

y1

z>

0

^ a 2 and DE2=/a

To find the radii we have only to put

= 0. (1). But the equation will be much simpler

if we first transform this determinant

D as follows.

From the 2nd, 3rd, and 4th columns subtract the last; then deal
in the same way with the rows. Thus

Jar1+**-«', y* + z'-d\ 2s?
Divide the rows by 2x, 2y, 2z and the columns by x, y, z and we

may write
0 0

1

+ s* - e2

'Ixz

2xy

1

2yz

2yz

1
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and on subtracting the first row from each of the others

D= -

1 1 1

0 ^- ^~

2xy 2yz

1 ^ 1 . _ ^ 0

= - 2

*

X

y

2

X

0

n2

m"

y

0

p

z

*

P

0

. ( 2 )

where P = d--(y^-zf, m? = e2 - (s - xf, n2 = /" - (a; - yf.

If oow w e pi t <* — p tor x, b — p for y, c — p for z, so that i3, r»!, n2

are now the squares of the common tangents of a, b, e, we find

\ a-p b-p c-p

a-p 0
b~p n2

c — p m2

ri*
0
P 0

This determinant is of a
= 0. (3). familiar type and its

expansion gives

m\b - ,o)2 + n*(e - pf

- 2m3ns(b - p)(c -p)~ 2n'P(c - p)(a -p)- a - p)(b -

or

+ '2p{ (6 + c)m>n" + (c + a)n*P +{a + fyPm? -aP- bm* - en*}

+ (Pm'n* + aH* + 6W + cV - 2bcm?n> - 2can'P - 2abPmt) = 0. (4)

This is the equation found geometrically by Mr Alex. Holm in

last year's Proceedings, except that, in accordance with our conven-

tions, we have - p instead of his x.

13. Deduction of the equation found in Section IJ.

If we write the left sides of equations (3), (4) just found as

L, M, N must from Art . 3 be proportional to A2 - 1 , 2\p, A2.

This we shall now prove independently by a development of the
remarks in 7.
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(i) The circles with centres D, E, F and squares of radii
a" + A2, 6s + V, c2 + Ar have a common point, viz., the radical
centre of a, b, c.

In 12 (l)putar! = a2 + A2, y3 = 6! + A2, 22 = c3 + A2. Then from
last column and last row subtract the first x ¥. Thus

- 2 / f c 2

1

0

r
e2

1

r
0

d'

1

e'

d2

0

+

0
1

1

1

1

1
0

r
e-

a2

1

P
0

d*

1
e2

d2

0

c3

1
o2

62

c2

0

= 0.

The first determinant is - 16A2 where A = area of A D E F ;
the second, by the transformation by which (2) was derived
from (1) in 12, is - 2 N .

.-. N = ArM6A2.

(ii) The circles with centres D, E, F and radii a/A., 6/X, c/X have
a common tangent. Hence if we put alk for a, and so on,
in (3) or (4) above the coefficient of the highest power of p
must vanish, that is

I'* + m« + n " - 2m'V2 - 2n'Ti - 2Pm" = 0

where P = d* - (b - c)2/A.2, etc.

Write the left side of this equation A + B/A.2 + C/A.4.

Then C = 0, for it is - 16 x square of area of A
with sides b-c, c-a, a-b ;

A = - 16A2, by putting l/A. = 0.

To get B, note that when A. = l, I'^-l- and therefore
L ; but A + B/A.2 = 0 ; hence A,2-1= - ( A + B)/A,

i.e., L = (A.2-l

(iii) By Art. 6 if we take o — x, b -x, c- x for radii the coefficient
of p in the resulting quadratic will vanish when

a;(A.2-l)= -Xp.

But when a, b, c are replaced by a-a;, b—x, c -x in 12 (4)
the coefficient of p becomes La; + JM. .•. L. 2Xp = M(X! - 1),
and, using (ii),

M = 2Xp.l6As.
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14. The equation for p deduced from considerations of Solid
Geometry.

Considered analytically, the problem of finding a circle, centre
P(£, rj), radius p, to touch the circles,

centres D(xlt y,), ~E(x.2, y2), F(a;3, y3) and radii a, b, c
is the same as that of solving the three equations of the form

(i-^Y + ^-y^^ip-af.
These equations express that the point in space (£, ij, ip) is at

distance zero from each of the points (xlt yx, ia), etc. The problem
is therefore equivalent to that of finding the centre of a sphere of
given radius passing through three given points, and this can be
solved geometrically.

In order to obtain a figure with as many real elements as possible,
we shall suppose that the radii are all pure imaginaries, but the
formula obtained for p will still be true even if a, b, c are all real.

Let L, M, N be the points (xn y,, ia), etc.
Then MNs = (x2 - x,f + (y2 - y3f - (b - cf = P;

If H (X, Y, Z) is the centre and R the radius of the circum-
circle of LMN, then a point Q (£, TJ, ip) at zero distance from L, M, N
is on the normal through H to the plane LMN at distance ±iR
from H.

A well-known formula gives the coordinates of H in terms of
those of L, M, N.

In particular,
icosL. ia + woosM. ib + ncosN . ic

icosL + mcosM + ncosN

= {Pirn1 + n* - P)a + m?(n- + P - w»2)6 + n'(P + m" - ns)e}t/16A,L.

Then, for the z coordinate of Q,

where <f> is the angle between the planes LMN, DEF, and therefore

Also B, = lmn/4A,mn.

Hence p = {P(m2 + n s -P)a+. . + ... ±ilmnA

This is the formula obtained by Mr Holm in his paper of last year.

,in.
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We can also derive the results of Art. 3.

(i) If pl is the _Lr DT from D to the line of intersection ST of
the planes LMN, DEF
then ta = pitan<^>; similarly ib = p2tan$ and ic = patan<j>.

Hence ST is the axis of similitude, and tan<£ = »X.

.-. X2-l=-sec2<£

and ( X 2 - 1 ) A ^ = - A , L .

(ii) Let the normal HQ to the plane LMN meet the plane DEF
in K, and let KUS be J_' to ST.
ThenUH_|_r toKUSisZ .

Also KD2-a2 = KDa + DL2 = KH: + R2.

. •. KD2 - a2 = KE2 - 62 = KF2 - C2.

. •. K is the radical centre and A2 = KH2 + R-

= Z2sec-</> + R=.

(iii) K S is p, and Z = psin<f>cos<f> = pta.a<j)Cos2<j>

so that <k- - 1)Z = - ikp.

Now p = - iZ + Rcos<£

and the quadratic for p is

that is pa + 2iZp - (Z- + R2cos2^>) = 0,

or, multiplying by Xs - 1, which is equal to - sec2<£,

(*>_ i y + 2i(X2 - l)Zp + Z-sec-1 .̂ + R2 = 0

i.e., (X2-l)/j2

I t is also obvious from the figure that the centre P of p lies
on KS and that <r = - Xp.

SECTION IV.

Application of general theorems relating to given circles.

Equations of the circles required by the general problems, in
terms of tricircular coordinates.

\5. We write S, for x> + y- + 2glX + 2f,y + c,,

S2 for x' + y" + 2g»x + 2f2y + c2, and so on.

Sj is the square of the tangent from (x, y) to the circle S, = 0.
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Also we shall habitually use S,, S2, S3 with reference to the three
circles a, b, c round which the problems hinge.

When we speak of inverse points, or inverse circles, we shall
understand the circle of inversion to be the orthogonal circle k.

The values of Su S2, S3 at the point (x, y) are proportional to
their values at the inverse point (x, y') ; for, taking the origin at the
radical centre, we find at once

8i(x'< y') = Si(x> y)• &Kxt+y2h e t c - > s i n c e c ,=e 2 =c , =A2.
Hence a homogeneous equation in Slt S2, S, represents a locus

which, if it contains any point, contains the inverse point also.
As an immediate consequence, a homogeneous equation of the

first degree in S,, S2, S3 represents a self-inverse circle. Such a
circle is cut orthogonally by k; it is co-orthogonal with a, b, c, and
for brevity we shall call it an orthogonal simply.

When the ratios Sj: S2: S3 are given, a pair of inverse points are
determined, namely, the intersections of two orthogonals as

8 , -0 ,8 , , S t - G A .
When a homogeneous equation of the second degree in Sj, S2) S3

is known to represent a circle as part of the locus, the complete
locus must be this circle and its inverse.

It will often be convenient to write X, Y, Z instead of
S,/a, SJb, S3/c.

The ratios of the tricircular coordinates X, Y, Z determine an
inverse pair of points.

16. The circles having given common tangents with a, b, c.

By an application of a remarkably powerful method, due to
Cayley, Salmon proves the relation between the common tangents
12, etc., of any five circles

= 0. - - (1)

For 1, 2, 3 take the circles a,b,c; for 4 a circle p the squares of
whose common tangents with them are u\ v\ tt?.

0
1

1

1

1

1

1

0

12-

13=

14=

15"

1
12s

0

23"

242

25"

1
13"

23"

0

34s

35"

1
14"

24"

34"

0

45"

1

15"

25"

35"

45"

0
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The centre square of the determinant is then

0 n2 m2 v?
n* ° F * . . . . (2)m2 P 0 u? X '

w2 v2 to* 0

This will remain unchanged in many of the manipulations now
to be made, and we need then only write the border constituents.

Note in passing that if the circles 1, 2, 3, 4 are touched by a
circle, say 5, then 152 = 252 = 352 = 452 = 0 and (1) then reduces to, its
centre square =0, which is equivalent to

12-34 ±13-24+ 14-23 = 0.* - - - (3)

Now two real circles with radii of the same sign must, by 2 (h),
be touched similarly, i.e., both concavely, or both convexly, by a real
circle touching them both ; but dissimilarly when the radii are of
opposite signs. Hence the proof of the statement at the end of
Art. 2 that in (3) direct tangents are to be taken between circles
touched similarly, transverse between circles touched dissimilarly,
by the fifth circle.

Returning to (1), (2), for the fifth circle take the circle with
centre (x, y) and radius r.

Then 152 = (*-*,)• + (y-y.f -(r-af

= S, + 2ar - r1, etc.

Substitute these values of 15% 252, ... , in (1) ; to the last row add
r*. the first, and similarly with the last column. We have then

0 1 1 1 1 1 !

S, + 2c- =°- <3)

S, + 2ar, S, + 2br, S3 + 2cr, S4 + 2pr, 2r2

• Conversely, if (3) is satisfied, the circles 1, 2, 3, 4 have a common
tangent cirole. To prove this, take the circle 5 so that 159=252=352=0.
The equation (1) is a quadratio for 452, one of the roots of which is zero, in
virtue of (3). Hence one of the two circles touching 1, 2, 3 touches 4 also.
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This is an identical quadratic in r, and we obtain three useful
equations by equating the absolute term, and the coefficients of r
and r" to zero.

but if (x, y) is a point on the circle
(4) then S4 = 0 ; hence the equation
of the two circles whose common
tangents with a, b, c are u, v, w,
viz.,

This equation is not homogeneous
in the S's, but if from the last row
and column we subtract the last but
one, the equation is homogeneous in

S, - u!, S2 - IT, S3 - itr ;

showing that the two circles are

inverse to each other with respect to the orthogonal circle of

0

1

1

1

1

0
-I

1

1
1

(0
1

s,
1

s,

From the
1

s2
1

s.,

1

S3

1

s3

1

s4
1

0

constant
1

s,

S3

s4
0

1

s,
s,,
ss
0

0

= 0

= 0.

term

; (4)

(5)

If u" = v- •-
circles

2 = 0, we have Casey's equation for the two touching

0
n2

m?

Si

of

n"
0

S2

r2 in

w2

r-
0

S3

(3)

Si

s,
S3

0

0
1

1
1
1
0

= 0.

1 1 1 1

(6)

= 0. (7)

For the touching circles, put «" = v" =• ur = 0 ; then from 2nd, 3rd
and 4th rows subtract the 5th, and similarly with columns, and we
obtain the equation already found in Art. 12.
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(iii) From the coefficient of r in (3) = 0, (8)

0 1 1 1 1 0
1 a
1 b
1 c

1 P
1 S, S, S3 S4 0

and if (x, y) is a point on the circle 4, the equation obtained by
writing 0 instead of S4 in (8) gives us individually the two circles
required, p being one of the roots of (7).

0 n'
0
P

S.

l-
0

a-p

b-P

e-p

-P

= 0, (9)

or

= 0. (10)

For the touching circle of radius p
put M2 = v1 = it? = 0, and from the
2nd, 3rd, 4th, and 6th rows subtract
the 5th, and obtain

{m2(6 - p) + ri\c - p) - P(a - P)}
{n%c-p)+ r-(a-p)-m\b-p)}

+ n-S3{ t\a -p) + m*(b -p)- n\c - p)}
The equation (6) of the two touching circles together is

Z4S1
2+... + . . . - 2 w V K S 3 - . . . - . . . = 0 .

Where this meets S, = 0, we have »n2S2 - n2S3 = 0,
and therefore from (10) S2 = n2p/(p - a); S3 = m*p/(p - a).

Hence the points of contact of the two touching circles are
separated, for obviously when the actual values of Slt S2, S3 are
given and not merely their ratios, a single point is determined.

As an interesting special case, suppose that two of the given
circles, say b and c, touch.

Then P = 0 and the equation of the two touching circles is

The two touching circles coincide, and touch b, c at their point
of contact.

17. The circles cutting a, b, c at given angles.
The solution just given was deduced directly from the relation

between the common tangents of five circles. The solution of the
problem now proposed comes equally naturally from a similar relation
connecting the cosines of their angles of intersection. To obtain
this, let (x,, y,) be the centre and r1 the radius of the first circle,
and so on.
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Multiply together the two matrices

t j / ] - ' n -J*i> -in> *

? + yi-r.?, -2a:.,, - 2y2, 1 y2,

There being five rows and only four columns, the resulting
determinant is zero, that is

2ri\ - 2r1r2cosl2, - 2r1r3cosl3, - 2r!r4c = 0

or dividing the rows and columns in order by r,, r.2, rs, r,, rs,
1 cosl2 cosl3 cos!4 coslS

cosl2 1 cos23 cos24 cos25
cosl3 cos23 1 cos34 cos35
cosl4 cos24 cos34 1 cos45
cosl5 cos25 cos35 cos45 1

(1)

This relation is of even greater interest than that between the
common tangents. For one thing, it can be transferred at once by
inversion to circles on a sphere, subject to a certain convention, or
definition. Indeed in the whole of the following theory we might,
with very slight changes, be dealing with circles on a sphere instead
of on a plane.

For 1, 2, 3 take the circles a, b, c cutting at angles A, B, C and
for 4 take a circle p cutting these at angles a, {S, y. For 5 take
the circle with centre (x, y) and radius r.
Then S, = (x - x1Y + (y-y,)2 - a-

= r'2-2arcosl5 (2)
or cosl5 = (r2-S1)/2ar, and so on.

Substitute in (1) and multiply the last row and column by r.

Thus 1

cosC
cosB
cosa
r 2 - S ,

cosC
1

cosA
cos/3

r"-Ss

cosB
cosA

1

cosy
r 2 - S 3

cosa
cos/3
cosy

1

r 2 - S 4

(r2 - S,)/2a
(r2 - S.)/26
(r2-S3)/2c
(r2 - S4)/2/B

..2

2a 26 2c

= 0. (3)

The coefficients of r* and r2, and the constant term are separately

zero.
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1
cosC

cosB

COSa

X

cosC
1

cosA

cos/8

Y

cosB
cos A

1

cosy

Z

cosa
cos/8

cosy

1
0

= 0, (4)

where X
Y
Z

= S,/a,
= S2/6

= 0. (5)

(i) Putting r = 0 and taking (x, y) on the circle S4 = 0, we have
the equation of the two circles cutting a, b, c at angles a, /3, y in the
form

X
Y
Z
0
0

From the 1st, 2nd, and 3rd rows subtract the 4th multiplied by
cosa, cos/8, cosy respectively, and we get another form which is
sometimes convenient

sin2a cosC - cosacos/8 cosB - cosycosa X !
cosC - cosacos/8 sin2/8 cosA - cos/8cosy Y
cosB - cosycosa, cosA - cos/8cosy sin2y Z

X Y Z 0 |
By putting cosa = cos/8 = cosy = 1 we get the equation of the

touching circles in a form which is the same as 16 (6), seeing that

P = 46csin2—, etc.

(ii) From the coefficient of r* in (3)
1 cosC cosB

cosC 1 cosA
cosB cos A 1
cosa cos/3 cosy
I/a 1/6 1/c

This equation for the radii has been given by Salmon (Conies,
Chap. IX., last example).

(iii) From the coefficient of r1 in (3)
1 cosC cosB

cosC 1 cos A
cosB cosA 1
cosa cos/8 cosy
Sj/a S2/6 S3/c

we get the equations of the two circles cutting a, b, c at angles
a, /8, y in separate form. Also we might obtain (6) by putting the
coefficient of ar' + y ^ O in the identity (7).

COSa

cos/8

cosy

1

VP

I/a
1/6

1/c

VP
0

= 0. (6)

COSa

cos/8

cosy

1

I/a
1/6

1/c

VP
- 2

= 0.

This is the linear (non-
homogeneous) relation

(7) connecting the equations
of any four circles. If
we take (x, y) on S4 = 0,
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18. Some deductions from the equations of Art. 17.

(i) From (1) if the circles 1, 2, 3, 4 are co-orthogonal, we may
take 5 as their orthogonal circle and we get the deter-
minant (D say), obtained by cutting out the last row and
column of (1), equal to zero.

The equation (7) is then homogeneous in S,, S2, S3, S4; by
a well-known theorem in determinants the left of (4) is a
perfect square, and the equation (6) for \/p has equal roots.
The two circles p coincide in this case.

(ii) By putting cosa = cos/3 = cosy = 0 in (6) so that the circle p
is the orthogonal circle, we get

0 I/a 1/6 1/e
cosB
cos A

1

The determinant which multiplies &2 is easily shown to be

I/a
1/6

1/c

1
cosC
cosB

cosC
1

cosA

1

cosC
cosB

cosC
1

cosA

cosB
cosA

1

If the radii and Arfe/ are finite the circles will have a
common point if

1 cosC cosB
cosC
cosB

1 cosA
cosA 1

or - A)
= 0 sin£(C + A - B)

This also follows from putting
r = 0 and Sj = S2 = S3 = 0 in (3).

If in addition A = 0, k will be indeterminate and the circles
a, b, c will be coaxal.

If a, b, c are all infinite, then from (6), for example,

1 cosC cosB
cosO 1 COB A =0 again.
cosB cos A 1

This is the relation connecting the supplements of the angles
of a rectilineal triangle when their signs are undetermined
(see Art. 21).
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I/a
1/6

1/c

0

- 2

X
Y

Z

- 2

0

(iii) Putting r = 0 in (3) and taking (x, y) at the centre of p we
find, after slight manipulation

1 cosC cosB

cosC 1 cosA

cosB cosA 1 1/c Z =0.

I/a 1/6 1/c

X Y Z

This is the identical relation connecting the absolute

tri-circular coordinates of a point pair.

(iv) Denote by 2 what the determinant of (4) becomes when we
put cosa, cos/3, cosy all equal to zero. 2 = 0 is then the
equation of the orthogonal circle.

Also let S denote the determinant of (4) as it stands.

1 cosC cosB cosa X

cosO 1 cosA cos/3 Y

Then S + K2 = cosB cosA 1 cosy Z

cosa cos/3 cosy, 1 + K, 0

X Y Z 0 0

If now we determine K SO that the determinant obtained
from this by leaving out the last row and column is zero,
which is possible unless

1 cosC cosB

cosC 1 CosA =0,

cosB cosA 1

then the determinant itself is, by the theorem already cited,
the square of a linear function of X, Y, Z, say of
pX + qY + rZ.

Thus S = - *2 + (pX + qY + rZf.

The equation of two inverse circles in tricirculars is thus of
the same form as the equation of a conic having double
contact with a given conic.

Similarly it may be shown that by adding a certain multiple
of the determinant of (iii) to 2, we obtain a square of the
form (p'X + q'Y + r'Z + sf.

ThiB obviously ought to be the case since 2 = 0 represents a
single circle.
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(v)- Referring to (1), suppose that the angles of intersection of
4 and 5 with 1, 2, 3 are given. Then (1) gives a quadratic
for cos45. The inverse pairs 4 and 5 will touch, that is,
one of 4 will touch one of 5, and the other of 4 the other
of 5, provided the determinant obtained by putting cos45
equal to 1 in (1) is zero. Modify the determinant so
obtained by subtracting from the last column the last but
one, and similarly with rows ; and we see from (4) that
the circles 4 and 5 will touch provided the point pair

X : Y : Z = cosl5 - cosl4 : cos25 - cos24 : cos35 - cos34
lies on 4, or, similarly, on 5.

This result will be of use later, and its converse will be
proved in next Article.

19. The point of contact of two touching circles given by their
angles of section with a, b, c.

Theorem. If two circles p, r which touch each other cut a circle
a at angles a, 6l, and if 2, = square of tangent to a
from the point of contact of p, r,
then (p - r)2, = 2arp(cosa - cos#i). - - (1)

Let P, Q, D be the centres of p, r, a; R the point of
contact of p, r.

The theorem comes from the well-known relation between the
mutual distances of D and the three collinear points F, Q, R, viz.,

QR.PD 2 +RP.QD 2 + PQ.RD2 + QR.RP.PQ = 0.
It follows that

QR(PD5 - a2) + RP(QD* - a2) + PQ(RD8 - a2) + QR. RP. PQ = 0. (2)
Buthere QR = r, RP= - p, PQ = p - r;

PD 2 -a 2 = p2-2apcosa,

Substitute these values in (2) and the theorem follows at once.

20. An inverse pair of circles as an envelope of orthogonals.
Another solution of the problem of section at given angles.

If 84 = (XBJa + /xS2/6 + *S»/e)/(X/a + /a/6 + v/c)
the circle S4 = 0 is an orthogonal; let its radius be r, and its angles
with a, b, c be 8lt 8.,, 63.
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Let any fifth circle R cut S,, S2, S3, S4 at angles a', /3', y', 8.

Then for the values of S,, S2, S3, S4 at the centre of R we have

S, = R2 - 2aRcosa',

52 = R3-2&Rcos/J',

53 = R2-2cRcosy' ,

54 = R 2 -2 rRcos8 .

Multiply these equations by A/a, p.jb, vjc, - (A/a + p-/b + v/c) and
add.

. •. (A/a + p.jb + v/c)rcosS = Acoso' + p.cos/3' + vcosy'. - (1)

For the circle R take in turn the circles a, b, c, r.

.: (A/a + /x/6 + v/c)rcos8l = A + JUCOSC + vcosB"|
( ... )rcos6.2 = AcosC + /x, + vcosA > - - (2)
( ... )rcos63 = AcosB + /xcos A + vj

and ( ... )r = Acos^, +//,cos02 + vcos^3. - (3)

By elimination of &-,, 0.2, 6, from (2), (3)

(Xja + njb + vlcfr* = A2 + /x2 + v2 + 2/ivcosA + 2vAcosB + 2A/iCOsC. (4)

Finally in (1) for R take a circle p which cuts a, b, c at angles
a, /?, y and suppose that S4 touches p.

.-. (A/a + /t/6 + v/c)r = Acosa + /icos^3 +vcosy. - - (5)

From" (4) and (5) it follows that the circle p will touch S4 (of
radius r determined by (5)) provided
A2+/i2+^+2/ivcosA+2vAcosB+2A/xcosC = (Acoso+/xcos^+vcosy)2. (6)

Henee the inverse pair of circles cutting a, b, c at a, /?, y may
be considered as the envelope of the orthogonal AX + /iY + vZ = 0,
subject to (6).

In the system of coordinates X, Y, Z, (6) is the tangential
equation of the inverse pair of circles.

I t would be easy to show that the condition (6) is equivalent to
this, that the radius of the orthogonal is proportional to the JLr from
its centre on the radical axis of the inverse pair.

As to the form of (6), compare 18 (iv).

The equation of the two circles p might now be found by follow-
ing precisely the lines of the method by which, in Conies, the trilinear
equation of a conic is deduced from its tangential equation. But
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we may use the theorem of 19, which gives, at the point of contact
of (6) with its envelope

P ~ r S , a

—~ = rcoso - rcoao,
lp a

or multiplying by Xja + /x/6 + v/c, writing X for SJa, and using the
first of (2),

(X/a + /x/6 + vjc)(p - r)X/2p = (X/a
Similarly

( )(

Also from (5)

and we have of course

+ v/c)rcosa - A - /acosC -

^ ;

= (
0 = (
0 =

By linear elimination of

-r)l2p, (X/a

)rcosy - AcosB - /xcosA - vj
)r - Acosa - /icos/J - vcosy I

AX + /*Y + vZ J

X,

we find 17 (4), the equation of the two circles p.
To get the equation of the tangent orthogonal at (X', Y', Z')

write X', Y', Z' for X, Y, Z in (7) and then eliminate between (7)
and (8). The equation is 17 (4) but with X, Y, Z accented either
in last column or last row.

If instead of the last of (8) we take the obvious identity
(XIa + pjb + v/c)(p - r)( - 2)/2p = (X/a + /*/& + v/c)r/p - A/a - /*/6 - v/c

and eliminate as before, we obtain 17 (7) with S4 = 0.

Lastly, to get the equation for the radii 17 (6). Put S4 = 0 in
17 (7) and let the minors of the constituents of the last row be
L, M, N, P, Q.

Then the determinant
1 cosC cosB cosa I/a

cosC 1 cos A cos/3 1/6
cosB cos A 1 cosy
cosa cosp cosy 1
S,/a S2/6 S3/c 0

1/c

l/p

- 2

(9)
is equal to

Now the value of any S at the centre of S = 0 is -square of
radius.

In particular the value of the determinant (9) at the centre of p
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But since, at the centre of p, S, = p2 - 2apcosa and so on, it follows
that the value of the determinant (9) at the centre of p is

(p3 - 2apcoaa)L/a + (p1 - 2bpcosfl)M/b + (p- - 2c,ocosy)N/c - 2Q.

Equating the two values, we hare

L(— - —cosa) + M ( 4 - - -Uos/A + N(— - —cosy\ - Q. \ = 0 (10)
\a p I \b p i \c p ' p

which is a determinant obtained from (9) by replacing the last row
by the coefficients of L, M, N, P, Q in (10). 17 (6) follows by
adding to the last row (l/p). last but one.

21. Method of finding corresponding results for a rectilineal
triangle. The circumscribing circles.

It might be interesting to discuss in detail the limiting forms of
the equations of Art. 17 when one or more of the given circles
become right lines, but we shall merely notice here the form which
equation (4) takes for the case of a rectilineal triangle.

Suppose we have three real intersecting circles with positive
radii a, b, c. Keep three of the points of intersection A, B, 0 fixed
and let the centre of a pass to infinity on the side of BG remote
from A, and similarly with the other two. I t is geometrically obvious
that in the limit S,/2a or JX becomes the ±' a, or a; let us say, from
the variable point to the line BC. Hence we have only to write
x, y, z for X, Y, Z in 17 (4) to get the equation in trilinears of the
circle cutting BC, CA, AB at angles a, f3, y.

It is essential to notice, however, that the angles A, B, C of the
circles become, not the angles A, B, C of the triangle, but their
supplements.

Returning to the circles a, b, c, 17 (5) is

X2 { (cos/Jcosy - cos A)2 - sin2/3sin!y } + ... + ...

- 2YZ{sin2a(cos/?cosy - cos A)

+ (cosacos/2 - cosC)(cosacosy - cosB)} - . . . - . . . = 0 . (1)

If we choose a, fi, y so that the coefficients of X2, Y2 and Z2 in
this equation are all zero, the equation will be satisfied if any two
of X, Y, Z are zero, and will therefore represent a pair of circles
one or other of which passes through each of the six points of inter-
section of a, b, c. If b, c intersect at A, A'; c, a at B, B ' ; and
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a, b at C, C, then A, A' are inverse points as also B, B' and C, C.
There will clearly be four inverse pairs of circumscribing circles, viz.,

ABC, A'B'C; ABC, A'B'C; AB'O, A'BC; AB'C, A'BO.
To determine a, /?, y we have

cos(/3 ± y) = cosA
cos(y ± o) = cosB
cos(a +|8) = cosC

As explained more fully in connection with equation (6) of next
Article, we reject certain of these solutions as involving that the
three circles have a common point.

Further, since it is the cosines only of a, /?, y that it is material
to know, it is easy to see that all the solutions are in effect included
in the four

y +a ••

=- A]
(iii); y + a = B\ (iv).

= A
. = B J-(ii); y + a = - B
1= Cj a+P= Cj

In (1) the coefficient of - 2YZ is
sin2a(cos/2cosy - cos A) + (cosacos/3 - cosC)(cosacosy - cosB)

which, when eos(/3 + y) is put for cosA, and so on, becomes
2sin2asin/?siny.

Hence the equation of any one of the four circumscribing pairs has
the form

sina sin/J siny

o = M - A , - B , y = M - C ,

)

For (i)
where
and the equation is

sin(M - A) | sin(M -JB) _ sin(jkl ~_C)
X" ' '

For the others we have to change the signs of A, B, C respectively
both in the expressions for the angles of intersection and in the
equation of the pair of circles. In the case of 3 real intersecting
circles, the values of the angles of intersection can easily be verified
from a figure.

For a rectilineal triangle write IT - A, JT - B, JT - C for A, B, C.
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The equation of the pair (i) becomes
sinA sinB sinC

+ + = 0,
x y z

the well-known equation of the circumscribing circle.
The equation of the second circumscribing pair is

sinJ(A + B + C)/X + sinJ(C - A - B)/Y + sin£(B - A - C)/Z = 0.
This becomes for a triangle

a;(ysinB + zsinC) = 0
which represents the base BC and the parallel to it through A.

We find in the same way the equation of the inverse pair of
circles with respect to which a, b, c are self-polar (in a sense which
we do not explain at present), namely,

X2cosA YxosB Z2cosC
cos A - cosBcosC cosB — cosCcosA cosC — cosAcosB

This becomes for a triangle, arsin2A + y2sin2B + s2sin2C = 0, the
known equation.

22. The Hart Circles.

Besides the Apollonian circles and the circumscribing circles,
there are some other sets of four inverse pairs related in an interest-
ing way to the given tri-circle, notably the circles discovered by
Hart, each pair of which touches each Apollonian pair. We shall
investigate these by determining their angles of intersection with
o, 6, c.

The condition, 16 (3), that four circles should be co-tangible by
a circle is, in terms of the common tangents,

12-34+13-24 ±14-23 = 0, - - - (1)
or, in terms of the angles between the circles,

We propose to enquire whether a circle p, cutting a, b, c at a, j3, y
can be found such that each of the four sets of circles

p,a,b,c; - p, - a, b, c : - p, a, - b, c ; - p, a, b, - c - (3)

is a cotangible set.
p, a, 6, c will be cotangible if

sin Jasin J A + sin JySsin^B ± sinjysin JC = 0.
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The angles between - a and b, c, - p are ir - C, IT — B, a respectively,
and therefore - p, - a, b, e will be cotangible if

sin Jasin|A + cos|/?cosJB + cos|ycos|C = 0.

Each of the sets (3) will therefore be cotangible, provided we
can find a, J3, y so that

sinjo sinA_ A + sin£/3sin£ B + sinjy sin^C = 0 \
sin|a sinjA + cosJ/8cos|B - cosjy cosJC = 0 [

+ sinij8sin£B + cosJycosAC 0 *"'

cos^acosJA - cos£/?cosJB + sin^y sin JC = 0

There are here only three independent equations, as the first is
found on adding the other three. This would happen with various
other distributions of the signs of the terms, but it will be found
that the altered equations are really the same as (4), with different
initial determinations of o, /?, y from their cosines. (2) (j)).

The equations (4) are equivalent to
cos|(/3 + B) - cosi,(y - C) = 0
cos£(y+C)-cosA,(a - A ) = 0 V - - - (5)
cosi/a + A) - cosJ(/8 - B) = 0 j

or to /8 + B - 4 n , i r ± ( y - C ) | ,
_ , , , where the ns

y + C = 4w2ir + (a - A) L (6)
are integers.

If we take all the ambiguous signs in (6) + we get by addition
A + B + C = 2Nir ; if we take the first ambiguity + and the other
two - we get B + C - A = 2NV.

But if A ± B + C = 2M7r the circles a, b, c have a common point,
(18 (ii)).

Neglecting consideration of this special case, we have to deal
with four sets of equations, viz.,

/3 + B = 4«!jr - y + C /? + B = 4 ^ - y +
and three sets _ d .

y + C = 4n,;r + a - A
y + C = injr - a + A r . . .
' of the type
a + A = 4w37r - ft + B.

Now it makes no difference to the determination of the circles
a, fi, y if the signs of any or all of a, /?, y are changed, or if any
multiple of 2TT is added to any of them.
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Hence we may take as the four solutions
HQ HJ H« H3

a B - C B - C B + C B + C
/ 3 C - A C + A C - A C + A - - ( 7 )
y A - B A + B A + B A - B

and we have proved that each of the eight circles thus specified,
with the sign of its radius determined as in the scheme (3), touches
four Apollonian circles, one from each inverse pair. Obviously
when a Hart circle touches four Apollonian circles, its inverse
touches the other four. From this it follows easily that each
Apollonian circle touches four Hart circles, one from each pair.

For, denote the Appollonian pairs by Ao, A,, A.,, A3; Ao touch-
ing o, b, c; At touching - a, b, c, etc., and let their radii be
o0, a0'; «!, a,', etc. Also let h0, h0'; hly /;/, etc., be the radii of the
Hart circles. Each pair of radii is perfectly definite, being the
roots of 17 (6) with the proper values of a, /3, y.

Now since h0 is cotangible with a, b, c it touches either ag or a0' ;
if it is a0', then ha\ a0, being the inverses of h0, a0', touch. Hence
either h0 or h0' touches a0. Similarly every Apollonian circle is
touched by one from each Hart pair.

We can indicate the nature of the different contacts more
definitely.

Thus, attaching the symbol a0 arbitrarily to one of the pair of
radii of Ao, denote by Ao, hu k,, h, the radii of the circles which aa

touches; then by (ii, a2, o3 the radii of the circles which - h0 touches.
Then a0 touches h0, hx, h.2, h-.

and .-. a0' /t0', /»/, /(./, h-.
Also - h0' a/, a./, a3'.
Next a, touches either - A, or - h{; the question is, which 1

The following method not only answers this question, but it gives
an interesting expression for the angle between h0 and hx. (The two
possible values could be found from 17 (1)).

We know that a, b, c, h0, hy are cotangible ; hence from (2),

taking
6, c, Ao, A,; sinJAsin-J/tjfc, ±sin|(C - A)sinJ(A + B) ±sin£(C + A)sin|(A - B) = 0,

- B)sin|(B - C) ±sin£(A + B)sin£(B - C ) = 0,

C)sinJ(C +A) + sinJ(B- C)sinJ(C - A) = 0,

(8
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The common solution of these equations is
sin|A0/t, = 2sin|(B - C)cosiA, - - - (9)

(strictly, ± this, but the sign is immaterial.)

In the first of the identities (8)
change B into TT + B, and C into ir + C

This gives

sinJAsinJV*i ± cos|(C - A)cos|(A + B) + cos|(C + A)cosf (A - B) = 0,
which is just the condition that b, c, - h0, ~hx should be cotangible.

Similarly we show that c, — a, -Ao, -hi and -a,b, — h0, -A,
are cotangible.

Hence - a, b, c, - Ao, - /^ are cotangible.

We can prove in the same way that

2sinJ(B + C)<5OS$A I . . . (10)
2cos£(B + C)sinJA J

and the rest can be written down from symmetry.

We have then the following scheme of contacts

caa touches a, b, c, h0, hlt %„, h3

\a0' a, b, c, h0', A,', h2', hJa,

-a,
-a,

b,

b,
b,

c,

e,
c, - V>

- A , ,

- v>

V,
- A , ' , -

7,« 2 , —la , - a , o, c, - » „ , - « ! , - / ( 2 , - f l 3 /JJX

/«:; a, b,-c,-h0,- A,', - Aj', - A3

lrt ; ! rt, o , — c , — A o , — A j , — A o , — A 3 .

From the scheme we see that the eight Apollonian circles can be
arranged in sets of four, one from each pair, in eight ways, so that
the four circles of each set are touched by another circle besides

± a, ± b, ± c, viz., by Ao or Ao' or A,, etc.

For instance -a0 , alt a2, a3 are touched by -Ao

Z~+,-Z I zz" I -(12)
a0, « , , 02, —«» c .
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Any three of the Apollonian circles fall into one of these sets of
four, but the fourth is determined when the three are chosen.

Further, when three are chosen, the four circles which touch
them belong, one to each of the Apollonian pairs of the three.

We can thus specify all eight Apollonian circles of any three of
the Apollonian circles of ±a, ±b, +c. Thus, taking +a,, ±a.,, + a.
we see from (12) that -h0, a, b, c are four of their Apollonian
circles, one from each pair, and the other four are therefore the
inverses of these with respect to the orthogonal circle of a,, a2, a...

23. The equation of any Hart pair is found from 21 (1), viz.,

X2{(cos/?cosy - cos A)'2 - sin2y6sin°y} + ... + ...

- 2YZ{sin2a(cos/?cosy - cos A)

+ (cosacos/2 - cosC)(cosaeosy - cosB)} - ... - ... = 0

by substituting the values of o, f$, y from 22 (7).

For Ho, the cofficient of X'2 is

(cos/3 - y — cos A)(cos/? + 7 — cos A)

, . 3 A - B - C . B + C - A . C + A - B . A + B - C
= 4sin sin sin sin ;

the coefficient of - 2YZ is

cos/Jcosy - cos A + cosa(cosAcosa-cosBcosj8-cosCcosy)+cosBcosC

= cos/3cosy - cosA - cosacos(B + C - A) + cosBcosC

- (cosB - C - cosA)(l - cosB + C - A)

, . OB + C - A . C + A - B . A + B - C
= 4sin- sin sin .

Hence the equation of Ho is

(1)

To get the equations of H u H2, H3 it is clear from 22 (7) that we
have only to change the signs of A, B, C respectively in this.
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When the circles become right lines, (1) becomes, as in Art. 21,

*2sin2A + y8sin2B + «2sin2O - 2yzsinA - 2«assinB - 2xysinC = 0

which is the known equation of the nine-points circle.

Again, the equation of H, is

. B + C+3A C-A-3B B-A-3C
X2sin (- Y2sin 1- Z2sin

„_„ . A+B+C . „ „ . C - A - B o v v . B - A - C „ ...
+ 2 YZsin - + 2ZXsin - + 2XYsin -•• - = 0 (2)

which degenerates into

ar'sinA + y2sin(B - C) - s2sin(B - C) + 2z#smC + 2a:ysinB = 0

or (a;sin A + ysinB + zsinC)2 - (ysinC + zsinB)2 = 0,

which represents two parallel lines, which are easily seen to be, one
the fourth common tangent to the inscribed and the first escribed
circle, the other the fourth common tangent to the other two escribed
circles.

24. The absolute tricircular coordinates of the point of contact
of any Hart circle with an Apollonian circle which touches it are
given by the theorem of Art. 19. This enables us to distinguish the
whole 32 points of contact. For example, where a0, h0 touch we
have

X Y Z 4«A ...
_ = _.—. — ___ — , . (\y

This gives for an ordinary triangle at the point of contact of the
nine-point and the inscribed circle (since X becomes 2x, etc.)

V _2(-r)(-jR)
C) sin2£(C-A) sin2£(A-B) - r + iR K"'

the radii being both negative, when the circles proceed to their
limiting forms in such a way as to make X reduce to + 2x, etc.
(Art. 21).

The orthogonal which touches Ho, Ao at their pair of points of
contact might now be found by the very same method as that by
which we find the line which touches a conic at a given point, in
trilinear coordinates. (The result, in fact, is proved in Art. 20.)
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Or we may proceed thus :

let AX + /xY + vZ = 0 be an orthogonal touching Ho, Ao.

Then by Art. 20 (1), (4), (6),

(A/a + fi/b + v/c)r = Acos(B - C) + /icos(C - A) + vcos(A - B) \

= A +fi +v I . (3)

and (A + ft + vf = X2 + /*2 + i/2 + 2/ivcos A + 2i>AcosB + 2A/«;osC j

Hence, to determine A: /* : v we have

vsin2i(A - B) = 0 - (4)
and /*vsin2JA + vAsin'2£B + A/*sin2JC =0 J

In general, this method of determining the common tangent
orthogonals of two given inverse pairs would give us two common
tangents. When the inverse pairs touch, these coincide.

The obvious identity

sinJAsin£(B - C) + sinJBsin|(C - A) + sinJCsinJ(A - B) = 0

will be found useful in eliminating, say, v from (4) and finding

B . B - C . A . C - A \ 2

y sin— /tsiny s in -^—j = 0.

Hence A, ft, v are as sin£A/sin£(B - C), etc., and the equation of the
tangent orthogonal is

Xsini-A Ysin|B Zsin|C
siiTi(B~^c] +

 s i n | (C - A ) + sinJ(A - B) ~ ' " ( 0 )

25. The four circumscribing pairs are touched by other four pairs.

The analogy between the theory of inverse pairs of circles, and
the theory of conies having double contact with a given conic
(Salmon, Conic Sections, Chapter on Invariants) suggests the
theorem that, like the four Apollonian pairs, the four circumscribing
pairs are touched by other four pairs of circles.

This is from more than one point of view the reciprocal, or polar,
counterpart of the theorem which we have just discussed at some
length, as we hope to explain in detail, along with some other
matters, in a supplement to this paper. Meanwhile we merely
verify that the theorem is true, by the methods which have been,
given here.
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The equations of the circumscribing pairs (Art. 21) are

sinM - A/X + sinM - B/Y + sin Si - C/Z = 0

- sinM /X + sinM-~C/Y + sinSTTB/Z = 0

sinM - C/X - sinM / Y + sinM - A/Z = 0
(1)

sinM - B/X + sinM - A/Y - sinM ,'Z =

where M = J(A + B + C). The angles of intersection of these with
a, b, c are for the first pair M - A, M - B, M - C ; and for the others,
these with the signs of A, B, C respectively changed.

Now we have seen in Art. 18 (v) that the pair of circles cutting
a, b, c at angles 0,, 6.2, 63 will touch the pair

sina/X + sin/3/Y + siny/Z = 0

which cut a, b, c at angles a, /3, y if

cosa - cosd1 cos/3 - cosft, cosy - cosft, ' v '
If we have

sing | sin/3 | siny Q

cosa + cos61 cos/3 + cos0.2 cosy + coa03

the one pair will still touch the other, provided we take the radii of
one of the pairs with their signs changed.

Now we have the identity

sin(M - A) sin(M - B)
, . , . . cosABcosAC cosACcosAA

cos(M - A) 2 2 cos(M - B) 2
 1T,Z

cosiA v ' cosiB

s i n ( M - C ) . . o . (4)
cos(M - C)

cosiC
For the first term on the left is

2cos|A.sin(M - A) cos|Asin(M - A)
cos(|B + JC - A) - cos^(B - C) sin-J(A - B)sinJ(C - A) '

so that the identity proposed is equivalent to

sinJ(B - C)cosJAsinJ(B + C - A) + two similar terms = 0

or {sin£(A + B - C) - sini(A - B + C)}sin|(B + C - A)
+ two similar terms = 0,

which is obviously true.
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In (4) change the signs of A, B, C respectively and we get 3 other
identities, say (5), (6), (7).
In (4), (5), (6) and (7) change B into TT + B and C into TT + C ; in
the same four equations change C into ir + C and A into ir + A; and
again in the same four A into ir + A and B into tr + B.

As will be seen at once on writing them down, the 16 identities
thus obtained are in virtue of (2) and (3) just the conditions that
each of the four pairs (1) with radii properly assigned should touch
each of the four pairs of circles whose angles of intersection 0U 62, 03

with a, b, c are given by the table

cosiB cosJC

cosft,

cosiA
cosiCcos^A

cosiB
cosiAcosiB

cosiC

siniB sin^C cos^
cos^A

siniCcosiA
siniB

cosiAsin^B |
shiiO i

sin^A

cosiB
siniAcosiB

siniB cosiC
siniA

cosiCsiniA
sin|B

siniAsin-?rB
cosiO
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