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Two-generation analysis of pollen flow across a landscape.

III. Impact of adult population structure
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Summary

The rate and distance of instantaneous pollen flow in a population are parameters of considerable

current interest for plant population geneticists and conservation biologists. We have recently

developed an estimator (Φ
ft
) of differentiation between the inferred pollen clouds that fertilize

several females, sampled within a single population. We have shown that there is a simple relation

between Φ
ft

and the average pollen dispersal distance (δ) for the case of a population with no

geographic structure. Though forest trees usually show considerable pollen flow, assuming an

absence of spatially distributed genetic structure is not always wise. Here, we develop analytical

theory for the relation between Φ
ft

and δ, for the case where the probability of Identity by Descent

(IBD) for two individuals decreases with the physical distance between them. This analytical theory

allows us to provide an effective method for estimating pollen dispersal distance in a population

with adult genetic structure. Using real examples, we show that estimation errors can be large if

genetic structure is not taken into account, so it is wise to evaluate adult genetic structure

simultaneously with estimation of Φ
ft

for the pollen clouds. We show that the results are only

moderately affected by changes in the decay function, a result of some importance since no

completely established theory is available for this function.

1. Introduction

Estimating the distance of real-time pollen dispersal is

important, both in predicting evolutionary dynamics

of a regional plant population and in designing

conservation strategies for anthropogenically frag-

mented species. With these needs in mind, Smouse et

al. (2001) devised an estimator of the mean pollen

dispersal distance (δ), extracted from an analysis of

variance of the pollen clouds that fertilizes several

females, spaced out across the landscape. The tech-

nique uses only the genotypes of the mothers and

those of progeny (seedlings) collected from them.

Male gametic genotypes within each of the pollen

clouds are estimated from these genotypes using

parentage analysis methods. Using an Analysis of
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Molecular Variance (AMOVA; Excoffier et al., 1992),

we estimate the intraclass correlation coefficient, Φ
ft
,

representing the proportion of the pollen cloud

variance attributable to differences among the pollen

clouds of different mothers. Thus, Φ
ft

is analogous to

Wright’s (1951) F
st

coefficient measuring differen-

tiation among adult populations.

More recently (Austerlitz & Smouse, 2001), we

dealt with the properties of that estimator for the case

of an adult population within which there was no

spatially distributed genetic structure. We showed

that, as long as the average distance between mothers

(x
"
) was large relative to the average distance of

pollen dispersal (δ), Φ
ft

was inversely proportional to

δ#. The approximation was reasonable for x
"
" 3δ and

very close for x
"
" 5δ. The exact relation between Φ

ft

and δ also depends on the density (d ) of trees in the

population, but is not strongly affected by the shape

of the dispersal function. Results were gratifyingly

similarwhen either the bivariate normal or exponential

distributions were used for pollen dispersal.
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For that initial theoretical study, we assumed that

adults were non-inbred and that they were unrelated,

or more precisely that near neighbours were no more

related than the average pair of adults drawn at

random from the population. Since little genetic

structure, measured either as F
IS

or F
ST

, or as decay of

genetic relatedness with distance, has been shown in

most temperate forest trees (e.g. Epperson & Allard,

1989; Knowles et al., 1992; Berg & Hamrick, 1995;

Leonardi & Menozzi, 1996; Leonardi et al., 1996),

that is a reasonable first-approximation assumption

for many studies. There are, however, cases where

significant genetic structure has been shown within

populations. Bacilieri et al. (1994) estimated that

F
IS

C 0±2 within a single population of sessile oak

(Quercus petraea), and also demonstrated declining

autocorrelation of allelic frequencies over a distance

of !100 m; similar values of F
IS

have been observed

in other populations of Q. petraea (Le Corre et al.,

1997). Similarly, Atherosperma moschatum, an

Australian temperate rainforest tree, showed a high

level of inbreeding (F
IS

C 0±6) and a decrease in

autocorrelation with distance, but on a much shorter

spatial scale !15 m (Shapcott, 1994, 1995). Ueno et

al. (2000) demonstrated micro-spatial structure within

a 4 ha stand of Camellia japonica. Spatial auto-

correlation was significant, though quite small, on a

scale of ! 50 m.

While spatially distributed genetic structure is not

universal, departures from panmixia are a reality in at

least some tree populations. If neighbouring indi-

viduals are more closely related than distant indi-

viduals, and if the pollen cloud that fertilizes a

particular female is drawn mostly from nearby

individuals, we should expect some impact on the

relationship between Φ
ft
and pollen dispersal distance,

δ. The object of this paper is to explore the impact of

inbreeding, and of declining probability of Identity by

Descent (IBD) with distance, on the expected value of

Φ
ft

and, as a consequence, our estimate of average

pollen dispersal distance. We provide an analytical

solution for the case of a population that is subject to

inbreeding, but for which there is no spatial structure,

and also for the case in which the probability of IBD

between two individuals decreases exponentially with

the square of their distance. We also show numerically

that results are similar for more realistic (but

mathematically less tractable) decay functions.

2. The model

(i) General context

Assume first that we have an infinite population, with

individuals randomly distributed across the landscape,

at a density (d ) per squared unit of distance. All

individuals are monoecious and self-fertile, but do not

practice self-reproduction more than would be

expected at random, i.e. the probability of selfing is

merely the probability of drawing a male gamete at

distance z¯ 0. We assume that the probability

distribution of pollen dispersal is a bivariate normal

distribution, with parameter σ :

p(x, y)¯
1

2πσ#

e
− (x#+y#)

#
σ# , (1)

for which the average dispersal distance is (Austerlitz

& Smouse, 2001)

δ¯σAπ

2
. (2)

We consider a sample of mothers drawn from

among these individuals, situated (on average) at a

distance x
"
one from another. Mothers are selected on

the basis of spatial position but not on the basis of

genotype. The difference between this and our previous

study (Austerlitz & Smouse, 2001) is that here we

assume genetic structure among the adults, spatially

distributed across the landscape, as described below.

(ii) Inbreeding among the adults

First, assume that we have a certain level of departure

from panmixia (F ) within the population, i.e. that the

probability ( f
i
) of IBD for the two alleles of a single

individual is higher than the probability ( f
p
) of IBD

for two genes, chosen at random from the population.

Or, conversely, we can say that the diversity (h
i
)

within individuals is lower than that (h
p
) within the

population as a whole. In general, h
x
¯1®f

x
is the

relationship between IBD and diversity. Wright’s F-

statistic for the population is classically defined as

F¯1®
h
i

h
p

, (3)

which can also be written as

h
i
¯ h

p
(1®F ). (4)

To compute Φ
ft
, we use the relation given by

equation (26) in Austerlitz & Smouse (2001) :

Φ
ft
¯

f
f
®f

t

1®f
t

¯1®
h
f

h
t

, (5)

where h
f
is the probability that two genes within the

pollen cloud of a single female are different, and h
t
is

the same probability for two genes sampled within the

pollen cloud of all mothers. To compute h
f
, equation

(21) of Austerlitz & Smouse (2001) is still valid :

h
f
¯

Q
!

2
h
i
­(1®Q

!
)h

p
, (6)
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Fig. 1. Impact of the adult inbreeding coefficient F on Φ
ft
. The intraclass correlation, Φ

ft
, obtained with (14), is plotted

against the average distance between mothers (x
"
), for average pollen dispersal distance of δ¯1 and adult density d¯1,

for various values of F.

where Q
!

is the probability of two male gametes

within the pollen cloud of a single female being drawn

from the same father. Substituting (4) into (6) yields :

h
f
¯ h

p

A

B

1®
Q

!

2
(1­F )

C

D

. (7)

h
t
is given by equation (22) of Austerlitz & Smouse

(2001) :

h
t
¯

Q

2
h
i
­(1®Q)h

p
, (8)

where Q is the average probability of two male

gametes, from the pollen clouds of two different

females, being drawn from the same father. We

neglect here the possibility that two gametes sampled

from the total pollen cloud come, in fact, from the

pollen cloud of the same female. That small probability

is the inverse of the total number of females receiving

pollen. Substituting (4) into (8) yields :

h
t
¯ h

p

A

B

1®
Q

2
(1­F )

C

D

. (9)

Substituting (7) and (9) into (5) yields :

Φ
ft
¯

(Q
!
®Q)(1­F )

2®(1­F )Q
. (10)

As in our previous paper (Austerlitz & Smouse, 2001),

Φ
ft

does not depend on the actual level of h
p
, which

cancels out of the argument. When the mothers are far

enough apart (say, x
"
" 5δ), then, Q¯Q (x

"
)¯ 0

and:

Φ
ft
¯

Q
!
(1­F )

2
. (11)

At maximum (F¯1), Φ
ft

is twice its value with no

inbreeding (F¯ 0). Since we assume here that the

pollen dispersal distribution is bivariate normal, we

can use the analytical solutions derived previously for

Q
!

and Q (equations (15) and (18) in Austerlitz &

Smouse, 2001) :

Q
!
¯

1

4πσ#d
¯

1

8δ#d
, (12)

and

Q¯Q
!
e−x

#

"
/%

σ#. (13)

Substituting (12) and (13) into (10) yields :

Φ
ft
¯

[1®exp(®x
"

#}4σ#)](1­F )

8πσ#d®(1­F ) exp(®x
"

#}4σ#)

¯
[1®exp(®πx

"

#}8δ#)](1­F )

16δ#d®(1­F )exp(®πx
"

#}8δ#)
, (14)

which can be rewritten in terms of the average

distance of pollen flow, using the relationship between

σ and δ, established in (2). If there is no inbreeding

(F¯ 0), we recover the formula from Austerlitz &

Smouse (2001) :

Φ
ft
¯

Q
!
®Q

2®Q
. (15)

Fig. 1 portrays the impact of distance between mothers

on Φ
ft

for various average distances between mothers

(x
"
) and various values of the inbreeding coefficient of

the adults, F. Clearly, Φ
ft

increases with F for any

given value of x
"
, but the rate of convergence of Φ

ft
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Fig. 2. Decay of coancestry θ (z) with distance z, calculated using Male! cot’s (1969) formula (text equation (16)) : (a) with
k¯10−' and σ

m
¯1 ; or (b) with k¯10−% and σ

m
¯1 ; compared with the best least-square fit, obtained for an

exponential decrease of θ (z) with z or z#, or a logarithmic decay, θ
!
®b log(1­z}σ).

towards its asymptote remains the same for all values

of F.

(iii) Impact of relatedness among fathers

Now, assume instead that we have genetic population

structure among the adults themselves, i.e. that the

probability of IBD for two genes declines with

the distance between them. We define f
d
(z) as the

probability of IBD for two genes drawn from adult

individuals that are a distance z apart. As pointed out

by Epperson et al. (1999), for a continuous population,

where the probability of migration decays with

distance, there does not seem to be any completely

accepted theory on the decline of f
d
(z) with distance.

In his models, Wright (1943, 1946, 1969) gives general

results on F
IS

and F
ST

for the whole population, but

does not give anything on the decay of probability of

IBD (or any related quantity) with distance.

Male! cot (1969) did provide a formula for coancestry

as a declining function of distance in a continuous

population. Male! cot denoted that quantity as φ(z),

but we have changed the notation to θ(z), to avoid

confusion with our Φ
ft
. For the case where gametes

migrate following a zero-centred bivariate normal

distribution, with standard deviation σ
m

(Male! cot

1969, equation 3.3.4, p. 72), for a biallelic locus (Aa),

θ(z) follows:

θ(z)¯ θ
!

3
¢

p="

(1®k)#p
E

F

1

4πpσ#
m

G

H

e−z
#
/%p

σ#
m

3
¢

p="

(1®k)#p
E

F

1

4πpσ#
m

G

H

, (16)
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where k¯ (u­�) is the mutation pressure (u and � are

the probabilities of mutation from ‘a’ to ‘A’ and from

‘A’ to ‘a’, respectively), and θ
!

is the coancestry at

distance zero, calculated as:

θ
!
¯

1

1®
8πσ#d

log(2k®k#)

. (17)

Felsenstein (1975) has pointed out that some of

Male! cot’s hypotheses are inconsistent, if (16) was

intended to describe a continuous population. In the

dialogue that followed, it was argued that Malecot’s

model was not describing a continuous population

but rather the limiting case of a discrete subdivision

model (Lalouel, 1977; Morton, 1977; Felsenstein,

1979; Lalouel, 1979). Suffice it that while the closed-

form theory is still not settled, the general idea is that

f
d
(z) should decrease from the value f

i
, the probability

of IBD for the two alleles from a single individual (at

distance z¯ 0), to f
p
, i.e. the probability of IBD in the

total population for distances that are sufficiently

large, formally as zU¢. The probability of IBD and

the autocorrelation approach have been shown to be

formally equivalent, and their decay rates are identical

(Hardy & Vekemans, 1999).

Since Male! cot’s function is computationally too

intensive to be used in the quadruple integrals we use

below, we need an approximation. Three possibilities,

for example, are to assume that the probability of

IBD, f
d
(z), decreases exponentially with distance:

f
d
(z)¯ f

p
­( f

i
®f

p
)e−α

ez, (18)

exponentially with squared distance:

f
d
(z)¯ f

p
­( f

i
®f

p
)e−α

nz
#, (19)

or logarithmically with distance:

1

2
3

4

f
d
(z)¯ f

i
®( f

i
®f

p
) log(1­α

l
z) for α

l
z! 20

f
d
(z)¯ f

i
for α

l
z" 20

(20)

where α
e
, α

n
and α

l
are the decay parameters of (18),

(19) and (20), respectively. The last function has to be

truncated; otherwise, f
d
(z)U®¢ as zU¢. The

function given in (20) is closer to Male! cot’s result for

low values of the mutation pressure (k) (see Fig. 2a),

and (18) is closer for larger values of k (see Fig. 2b),

but neither yields any tractable analytical results for

the derivations that follow. Conveniently, the function

given in (19) does lead to clear analytical results. In

the interest of tractability, we will deal here first with

that function, afterwards providing some numerical

results for (18) and (20). The model with inbreeding

(F" 0, but no spatial structure among adults) is the

limiting case of (18), with α
e
U¢, or (19), with

α
n
U¢ ; in either case, IBD drops instantaneously

from f
i
, at z¯ 0, to f

p
for any z" 0.

Concentrating now just on the case where the

probability of IBD declines exponentially with the

square of the distance, we note that (19) can also be

expressed in terms of diversity, h
d
, where h

d
¯1®f

d
:

h
d
(z)¯ h

p
®(h

p
®h

i
)e−α

nz
#. (21)

As before, to compute Φ
ft

we first compute the

probability h
f
that two genes within the pollen cloud

of a single mother are different, and the same

probability h
t
for two genes sampled randomly from

the pollen cloud of all mothers. To compute h
f
, we can

still use the fact that two genes in the pollen cloud of

a single mother have probability Q
!

of being derived

from the same father and (1®Q
!
) of being from two

different fathers. If they come from the same father,

they will be different with probability h
i
}2, but if they

come from two different fathers, they will be different

with probability h
n
, the integration of h

d
(z) for all

pairs of potential fathers. This yields :

h
f
¯

Q
!

2
h
i
­(1®Q

!
) h

n
. (22)

To compute h
n
, we must consider all potential pairs

of fathers that might have contributed pollen to a

focal female. We denote by (x, y) and (x«, y«) the

physical coordinates of these two fathers. Both are

drawn from the distribution p(x, y). The distance

between the two males will be o(x®x«)#­(y®y«)#,
and their probability of being different will be

h
d
(o(x®x«)#­(y®y«)#). Thus, the average proba-

bility of being different (h
n
) for two genes coming

from different fathers, integrated over the pollen

cloud of a given mother is :

h
n
¯&

¢

−¢
&

¢

−¢
&

¢

−¢
&

¢

−¢

h
d
(o(x®x«)#­(y®y«)#)

p(x, y) p(x«, y«)dxdydx«dy« (23)

which, upon integration, yields :

h
n
¯ h

p
®(h

p
®h

i
)β

!
, (24)

where

β
!
¯

1

1­4α
n
σ#

. (25)

Substituting (24) into (22), we obtain:

h
f
¯

Q
!

2
h
i
­(1®Q

!
) (h

p
®(h

p
®h

i
)β

!
). (26)

To compute h
t
, we can still use the fact that genes

sampled from the pollen clouds of two different

mothers have a probability Q of being from the same

father and (1®Q) of being from two different fathers,

where Q¯Q(x
"
), and x

"
is the average distance
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between sampled mothers in the population. If the

gametes are from the same father, they will be

different, as before, with probability h
i
}2, but if they

come from two different fathers, they will be different

with probability h
n#

, the integration of h
d
(z) for all

pairs of potential fathers. This yields :

h
t
¯

Q

2
h
i
­(1®Q)h

n#
. (27)

To compute h
n#

, we use a system of Cartesian

coordinates, where the first female is at position (0, 0),

and the second at position (x
"
, 0), as in our previous

paper (Austerlitz & Smouse, 2001). For the first

female, the fertilizing male is at position (x, y), drawn

from the distribution p(x, y). For the second female,

the fertilizing male is at position (x«, y«), drawn

from the distribution p
#
(x, y)¯ p(x®x

"
, y). As

above, the distance between the two males is
o(x®x«)#­(y®y«)#, and their probability of being

different is h
d
(o(x®x«)#­(y®y«)#). Integrating over

all possible pairs of fathers, the average probability of

being different (h
n#

) for genes coming from different

fathers, and sampled from the pollen clouds of

different mothers, is :

h
n#

¯&
¢

−¢
&

¢

−¢
&

¢

−¢
&

¢

−¢

h
d
(o(x®x«)#­(y®y«)#)

¬p(x, y) p(x«®x
"
, y«)dxdydx«dy« (28)

which yields :

h
n#

¯ h
p
®(h

p
®h

i
)β, (29)

where

β¯β
!
e−α

n
β
!
x
#

". (30)

Substituting (29) into (27) yields :

h
t
¯

h
i
Q

2
­(1®Q)[h

p
®(h

p
®h

i
)β], (31)

Substituting (26) and (31) into (5) and replacing h
i

with its value in (4) yields :

Φ
ft
¯1®

(1®F )
Q

!

2
­(1®Q

!
) (1®Fβ

!
)

(1®F )
Q

2
­(1®Q) (1®Fβ)

. (32)

where Q
!
, Q, β

!
and β are given by (12), (13), (25) and

(30), respectively.

Fig. 3 illustrates the impact of α
n
on Φ

ft
for various

values of x
"
. Φ

ft
first increases, to reach a peak, and

then decreases again. When α
n
!¢, the limit of Φ

ft
is

the value given in (14), since, as we have stated before,

it corresponds to the limiting case. On the other hand,
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Fig. 3. Impact of the relatedness between fathers on Φ
ft
,

obtained with (32) and plotted against the decay
parameter (α

n
) of the probability function relating IBD to

distance. Results are given for the normal distribution of
pollen dispersal, with average pollen dispersal distance of
δ¯1, adult density of d¯1, departure from panmixia at
long distance, F¯ 0±2, and an average distance between
mothers of : (a) x

"
¯ 5, or (b) x

"
¯100.

when α
n
! 0, Φ

ft
converges to the case where there is

no inbreeding, i.e. (15) with F¯ 0. This can be

explained by the fact that, as α
n
! 0, coancestry

decays very slowly with distance, so even two

individuals that are very far apart are almost as close

genetically as two proximal individuals ; we end up

here with the case of a genetically homogeneous

population. Thus, it is only for intermediate values of

α
n
, when the decrease in the probability of IBD with

distance can be detected within the spatial scale of the

population under study, that two mothers are likely to

sample genetically differentiated pollen pools.

Fig. 4 illustrates the dependence of Φ
ft

on x
"

(the

average distance between females) for different values

of α
n
. Φ

ft
increases with x

"
towards an equilibrium

value. The rate of convergence to this equilibrium

value decreases with α
n
. In practice, the approximation

given in Austerlitz & Smouse (2001) that the equi-

librium has been reached for x
"
" 5δ remains true as

long as α
n
&1. The equilibrium value is obtained by

setting x
"
U¢ in (32) :

Φ
ft
¯1®[(1®F )

Q
!

2
­(1®Q

!
)(1®Fβ

!
)]. (33)

The equilibrium value always decreases with α
n
, but

rapidly converges to an upper limit when α
n

becomes
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Fig. 4. Impact of the relatedness between fathers on Φ
ft
, obtained with (32) and plotted against the average distance

between mothers (x
"
), for average pollen dispersal distance of δ¯1, adult density d¯1, departure from panmixia at

long distance, F¯ 0±2, and various values of the decay parameter (α
n
) for the decline of probability of IBD with

distance.

very small, derivable by setting α
n
¯ 0, tantamount to

setting β
!
¯1 in (33) :

Φ
ft
¯

Q
!

2
­

E

F

1®
Q

!

2

G

H

F. (34)

This limit might seem inconsistent with that

provided above, when α
n
U 0, as x

"
remains finite, but

the result comes from the presence of the product α
n

x#

"
in (30). There is no unique limit when α

n
U 0, and

x
"
U¢, simultaneously, but that corresponds to rather

unrealistic situations.

(iv) Other decay functions for the probability of IBD

The results above were based on an approximation of

Male! cot’s (1969) equation, reproduced here as (16),

by an exponential decay of IBD with squared distance,

as given in (19), the motivation for which was (at least

in part) tractability. We pointed out, at the outset,

that an exponential decay with distance, as given in

(18), or the logarithmic decay, as given in (20), were

better approximations, but hard to deal with ana-

lytically. How much difference does it make? For

these cases, the integrals given in (23) and (28) have to

be computed numerically. We can reduce h
n

to triple

integral form with polar coordinates :

h
n
¯& #

π

!

& #
π

!

&
¢

!

&
¢

!

h
d

¬(o(z cos(θ)®z« cos(θ«))#­(z sin(θ)®z« sin(θ«))#)

¬p
p
(z)p

p
(z«)zz«dzdz«dθ«dθ«,

which simplifies to

h
n
¯& #

π

!

& #
π

!

&
¢

!

&
¢

!

h
d

¬(oz#­z«#®2zz« cos(θ®θ«))

¬p(z)p(z«)zz«dzdz«dθdθ«,

and using the transformation φ¯ θ®θ«, we can write

h
n
¯ 2π& #

π

!

&
¢

!

&
¢

!

h
d

¬(oz#­z«#®2zz« cos(φ))

¬p
p
(z)p

p
(z«)zz«dzdz«dφ. (35)

Thus, to compute Φ
ft
, we must first compute h

n
and

h
n#

numerically, using (35) and (28), respectively, and

then compute h
f

and h
t
, using (22) and (26), re-

spectively, which leads to the value of Φ
ft
, using (5).

To make a valid comparison with the previous

section, we chose matching values of α
e
, α

l
and α

n
(the

decay rates of (18), (20) and (19), respectively). For a
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Fig. 5. Comparison of the expected values of Φ
ft

obtained when the probability of IBD decreases exponentially with
distance, as in (18) (case 1), or exponentially with the square of distance, as in (19) (case 2), or logarithmically with
distance as in (20) (case 3). In all cases, parameters are average pollen dispersal distance δ¯1, adult density d¯1,
average distance between mothers x

"
¯ 5 and departure from panmixia at long distance, F¯ 0±2. For the exponential

decline with squared distance, Φ
ft

is calculated directly for a given value of α
n
, using (32) ; for exponential and

logarithmic decline with distance, it is calculated numerically, using a rate of decay α
e
¯oα

n
log(2) or α

l
¯

o α
n

log(#)
(oe®1), respectively, so that the decrease in probability of IBD with distance is similar in all cases (see text for

details).

given value of α
n
, we used values for α

e
and α

l
such

that the z
!
±
&

value was the same. The z
!
±
&

value is

defined as the distance (z) between individuals for

which the probability of IBD is halfway between f
i

and the long-distance probability, f
p
. That calibration

yields α
e
¯oα

n
log(2) and α

l
¯o α

n

log(#)
(oe®1),

and given that standardization, the relationship be-

tween Φ
ft
and average distance between mothers (x

"
) is

qualitatively the same for all three decay functions,

and even the quantitative differences are small (Fig.

5). It basically makes little difference which decay

function is used, although the exponential decay with

squared distance shows a sharper rise in the middle of

the α
n

range than do either the exponential or

logarithmic functions. Exponential decaywith squared

distance, which is more tractable, should be sufficient

for future analytical work.

3. Discussion

Inbreeding somewhat increases the level of differen-

tiation between pollen clouds (Φ
ft
). Genetic diversity

within the pollination neighbourhood of each female

is reduced, due to the consanguinity of the males,

which increases the probability of finding a given

allele more frequently in a given part of the landscape.

Since different alleles will increase in frequency in

different neighbourhoods, overall differentiation will

increase. This increase cannot be higher than a factor

of 2, since when males are completely homozygous, it

is as if they were haploid; effective neighbourhood size

is half that expected in the case of no inbreeding.

A slow decay of the probability of IBD with

distance has a much stronger impact when this decay

can be detected on the spatial scale of the population

under consideration. Τhe discrepancy between the

two Φ
ft

values obtained by ignoring or taking into

account the genetic structure can be high, even for

reasonable values of the parameters. When relatedness

is high within the pollination neighbourhood of a

given female, the effective neighbourhood size will be

very low. Conversely, differentiation will increase as

females are sampled at larger distances from each

other, since the probability that different alleles are

fixed within different neighbourhoods will increase

with the distance between them.

As originally pointed out by Felsenstein (1975,

1979), and more recently by Epperson et al. (1999),

there is still no accepted theory for the decay function

of the probability of IBD with distance within a

continuous population; only simulation results are

available (Rohlf & Schnell, 1971 ; Doligez et al., 1998;

Epperson et al., 1999). We were forced to make an

arbitrary choice of decay functions, and it is reassuring

that a change in that function makes little difference,
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although the need for proper (closed form) theory

remains.

The theory tells us what could happen, but what

does happen? For the many species showing ‘no

genetic structure’ at the local scale (FE 0 and either

αU 0 or αU¢), we need not be concerned with the

issue. For the few species that do show ‘local genetic

structure’, how big is the impact of F
IS

on Φ
ft
? In

Quercus petraea, for example, Bacilieri et al. (1994), in

a study area of 5 ha, showed that genetic auto-

correlation decreased slowly with distance and

remained significant for up to approximately 100 m.

Empirically, that corresponds to a decay parameter of

α
n
C 0±0005, assuming that the probability of IBD

decreases exponentially with squared distance, as in

(19). The density in this plot is d¯ 0±0059 trees}m#.

The departure from panmixia is F¯ 0±22. Had we

sampled mothers at an average pairwise distance of x
"

¯ 50 m, and assuming an average pollen dispersal

distance of δ¯10 m, i.e. an effective pollen pool size

N
ep

¯ 8δ#d¯ 4±72 effective males, or a pollen neigh-

bourhood area A
ep

¯ 8δ#¯ 800 m# (Austerlitz &

Smouse, 2001 ; Smouse et al., 2001), the value of Φ
ft

obtained with (32) would have been Φ
ft
¯ 0±234. An

experimenter who ignored the adult genetic structure

would estimate a value, using (15), of δ# ¯ 6±73 m (N=
ep

¯ 2±14; A=
ep

¯ 362 m#), a serious underestimate of the

true values. If the real value of δ were 50 m (N
ep

¯
118; A

ep
¯ 20,000 m#), Φ

ft
obtained with (32) would

be 0±016, and the experimenter, again in ignorance of

adult genetic structure, would obtain δ# ¯ 23±5 m (N=
ep

¯ 26±1 ; A=
ep

¯ 4418 m#), an even more serious under-

estimate of the true values. Thus, the expected estimate

of pollen dispersal distance (and therefore of neigh-

bourhood size) can be less than the half of the

parametric value if adult genetic structure within the

population is ignored.

In the case of Atherosperma moschatum (Shapcott,

1994, 1995), dC 0±04 trees}m#, on average. The

departure from panmixia is F¯ 0±598, and the decay

of genetic affinity with distance is sharper; auto-

correlation becomes non-significant within about

15 m, which means α
n
C 0±02. Assume again that we

had sampled mothers at an average pairwise distance

of x
"
¯ 50 m, and assume again that the average

distance of dispersal was δ¯10 m (N
ep

¯ 32; A
ep

¯
800 m#). The expected estimate of Φ

ft
, using (32),

would have been Φ
ft
¯ 0±016. An experimenter who

ignored genetic structure among the adults themselves

would estimate a value δ# ¯ 3±61 m (N= ¯ 4±17; A=
ep

¯
104 m#), using (15), only 36% of the true value for δ,

and thus only 13% for N
ep

and A
ep

, because of the

relation between these quantities and δ#.

Thus, if the adult genetic structure is strong, as it is

for these striking examples, there can be a rather large

error in estimating demographic parameters from Φ
ft

(the estimation of Φ
ft

itself is not affected) if adult

genetic structure is not taken into account. Because it

is relatively easy to assess adult genetic structure in the

study area, it is generally a good idea to do so. When

genetic structure is detected, it is obviously better to

infer δ from Φ
ft
, using (32), which takes genetic

structure into account, rather than from (15), which

does not. In either case, numerical estimation can be

performed within a few seconds. Thus, it would seem

generally advisable to characterize the spatial genetic

structure of the adults within the study population.

This can be performed by studying either the increase

in differentiation (Bacilieri et al., 1994) or the decrease

in autocorrelation (Sokal & Oden, 1978; Smouse &

Peakall, 1999) with distance, these two approaches

having being shown to be equivalent (Hardy &

Vekemans, 1999).

We must be mindful, however, that the two cases

described above are rather extreme, the first in terms

of the distance at which genetic structure can be

detected, the second for the level of inbreeding. For

most temperate forest tree species, the error in using

(15) will be small, since inbreeding is usually low

(minimal F
IS
) and there is minimal genetic affinity out

to no more than 15 m (e.g. Epperson & Allard, 1989;

Knowles et al., 1992; Berg & Hamrick, 1995; Leonardi

& Menozzi, 1996; Leonardi et al., 1996), suggesting

very small (or very large) values of α
n

in most

populations.

One might expect more local adult structure for

tropical forest tree species, which are often insect

pollinated, but gene flow is often substantial in tropical

forest trees (Hamrick & Murawski, 1990; Chase et al.,

1996; Nason et al., 1996; Stacy et al., 1996; Loveless

et al., 1998). Data are scarce on decay of genetic

affinity with distance for these species, but in one case,

autocorrelation was detected over a distance of 100 m

(Boshier et al., 1995), whereas in another case (Doligez

& Joly, 1997), none was found. Hamrick et al. (1993)

studied three cases. While they found limited structure

in two of them, strong structure, over more than

250 m, was found only among the juveniles for the

third case, almost disappearing among reproductive

adults, and thus not a problem for the estimation of

‘pollen structure’.

Several other features will have to be integrated into

the model in the future. For instance, selfing could

occur more often than expected at random, or self-

incompatibility could reduce the effective selfing rate,

relative to random pollination at distance z¯ 0, either

of which is likely to affect neighbourhood size.

Anisotropic pollen flow might be expected in some

cases, due to preferential wind flow directions. This

will also affect the differentiation in pollen clouds of

the females and their relative positions, not just the

distances between them, and will have to be taken into

account. We have shown here that complicated

features can be integrated into the model, and within
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certain limits will allow us to determine the features

that really matter for the estimation of Φ
ft
.

F.A. was supported by a Formation Comple!mentaire par la
Recherche grant from French Ministe' re de l ’Agriculture
and a complementary grant from NATO. P.E.S. is supported
by McIntire-Stennis grant USDA}NJAES-17309 and NSF-
BSR-0089238.

References

Austerlitz, F. & Smouse, P. E. (2001). Two-generation
analysis of pollen flow across a landscape. II. Relation
between Φ

ft
, pollen dispersal and inter-females distance.

Genetics 157, 851–857.
Bacilieri, R., Labbe, T. & Kremer, A. (1994). Intraspecific

genetic structure in a mixed population of Quercus
petraea (Matt.) Leibl. and Q. robur L. Heredity 73,
130–141.

Berg, E. E. & Hamrick, J. L. (1995). Fine-scale genetic
structure of a turkey oak forest. E�olution 49, 110–120.

Boshier, D. H., Chase, M. R. & Bawa, K. S. (1995).
Population genetics of Cordia alliodora (Boraginaceae), a
neotropical tree. 3. Gene flow, neighborhood, and
population substructure. American Journal of Botany 82,
484–490.

Chase, M. R., Moller, C., Kessell, R. & Bawa, K. S. (1996).
Distant gene flow in tropical trees. Nature 383, 398–399.

Doligez, A. & Joly, H. I. (1997). Genetic diversity and
spatial structure within a natural stand of a tropical forest
tree species, Carapa procera (Meliaceae), in French
Guiana. Heredity 79, 72–82.

Doligez, A., Baril, C. & Joly, H. I. (1998). Fine-scale spatial
genetic structure with nonuniform distribution of indi-
viduals. Genetics 148, 905–919.

Epperson, B. K. & Allard, R. W. (1989). Spatial auto-
correlation analysis of the distribution of genotypes
within populations of lodgepole pine. Genetics 121,
369–378.

Epperson, B. K., Huang, Z. & Li., T. Q. (1999). Measures
of spatial structure in samples of genotypes for multiallelic
loci. Genetical Research 73, 251–261.

Excoffier, L., Smouse, P. E. & Quattro, J. M. (1992).
Analysis of molecular variance inferred from metric
distances among DNA haplotypes: application to human
mitochondrial DNA restriction data. Genetics 131,
479–491.

Felsenstein, J. (1975). A pain in the torus: some difficulties
with models of isolation by distance. American Naturalist
109, 359–368.

Felsenstein, J. (1979). Isolation by distance: reply to Lalouel
and Morton. Annals of Human Genetics 42, 523–527.

Hamrick, J. L. & Murawski, D. A. (1990). The breeding
structure of tropical tree populations. Plant Species
Biology 5, 157–166.

Hamrick, J. L., Murawski, D. A. & Nason, J. D. (1993).
The influence of seed dispersal mechanisms on the genetic
structure of tropical tree populations. Vegetatio 107/108,
281–297.

Hardy, O. J. & Vekemans, X. (1999). Isolation by distance
in a continuous population: reconciliation between spatial
autocorrelation analysis and population genetics models.
Heredity 83, 145–154.

Knowles, P., Perry, D. J. & Foster, H. A. (1992). Spatial
genetic structure in two Tamarack [Larix laricina (Du

Roi) K. Koch] populations with differing establishment
histories. E�olution 46, 572–576.

Lalouel, J. M. (1977). The conceptual framework of
Male! cot’s model of isolation by distance. Annals of
Human Genetics 40, 355–360.

Lalouel, J. M. (1979). Comment on Felsenstein’s reply to
Lalouel and Morton. Annals of Human Genetics 42, 529.

Le Corre, V., Dumolin-Lapegue, S. & Kremer, A. (1997).
Genetic variation at allozyme and RAPD loci in sessile
oak Quercus petraea (Matt.) Liebl. : the role of history
and geography. Molecular Ecology 6, 519–529.

Leonardi, S. & Menozzi, P. (1996). Spatial structure of
genetic variability in natural stands of Fagus syl�atica L.
(beech) in Italy. Heredity 77, 359–368.

Leonardi, S., Raddi, S. & Borghetti, M. (1996). Spatial
autocorrelation of allozyme traits in a Norway spruce
(Picea abies) population. Canadian Journal of Forest
Research 26, 63–71.

Loveless, M. D., Hamrick, J. L. & Foster, R. B. (1998).
Population structure and mating system in Tachigali
�ersicolor, a monocarpic neotropical tree. Heredity 81,
134–143.

Male! cot, G. (1969). The Mathematics of Heredity. San
Francisco: Freeman.

Morton, N. E. (1977). Isolation by distance in human
populations. Annals of Human Genetics 40, 361–365.

Nason, J. D.,Herre, E. A. &Hamrick, J. L. (1996). Paternity
analysis of the breeding structure of strangler fig
populations: evidence for substantial long-distance wasp
dispersal. Journal of Biogeography 23, 501–512.

Rohlf, F. J. & Schnell, G. D. (1971). An investigation of the
isolation-by-distance model. American Naturalist 105,
295–324.

Shapcott, A. (1994). Genetic and ecological variation in
Atherosperma moschatum and the implications for con-
servation of its biodiversity. Australian Journal of Botany
42, 663–686.

Shapcott, A. (1995). The spatial genetic structure in natural
populations of the Australian temperate rainforest tree
Atherosperma moschatum (Labill.) (Monimiaceae). Her-
edity 74, 28–38.

Smouse, P. E. & Peakall, R. (1999). Spatial autocorrelation
analysis of individual multiallele and multilocus genetic
structure. Heredity 82, 561–573.

Smouse, P. E., Dyer, R. J., Westfall, R. D. & Sork, V. L.
(2001). Two-generation analysis of pollen flow across a
landscape. I. Male gamete heterogeneity among females.
E�olution 55, 260–271.

Sokal, R. R. & Oden, N. L. (1978). Spatial autocorrelation
analysis in biology. 1. Methodology. Biological Journal of
the Linnean Society 10, 199–228.

Stacy, E. A., Hamrick, J. L., Nason, J. D., Hubbell, S. P.,
Foster, R. B. & Condit, R. (1996). Pollen dispersal in low-
density populations of three Neotropical tree species.
American Naturalist 148, 275–298.

Ueno, S., Tomaru, N., Yoshimaru, H., Manabe, T. &
Yamamoto, S. (2000). Genetic structure of Camellia
japonica L. in an old-growth evergreen forest, Tsushima,
Japan. Molecular Ecology 9, 647–656.

Wright, S. (1943). Isolation by distance. Genetics 28,
114–138.

Wright, S. (1946). Isolation by distance under diverse
systems of mating. Genetics 31, 39–59.

Wright, S. (1951). The genetical structure of populations.
Annals of Eugenics 15, 323–354.

Wright, S. (1969). E�olution and the Genetics of Populations.
vol. 2, The Theory of Gene Frequencies. Chicago:
University of Chicago Press.

https://doi.org/10.1017/S0016672301005341 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301005341

