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Abstract

In this paper we study the tail behavior of the maximum exceedance of a sequence of
independent and identically distributed random variables over a random walk. For both
light-tailed and heavy-tailed cases, we derive a precise asymptotic formula, which extends
and unifies some existing results in the recent literature of applied probability.
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1. Introduction and main result

Let {Yn, n = 1, 2, . . .} be a sequence of independent and identically distributed (i.i.d.) ran-
dom variables with generic random variable Y , common distribution F = 1 − F on (−∞, ∞),
and 0 < νF = ∫ ∞

0 F(u) du < ∞. Define the equilibrium distribution of F as

Fe(x) = 1

νF

∫ x

0
F(u) du, x ≥ 0.

For every constant µ > 0, the maximum

M0 = sup
n≥1

(Yn − (n − 1)µ)

is finite almost surely. If Fe is long tailed (i.e. limx→∞ Fe(x + 1)/Fe(x) = 1) then it is easy
to check that

lim
x→∞

Pr(M0 > x)∫ ∞
x

F (u) du
= 1

µ
.

Motivated by the observation above, in this paper we study the tail probability of the
maximum exceedance of the sequence {Yn, n = 1, 2, . . .} over a random walk with positive
drift. Precisely, let {(Xn, Yn), n = 1, 2, . . .} be a sequence of i.i.d. random pairs with generic
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random pair (X, Y ). Assume that E X = µ > 0 and that Y follows a distribution F on (−∞, ∞)

with 0 < νF < ∞. Then, the maximum

M = sup
n≥1

(Yn − Sn−1) (1.1)

with Sn−1 = ∑n−1
i=1 Xi , is finite almost surely, where a sum over an empty set of indices is equal

to 0 by convention.
To state our conditions on Y , we introduce the following distribution classes, which are

popular in applied probability. A distribution F on (−∞, ∞) is said to belong to the class
L(γ ) for some γ ≥ 0 if F(x) > 0 for all x and

lim
x→∞

F(x − y)

F (x)
= eγy for all y ∈ (−∞, ∞). (1.2)

Note that L(0) reduces to the well-known class L of long-tailed distributions. Furthermore, a
distribution F on [0, ∞) is said to belong to the class S(γ ) for some γ ≥ 0 if F ∈ L(γ ) and
the limit

lim
x→∞

F 2∗(x)

F (x)
= 2c

exists and is finite, where F 2∗ denotes the two-fold convolution of F . More generally, a
distribution F on (−∞, ∞) is also said to belong to the class S(γ ) if F+(x) = F(x) 1{x≥0}
does, where 1E denotes the indicator of an event E. Note that S(0) reduces to the well-known
class S of subexponential distributions.

For the sake of consistency, for a random variable X with mean µ > 0, we make a convention
that

γ

1 − E e−γX

∣∣∣∣
γ=0

= 1

µ
.

The main result of this paper is given below.

Theorem 1.1. Consider the i.i.d. sequence {(Xn, Yn), n = 1, 2, . . .} and the maximum M

defined in (1.1), where E X = µ > 0 and Y is distributed by F with 0 < νF < ∞. Then, the
relation

lim
x→∞

Pr(M > x)∫ ∞
x

F (u) du
= γ

1 − E e−γX
(1.3)

holds under one of the following groups of conditions:

(i) Fe ∈ L(γ ) for some γ ≥ 0, E X2 < ∞, and E e−βX < 1 for some β > γ ;

(ii) Fe ∈ S(γ ) for some γ ≥ 0, Pr(−X > x) = o(F (x)), and E e−γX < 1 provided γ > 0.

Clearly, E e−αX, as a function of α, is convex over all α for which E e−αX is finite. Hence,
for Theorem 1.1(i), E e−αX < 1 for every α ∈ (0, β].

As shown in Lemma 2.1, below, for every γ ≥ 0, the condition Fe ∈ L(γ ) is equivalent to
the relation

lim
x→∞

F(x)∫ ∞
x

F (u) du
= γ. (1.4)

In particular, the condition Fe ∈ L (or, equivalently, relation (1.4) with γ = 0) is fulfilled by
most cited heavy-tailed distributions, including all long-tailed or dominatedly varying-tailed
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distributions with finite mean; see Theorem 3.1 and Example 3.1 of Su and Tang (2003) for
more details.

Some closely related works are summarized as follows. Robert (2005) considered a special
case of our Theorem 1.1(i) with γ = 0 and X positive, and proposed an application to ruin
theory in the presence of dividends paid out at a sequence of random epochs. Araman and Glynn
(2006) systematically studied the same problem in the framework of a perturbed random walk
for various cases. Their Theorem 3 corresponds to a special case of our Theorem 1.1(i) with
γ > 0, X, Y independent, and F exponential, but under a slightly weaker moment condition
on X than ours. Their Theorem 4, assuming that F has a continuous hazard rate function
converging to 0, corresponds to a special case of our Theorem 1.1(i) with γ = 0 and X, Y

independent. Palmowski and Zwart (2007) also studied the same problem but in the framework
of a regenerative process. In terms of their model in which the regenerative process {S(t), t ≥ 0}
has renewal epochs 0 = T0 < T1 < · · · , the random variables Xn and Yn in our theorems
correspond to S(Tn−1) − S(Tn) and supTn−1≤t<Tn

S(t) − S(Tn−1), respectively. In particular,
their Theorem 1 corresponds to our Theorem 1.1(ii) with γ = 0 under the assumption that the
equilibrium distribution of (−X) ∨ Y is subexponential, and their Theorem 2 corresponds to
our Theorem 1.1 with γ > 0 under slightly more general conditions than ours.

In the rest of this paper, after preparing a series of lemmas in Section 2, we prove cases (i)
and (ii) of Theorem 1.1 in Sections 3 and 4, respectively.

2. Lemmas

Throughout this paper, all limit relationships are for x → ∞ unless stated otherwise. For
two positive functions a(·) and b(·), we write a(x) ∼ b(x) if lim a(x)/b(x) = 1, a(x) � b(x)

if lim sup a(x)/b(x) ≤ 1, and a(x) � b(x) if lim inf a(x)/b(x) ≥ 1.

Lemma 2.1. Assume that F on (−∞, ∞) satisfies 0 <
∫ ∞

0 F(u) du < ∞. For each γ ≥ 0,
Fe ∈ L(γ ) if and only if relation (1.4) holds.

Proof. For γ > 0, see Lemma 3.1 of Tang (2007). For γ = 0, observe that

0 ≤ Fe(x) − Fe(x + 1)

Fe(x)
≤ F(x)∫ ∞

x
F (u) du

≤ Fe(x − 1) − Fe(x)

Fe(x)
,

from which the desired equivalence follows.

Lemma 2.2. Let {ξn, n = 1, 2, . . .} be a sequence of i.i.d. random variables with generic
random variable ξ satisfying −∞ < E ξ < 0 and Pr(ξ > 0) > 0. Then, E(ξ ∨ 0)2 < ∞ if
and only if

∞∑
n=1

Pr

( n∑
i=1

ξi > 0

)
< ∞.

Proof. See Lemma 3.1 of Robert (2005).

Lemma 2.3. If F ∈ L(γ ) for some γ ≥ 0 then, for every β > γ ,

(i) there exist some positive constants c0 and x0 such that, for all x ≥ y ≥ x0,

F(y)

F (x)
≤ c0eβ(x−y);

(ii) e−βx = o(F (x)).
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Proof. (i) Note that F ∈ L(γ ) if and only if F(ln x) is regularly varying of index −γ . Thus,
the desired conclusion is a straightforward consequence of the well-known Potter’s bound; see
Theorem 1.5.6(iii) of Bingham et al. (1987).

(ii) For some β ′, γ < β ′ < β, by item (i), there exist some positive constants c0 and x0 such
that, for all x ≥ x0,

F(x0)

F (x)
≤ c0 exp(β ′(x − x0)).

Hence, the relation e−βx = o(F (x)) holds.

Lemma 2.4. Let F , G, G1, and G2 be distributions on (−∞, ∞).

(i) If F ∈ L(γ ) for some γ ≥ 0 and
∫ ∞
−∞ eβuG(du) < ∞ for some β > γ , then

lim
x→∞

F ∗ G(x)

F (x)
=

∫ ∞

−∞
eγ uG(du).

(ii) If F ∈ S(γ ) for some γ ≥ 0 and the limit ci = lim Gi(x)/F (x) exists and belongs to
[0, ∞) for i = 1, 2, then

lim
x→∞

G1 ∗ G2(x)

F (x)
= c1

∫ ∞

−∞
eγ uG2(du) + c2

∫ ∞

−∞
eγ uG1(du).

Proof. (i) See Lemma 2.1 of Pakes (2004). Note that, under the current conditions, the
relation G(x) = o(F (x)), as required in Lemma 2.1 of Pakes (2004), holds automatically by
Lemma 2.3(ii).

(ii) See Proposition 2 of Rogozin and Sgibnev (1999).

Lemma 2.5. Let {ξn, n = 1, 2, . . .} be a sequence of i.i.d. random variables with finite mean µ.
Then, for arbitrarily small ε, δ > 0, there exists some constant C > 0 such that

Pr

( ∞⋂
n=1

(
n(µ − δ) − C ≤

n∑
i=1

ξi ≤ n(µ + δ) + C

))
> 1 − ε. (2.1)

Proof. The proof follows from the proof of Lemma 3.1 of Asmussen et al. (1999) with some
obvious modifications.

Lemma 2.6. Assume that Fe ∈ S(γ ) for some γ ≥ 0. Let {ξn, n = 1, 2, . . .} be a sequence
of i.i.d. random variables with generic random variable ξ satisfying −∞ < E ξ < 0, Pr(ξ >

x) = o(F (x)), and E eγ ξ < 1 provided γ > 0. Then,

Pr

(
sup
n≥0

n∑
i=1

ξi > x

)
= o(Fe(x)).

Proof. For arbitrarily fixed N , we have

Pr

(
sup
n≥0

n∑
i=1

ξi > x

)
≤ Pr

(
sup

0≤n≤N

n∑
i=1

ξi > x

)
+ Pr

( N∑
i=1

ξi + sup
n≥N

n∑
i=N+1

ξi > x

)

= I1(x, N) + I2(x, N). (2.2)
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By Lemma 2.1, Pr(ξ > x) = o(F (x)) = o(Fe(x)). Then, by Lemma 2.4(ii),

I1(x, N) ≤ Pr

( N∑
i=1

(ξi ∨ 0) > x

)
= o(Fe(x)). (2.3)

To consider I2(x, N), for arbitrarily small ε > 0, introduce a random variable η satisfying

Pr(η > x) = Pr(ξ > x) ∨ εF (x).

Clearly, Pr(η > x) ∼ εF (x). Since η = η(ε) converges to ξ in distribution as ε ↘ 0 for all
small ε > 0, we have E η < 0 and E eγ η < 1 provided γ > 0. Let {ηn, n = 1, 2, . . .} be a
sequence of i.i.d. copies of η independent of {ξn, n = 1, 2, . . .}. By Theorem 2 of Veraverbeke
(1977), it holds, for some constant c(γ, ε) > 0, that

Pr

(
sup
n≥N

n∑
i=N+1

ηi > x

)
= Pr

(
sup
n≥0

n∑
i=1

ηi > x

)
∼ c(γ, ε)Fe(x).

When γ > 0, the expression of c(γ, ε) is rather involved. However, when γ = 0, we have the
transparent expression c(0, ε) = −ενF / E η. Then, by Lemma 2.4(ii),

I2(x, N) ≤ Pr

( N∑
i=1

ξi + sup
n≥N

n∑
i=N+1

ηi > x

)
∼ (E eγ ξ )Nc(γ, ε)Fe(x). (2.4)

Substituting (2.3) and (2.4) into (2.2) yields

lim sup
x→∞

1

Fe(x)
Pr

(
sup
n≥0

n∑
i=1

ξi > x

)
≤ (E eγ ξ )Nc(γ, ε).

If γ > 0 with ε fixed, we let N → ∞, while if γ = 0, we let ε ↘ 0. Thus, in any case, the
right-hand side of the above goes to 0 and the proof is complete.

3. Proof of Theorem 1.1(i)

3.1. Preliminary results

Proposition 3.1. Under the conditions of Theorem 1.1(i), it holds, for arbitrarily small ε > 0,
all 0 < δ < 1, and all large k, that

∞∑
n=k+1

Pr(Yn − Sn−1 > x, Sn−1 < (n − 1)µ(1 − δ)) � ε

∫ ∞

x

F (u) du. (3.1)

Proof. Let 0 < δ < 1 and D > 0 be arbitrarily fixed. For all x > D, according to the range
of Sn−1 we split the left-hand side of (3.1) into three parts as

∞∑
n=k+1

Pr(Yn − Sn−1 > x, Sn−1 ∈ (0, (n − 1)µ(1 − δ))

∪ (−x + D, 0] ∪ (−∞, −x + D])
= J1(x, k, δ) + J2(x, k, D) + J3(x, k, D). (3.2)
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Using Lemmas 2.1 and 2.2, for arbitrarily small ε > 0 and all large k,

J1(x, k, δ) ≤ F(x)

∞∑
n=k+1

Pr

(n−1∑
i=1

(µ(1 − δ) − Xi) > 0

)
� ε

2

∫ ∞

x

F (u) du. (3.3)

Furthermore, by Lemma 2.3(i), there exist some constants c0, D > 0 such that, for all x ≥
x + y − 1 ≥ D − 1 and all large k,

J2(x, k, D) =
∞∑

n=k+1

∫ 0

−x+D

F(x + y) Pr(Sn−1 ∈ dy)

≤
∞∑

n=k+1

∫ 0

−x+D

(∫ x+y

x+y−1
F(u) du

)
Pr(Sn−1 ∈ dy)

≤
∫ ∞

x

F (u) du

∞∑
n=k+1

∫ 0

−x+D

Fe(x + y − 1)

Fe(x)
Pr(Sn−1 ∈ dy)

≤ c0

∫ ∞

x

F (u) du

∞∑
n=k+1

E exp(−β(Sn−1 − 1))

≤ ε

2

∫ ∞

x

F (u) du. (3.4)

For D specified in (3.4) and all k, employ Markov’s inequality and Lemma 2.3(ii) to obtain

J3(x, k, D) ≤
∞∑

n=k+1

Pr(Sn−1 ≤ −x + D) ≤
∞∑

n=k+1

E exp(−βSn−1)

eβ(x−D)
= o(Fe(x)). (3.5)

Substituting (3.3)–(3.5) into (3.2) yields (3.1).

Proposition 3.2. Under the conditions of Theorem 1.1(i), it holds, for each k = 2, 3, . . ., that∑
1≤n<m≤k

Pr(Yn − Sn−1 > x, Ym − Sm−1 > x) = o(Fe(x)). (3.6)

Proof. Let δ > 0 be a constant satisfying β(1 − δ) > γ . For 1 = n < m ≤ k,

Pr(Y1 > x, Ym − Sm−1 > x)

≤ Pr(−Sm−1 > (1 − δ)x) + Pr(Y1 > x, Ym − Sm−1 > x, −Sm−1 ≤ (1 − δ)x)

≤ e−β(1−δ)xE exp(−βSm−1) + Pr(Y1 > x, Ym > δx)

= o(Fe(x)), (3.7)

where we used Markov’s inequality and Lemmas 2.1 and 2.3(ii). Similarly, for 1 < n < m ≤ k,

Pr(Yn − Sn−1 > x, Ym − Sm−1 > x)

≤ Pr(−Sn−1 > (1 − δ)x)

+ Pr(Yn − Sn−1 > x, Ym − Sm−1 > x, −Sn−1 ≤ (1 − δ)x)

≤ e−β(1−δ)xE exp(−βSn−1)

+
∫ (1−δ)x

−∞
Pr(Yn > x − y, Ym − Sn,m−1 > x − y) Pr(−Sn−1 ∈ dy),
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where Sn,m−1 = ∑m−1
i=n Xi . By (3.7), it holds uniformly for all y ≤ (1 − δ)x that

Pr(Yn > x − y, Ym − Sn,m−1 > x − y) = o(1)Fe(x − y).

Hence, by Lemmas 2.3(ii) and 2.4(i),

Pr(Yn − Sn−1 > x, Ym − Sm−1 > x)

= o(Fe(x)) + o(1)

∫ (1−δ)x

−∞
Fe(x − y) Pr(−Sn−1 ∈ dy)

= o(Fe(x)). (3.8)

A combination of (3.7) and (3.8) gives (3.6).

3.2. Proof of Theorem 1.1(i) for γ > 0

We first prove the asymptotic upper bound. For some 0 < δ < 1 and each k = 1, 2, . . .,

Pr(M > x) ≤
( k∑

n=1

+
∞∑

n=k+1

)
Pr(Yn − Sn−1 > x)

≤
k∑

n=1

Pr(Yn − Sn−1 > x) +
∞∑

n=k+1

F(x + (n − 1)µ(1 − δ))

+
∞∑

n=k+1

Pr(Yn − Sn−1 > x, Sn−1 < (n − 1)µ(1 − δ))

= K1(x, k) + K2(x, k, δ) + K3(x, k, δ). (3.9)

By Proposition 3.1, it holds, for arbitrarily small ε > 0 and all large k, that

K3(x, k, δ) � ε

2

∫ ∞

x

F (u) du. (3.10)

Since Fe ∈ L(γ ), it holds, for all large k, that

K2(x, k, δ) ≤ 1

µ(1 − δ)

∫ ∞

x+(k−1)µ(1−δ)

F (u) du � ε

2

∫ ∞

x

F (u) du. (3.11)

With k specified in (3.10) and (3.11), by Lemma 2.4(i) and relation (1.4), we have

K1(x, k) ∼ F(x)

k∑
n=1

E exp(−γ Sn−1) � γ

1 − E e−γX

∫ ∞

x

F (u) du. (3.12)

Substituting (3.10)–(3.12) into (3.9) and using the arbitrariness of ε > 0, we obtain

lim sup
x→∞

Pr(M > x)∫ ∞
x

F (u) du
≤ γ

1 − E e−γX
.
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Next, we turn to the proof of the asymptotic lower bound. Obviously, for each k = 1, 2, . . .,
using Bonferroni’s inequality,

Pr(M > x) ≥ Pr

( k⋃
n=1

(Yn − Sn−1 > x)

)

≥ K1(x, k) −
∑

1≤n<m≤k

Pr(Yn − Sn−1 > x, Ym − Sm−1 > x), (3.13)

where K1(x, k) is the same as in (3.9). Similar to (3.12), for arbitrarily small ε > 0 and all
large k,

K1(x, k) � (1 − ε)
γ

1 − E e−γX

∫ ∞

x

F (u) du. (3.14)

By Proposition 3.2, relation (3.6) holds. Substituting (3.6) and (3.14) into (3.13) and using the
arbitrariness of ε > 0, we have

lim inf
x→∞

Pr(M > x)∫ ∞
x

F (u) du
≥ γ

1 − E e−γX
.

3.3. Proof of Theorem 1.1(i) for γ = 0

For γ = 0, relation (1.3) becomes

lim
x→∞

Pr(M > x)∫ ∞
x

F (u) du
= 1

µ
. (3.15)

To derive the asymptotic upper bound, we still use (3.9). By Proposition 3.1, relation (3.10)
holds for arbitrarily small ε, δ > 0 and all large k. With k specified in (3.10), by Fe ∈ L we
have

K2(x, k, δ) ≤ 1

µ(1 − δ)

∫ ∞

x+(k−1)µ(1−δ)

F (u) du ∼ 1

µ(1 − δ)

∫ ∞

x

F (u) du, (3.16)

while, by Lemmas 2.1 and 2.4(i), it is easy to see that

K1(x, k) = o(1)

∫ ∞

x

F (u) du. (3.17)

Substituting (3.10), (3.16), and (3.17) into (3.9) and using the arbitrariness of ε, δ > 0, we have

lim sup
x→∞

Pr(M > x)∫ ∞
x

F (u) du
≤ 1

µ
.

Next, we consider the asymptotic lower bound. For arbitrarily small ε, δ > 0, by Lemma 2.5,
there exists some constant C > 0 such that inequality (2.1) holds. Write En = {n(µ−δ)−C ≤
Sn ≤ n(µ + δ) + C} for n = 0, 1, . . .. Then, by Bonferroni’s inequality again,

Pr(M > x) ≥ Pr

( ∞⋃
n=1

((Yn − Sn−1 > x) ∩ En−1)

)

≥
∞∑

n=1

Pr((Yn − Sn−1 > x) ∩ En−1)

−
∑

1≤n<m<∞
Pr((Yn − Sn−1 > x) ∩ (Ym − Sm−1 > x) ∩ En−1 ∩ Em−1)
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≥ (1 − ε)

∞∑
n=1

F(x + (n − 1)(µ + δ) + C)

−
∑

1≤n<m<∞
F(x + (n − 1)(µ − δ) − C)F(x + (m − 1)(µ − δ) − C)

≥ 1 − ε

µ + δ

∫ ∞

x+C

F(u) du −
(

1

µ − δ

∫ ∞

x−(µ−δ)−C

F(u) du

)2

.

Since Fe ∈ L, by the arbitrariness of ε, δ > 0, it follows that

lim inf
x→∞

Pr(M > x)∫ ∞
x

F (u) du
≥ 1

µ
.

4. Proof of Theorem 1.1(ii)

4.1. Preliminary results

We respectively establish the counterparts of Propositions 3.1 and 3.2 for the case in which
γ > 0.

Proposition 4.1. Under the conditions of Theorem 1.1(ii) for the case in which γ > 0, relation
(3.1) holds for arbitrarily small ε > 0, 0 < δ < 1 arbitrarily close to 1, and all large k.

Proof. For 0 < δ, d < 1, introduce the maximum Mδ = supn≥1
∑n−1

i=1 (µ(1 − dδ) − Xi),
which is finite almost surely. For every n ≥ k + 1, we derive

Sn−1 = (n − 1)µ(1 − dδ) −
n−1∑
i=1

(µ(1 − dδ) − Xi) ≥ (n − 1)µ(1 − dδ) − Mδ.

Introduce another random variable M∗
δ which is identically distributed as Mδ and is independent

of {Yn, n = 1, 2, . . .}. Therefore, for every k ≥ 1,

∞∑
n=k+1

Pr(Yn − Sn−1 > x, Sn−1 < (n − 1)µ(1 − δ))

≤
∞∑

n=k+1

Pr(Yn − (n − 1)µ(1 − dδ) + M∗
δ > x, M∗

δ > kµ(1 − d)δ)

=
∫ ∞

kµ(1−d)δ

∞∑
n=k+1

F(x − y + (n − 1)µ(1 − dδ)) Pr(Mδ ∈ dy)

≤ 1

µ(1 − dδ)

(∫ x

kµ(1−d)δ

+
∫ ∞

x

)(∫ ∞

x−y

F (u) du

)
Pr(Mδ ∈ dy)

≤ 1

µ(1 − dδ)

(
νF

∫ x

kµ(1−d)δ

Fe(x − y) +
∫ ∞

x

(y − x + νF )

)
Pr(Mδ ∈ dy). (4.1)

To apply Lemma 2.6, we need to choose δ and d close to 1 such that E eγ (µ(1−dδ)−X) < 1. Let
F ∗ be a distribution defined as F ∗(x) = F(x − µ(1 − dδ)). Then, Pr(µ(1 − dδ) − X > x) =
o(F ∗(x)) and F ∗

e ∈ S(γ ). By Lemma 2.6 we have

Pr(Mδ > x) = o(F ∗
e (x)) = o(Fe(x)). (4.2)
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By Lemma 2.4(ii) and the local uniformity of the convergence in relation (1.2), it holds, for
arbitrarily fixed k ≥ 1, that

∫ x

kµ(1−d)δ

Fe(x − y) Pr(Mδ ∈ dy) ≤
(∫ ∞

0−
−

∫ kµ(1−d)δ

0−

)
Fe(x − y) Pr(Mδ ∈ dy)

∼ Fe(x)E exp(γMδ) 1{Mδ>kµ(1−d)δ}, (4.3)

where the finiteness of E exp(γMδ) is guaranteed by (4.2). Moreover, by Lemma 2.1,∫ ∞

x

(y − x) Pr(Mδ ∈ dy) =
∫ ∞

x

Pr(Mδ > y) dy = o(1)

∫ ∞

x

Fe(y) dy = o(Fe(x)). (4.4)

Substituting (4.2)–(4.4) into (4.1) yields the desired assertion.

Proposition 4.2. Under the conditions of Theorem 1.1(ii) for the case in which γ > 0, relation
(3.6) holds for each k = 2, 3, . . ..

Proof. By Lemma 2.1, Fe ∈ S(γ ) for some γ > 0 implies that F ∈ S(γ ). When 1 = n <

m ≤ k, for arbitrarily fixed D > 0, we have

Pr(Y1 > x, Ym − Sm−1 > x)

≤ Pr(−Sm−1 > x − D) + Pr(Y1 > x, Ym − Sm−1 > x, −Sm−1 ≤ x − D)

≤ Pr(−Sm−1 > x − D) + Pr(Y1 > x, Ym > D). (4.5)

By Lemma 2.4(ii),

Pr(−Sm−1 > x − D) = o(F (x − D)) = o(F (x)).

Substitute this into (4.5), then note that D can be arbitrarily large. It follows that

Pr(Y1 > x, Ym − Sm−1 > x) = o(F (x)) = o(Fe(x)). (4.6)

Similarly, when 1 < n < m ≤ k, for arbitrarily fixed D > 0,

Pr(Yn − Sn−1 > x, Ym − Sm−1 > x)

≤ Pr(−Sn−1 > x − D)

+
∫ x−D

−∞
Pr(Yn > x − y, Ym − Sn,m−1 > x − y) Pr(−Sn−1 ∈ dy),

where Sn,m−1 = ∑m−1
i=n Xi , as before. By (4.6), for arbitrarily small ε > 0, choose D > 0 such

that
Pr(Yn > x, Ym − Sn,m−1 > x) ≤ εFe(x)

for 1 < n < m ≤ k and all x ≥ D. Using this inequality and Lemma 2.4(ii), we obtain

Pr(Yn − Sn−1 > x, Ym − Sm−1 > x) ≤ o(Fe(x)) + ε

∫ x−D

−∞
Fe(x − y) Pr(−Sn−1 ∈ dy)

� εE exp(−γ Sn−1)Fe(x).

This proves that
Pr(Yn − Sn−1 > x, Ym − Sm−1 > x) = o(Fe(x)). (4.7)

A combination of (4.6) and (4.7) gives (3.6).

https://doi.org/10.1239/jap/1245676106 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676106


Maximum exceedance of a sequence of random variables 569

4.2. Proof of Theorem 1.1(ii)

The proof for the case in which γ > 0 can be given by copying the proof of Theorem 1.1(i)
for the case in which γ > 0 with only the modifications that we use in Lemma 2.4(ii) and
Propositions 4.1 and 4.2 instead of Lemma 2.4(i) and Propositions 3.1 and 3.2.

We consider the case in which γ = 0, and we aim at relation (3.15). The proof of the
asymptotic lower bound is the same as that in Theorem 1.1(i). The proof of the asymptotic
upper bound can be found in Palmowski and Zwart (2007). Nevertheless, for the sake of
self-containedness, we copy their proof here.

For an arbitrarily large but fixed number y > 0, define

Z = (−X) 1{(−X)∨Y≤y} +((−X) ∨ Y ) 1{(−X)∨Y>y} .

Clearly, Z = Z(y) converges to −X almost surely as y → ∞ and E Z < 0 for all large y.
Moreover, it is easy to see that the relation Pr(Z > x) ∼ F(x) holds for arbitrarily fixed y.
Define Zn in a similar way in terms of Xn and Yn, n = 1, 2, . . ., so that {Zn, n = 1, 2, . . .}
forms a sequence of i.i.d. copies of Z. Then, we arrive at the following key inequality of
Palmowski and Zwart (2007):

M = sup
n≥1

(Yn − Sn−1) ≤ sup
n≥1

n−1∑
i=1

Zi + y.

Therefore, by Theorem 2(B) of Veraverbeke (1977),

Pr(M > x) ≤ Pr

(
sup
n≥1

n−1∑
i=1

Zi > x − y

)
∼ − 1

E Z

∫ ∞

x−y

F (u) du.

Since Fe ∈ S and y can be arbitrarily large, it follows that

Pr(M > x) � 1

µ

∫ ∞

x

F (u) du.
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Note added in proof

During the proofreading stage Professors Zbigniew Palmowski and Bert Zwart kindly pointed
out to us that ourTheorem 1.1(i) forγ > 0 andTheorem 1.1(ii) have been covered byTheorems 1
and 2 of Palmowski and Zwart (2007).
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