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Summary

As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for
dynamic traits, functional mapping models the time-dependent mean vector with biologically
meaningful equations and are likely to generate biologically relevant and interpretable results. Given
the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the
models for the structure of the covariance matrix. In this article, we have provided a comprehensive
set of approaches for modelling the covariance structure and incorporated each of these approaches
into the framework of functional mapping. The Bayesian information criterion (BIC) values are
used as a model selection criterion to choose the optimal combination of the submodels for the
mean vector and covariance structure. In an example for leaf age growth from a rice molecular
genetic project, the best submodel combination was found between the Gaussian model for the
correlation structure, power equation of order 1 for the variance and the power curve for the mean
vector. Under this combination, several significant QTLs for leaf age growth trajectories were
detected on different chromosomes. Our model can be well used to study the genetic architecture of
dynamic traits of agricultural values.

1. Introduction thought to follow a normal distribution with a mean
expressed as the genotypic value and a variance com-
mon to each group. The central idea of functional
mapping is that the mean vectors of QTL genotypes in
a time limit are modelled by a biologically meaningful
mathematical equation, whereas the covariance
matrix is modelled in terms of its time-series auto-
correlation structure (Ma et al., 2002).

From a biological viewpoint, functional mapping is
advantageous because it incorporates fundamental
principles behind biological processes or networks
into a QTL mapping framework. Much attempt
has been made to embed various mathematical and
differential equations in the mapping framework to
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Functional mapping has proven to be a powerful
approach for mapping quantitative trait loci (QTLs)
responsible for dynamic traits whose phenotypic
values change with time or other independent vari-
ables (Ma et al., 2002; Wu et al., 2004 a, b, c; reviewed
in Wu & Lin, 2006). A general strategy for QTL
mapping is to construct a finite mixture model
(Lander & Botstein, 1989; Jansen & Stam, 1994;
Zeng, 1994) in which any individual from a mapping
population is assumed to arise from one of the mul-
tiple possible QTL genotypes. For a quantitatively
inherited trait, each group of QTL genotypes is
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models to fit drug response curve over a range of
concentrations (Giraldo, 2003) and power curve to
quantify the power required for a bird to fly at
a particular speed (Tobalske e al., 2003). The par-
ameters in these equations have particular biological
or clinical means. Thus, the results from functional
mapping are biologically more interpretable and
relevant than those from general approaches without
biological incorporation. Also, through testing, indi-
vidually or in combination, for the curves parameters
in functional mapping, many biologically interesting
questions can be asked and addressed at the interplay
between genetic actions and developmental patterns
(Wu et al., 2004 a).

Functional mapping attempts to estimate math-
ematical parameters that model the time-dependent
vector of QTL effects and residual covariance matrix
rather than estimate all elements in the vector and
matrix and, therefore, displays strong statistical
robustness due to the estimation of fewer parameters
(Ma et al., 2002). In previous functional mapping,
approaches for modelling the structure of the covari-
ance matrix include the autoregressive (AR) (Diggle
et al., 2002) and structured antedependence (SAD)
model (Nufiez-Anton & Zimmerman, 2000). Whereas
the AR model assumes variance stationarity and
correlation stationarity, these two assumptions are
relaxed for the SAD model that approximates the
variance and correlation as a function of time. Zhao
et al. (2005) found that the AR and SAD models
cannot be replaced by each other, although the SAD
model seems to be more general in terms of its non-
stationary nature. In statistical modelling of longi-
tudinal variables, many other models have been
available to structure the covariance matrix, all of
which can be potentially used for functional mapping.
Thus far, a comprehensive treatment of modelling the
covariance matrix has not been fully explored. Meyer
(2001) systematically reviewed various approaches
for estimating covariance functions related to cattle
genetic and breeding studies. The purpose of this
study is to incorporate several most commonly used
covariance-structuring approaches into the frame-
work of functional mapping, aimed at providing a
general strategy for the choice of an optimal approach
for structuring the covariance matrix for practical
data sets.

2. Model and method
(1) Genetic model

We start with a simple F, population from two
homozygous lines. Consider one segregating QTL,
with three genotypes, QQ (2), Qq (1) and qq (0),
responsible for dynamic changes of a trait. All n
progeny in the pedigree are measured for the
dynamic trait at each of 7 time points. The trait
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phenotype (;) of progeny i measured at time ¢ can be
expressed as

vty = 3 Eyua(1)+ei(0), )

where &;;is an indicator variable describing a possible
genotype j(j=2,1,0) of the QTL for progeny i and
defined as 1 if a particular genotype is observed and 0
otherwise, u () is the genotypic value of the trait
for QTL genotype j at time ¢, and e,(¢) is the residual
including the aggregate effect of polygenes and error
effect and distributed as N(0, 0%(r)). The covariance
between residuals at two different time points, #; and
ty, 1s expressed as o(t,, t,). The variances and covari-
ances form a residual covariance matrix X. The
probability of &; to take 1 or 0 can be inferred from
the two-locus genotypes of the fianking markers that
bracket the QTL, expressed as the conditional prob-
ability of the QTL genotype given marker genotypes
described in terms of the recombination fractions
between the QTL and the two markers.

(i1) Likelihood function

The likelihood of the dynamic trait with 7-dimen-
sional measurements y;=(y,(1), ..., y{(T)), and marker
data, M, can be represented by a multivariate mixture
model

L0, u;, Xy, M) = H [Z w/'zfi()’i)] 2

i=1 |/=0

where the mixture proportion, w;, is the con-
ditional probability of QTL genotype given a marker
genotype for progeny i, which describes the position
of the QTL (0) within the marker interval, and f}(y,)
is the multivariate normal density with mean vector
u;=(uf1), ..., u{T)) and variance matrix Z.

Several numerical methods can be used to solve
the maximum likelihood estimates (MLEs) of the
parameters (0, u;, 2) that define the likelihood func-
tion (2). Like a general treatment, functional mapping
estimates 6 with a grid approach, i.e., the likelihood
values are plotted against the length of a linkage
group and the peak of the likelihood profile is then
regarded as the location of QTL. However, functional
mapping attempts to estimate and test the parameters
that model the structures of (u;, X), instead of esti-
mating all the elements contained within (u, Z). The
parameter vectors for modelling the mean vector and
covariance matrix are denoted as €, for QTL geno-
type j and Q,, respectively.

(iii) Submodel for structuring the mean vector

If the traits studied follow a certain pattern of devel-
opment, mathematical equations can be used to
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model the mean vector. For example, growth trajec-
tories for biological entities at different organizational
levels can be approximated by the Richards growth
equation. The power required for a bird to fly at a
particular speed can be identified by incorporating
power curves. Bi-exponential curves and Emax mod-
els have been utilized to approximate HIV-1 dynamics
after drug treatment and drug response at different
concentrations, respectively. In general, the time-
dependent mean vector of a dynamic trait is described
by a mathematical function

uj(t) :g([:Qu,-)a (3)

where €, is a set of curve parameters that define the
dynamic mechanism of a particular trait.

In practice, many dynamic traits may not be de-
scribed by a mechanistic model, relying on statistical
fitting. Functional mapping for these kinds of traits
can be based on non-parametric modelling. Stat-
istically, many non-parametric approaches have been
available; for example, B-spline, P-spline or orthogo-
nal polynomials.

(iv) Submodel for structuring the covariance matrix

An unstructured matrix would be best to fit the re-
sidual covariance since it can approximate the true
structure, but with the measured time points in-
creased, the unstructured matrix is too large to be
solved. The structured models with more parameters
are more appropriate than fewer ones, but the number
of parameters in structured models is more, and the
structured models is more closed to unstructured
ones. So, the covariance matrix X should be
structured to consider the inherent pattern of time-
dependent variances and covariances, reduce the
number of unknown parameters being estimated and
decrease the effect of noises on the precision of QTL
mapping. The simplest approach for structuring
the matrix is based on the AR model, in which the
variance and covariance assumes the stationarity, i.e.
there is the same residual variance for the trait at
each time point and the covariance between different
measurements decays purely with time interval. The
variance stationarity assumption has been relaxed by
implementing the transform-both-sides (TBS) model
(Carroll & Puppert, 1984) within the context of func-
tional mapping (Wu et al., 2004b). The SAD model
was used to characterize the non-stationary variance
and correlation (Nufiez-Anton & Zimmerman, 2000).

However, the AR and SAD models can be only
used in their respective situations. The residual vari-
ances and covariances characterized by both the
models include contributions by other QTLs and
errors. Because the residual may also change with
time interval in a particular manner, the AR and SAD
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models will display different powers to detect QTL.
Here, we propose a general model for structuring the
residual covariance matrix, which covers the features
of the AR and SAD models.

According to the theory of matrix algebra, we can
decompose X into the product of standard deviations
and correlations expressed as

Y = VIR, “)

where V2 is the diagonal matrix that is composed of
the residual standard deviation o(z) for t=1, 2, ..., T,
and R is the correlation matrix. Approaches have
been available to model the structures of V" and R.

(a) Standard deviation function

A number of variance functions have been proposed
to model heterogeneous variances across different
time points (Foulley ez al., 1998). These functions
include a step function or a polynomial function as
follows:

y
o1+ Y b)),
r=1
DR L s
@+ Y b v
e =, or Ino¥(n)=0+) b,
r=1

where o? is the variance at the intercept, b, is the
coefficient of the variance function and v is the order
of polynomial fit. The standard deviation function is
the square root of ¢®(7).

(b) Correlation function

Correlations in R between different time points can be
modelled as a function of time interval. Correlation
functions with one or more parameters can be either
stationary or non-stationary model without variance.
The simplest correlation function is those specified by
a single parameter. Table 1 lists several stationary
models for correlation functions with a single para-
meter. Equation (4) can be reduced to the first-order
AR (AR(1)) covariance structure when 0%(¢) is equal
to 0% and when the correlation function is specified by
the AR(1) model. All the parameters that describe
the standard deviation and correlation functions are
arrayed in Q,.

More complicated models, such as autoregressive
moving average (ARMA), can be considered to model
correlation functions. The ARMA model typically
contains two parts, an AR and a moving average
(MA). The model is usually referred to as an ARMA
(p, g) model, where p is the order of the AR part and ¢
is the order of the MA part. For some data, non-
stationary models perform better than stationary
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Table 1. Common stationary models for correlation functions with

a single parameter

Model Correlation function Range of parameter
Compound symmetry (CS) p —l<p<l
First-order AR o’ —l<p<l
Exponential (EXP) e ¥ p>0

Gaussian (GAU) e " p>0

Cauchy (CAU) (1+pP~1 p>0

Hyperbolic cosine (HYP) (cosh(mpl/2))~ ! p>0

Uniform distribution (UNI) sin(pl)/(pl) p>0

Triangular distribution (TRI) (1—cos(pl))/pl p>0

‘Damped’ exponential (DEX) e p>0,0<p<?2

Note: / denotes the lag in time for a pair of time points.

models in the functional mapping (Zhao et al., 2005;
Lin & Wu, 2006; Cui et al., 2008). The SAD model
is one class of non-stationary models (Zimmerman &
Nufiez-Anton, 2001). The form of the SAD model
was described in Zhao et al. (2005) who provided a
closed form of the SAD-structured covariance matrix.

(v) Hypothesis tests

Whether there is a significant QTL that controls the
developmental process of a dynamic trait should be
tested by calculating the likelihood ratio statistic, ex-
pressed as

LR=2[ln L(mezv|y)_ 11'1 L(é,Qu,-an|y, M)]a (6)

where Q, and Q, are the MLEs of the curve para-
meters and the parameters that structure the residual
variance matrix under the null hypothesis (there is no
QTL) and 6, Qu, and Q, are the MLEs of the QTL
position, genotype-specific curve parameters and ma-
trix-structuring parameters under the alternative hy-
pothesis (there is a QTL), respectively.

The plug-in LR value calculated by eqn (6) follows
asymptotically a chi-square distribution with degrees
of freedoms equal to the difference in the numbers of
parameters between the models with the two different
hypotheses. The critical threshold for claiming the
existence of a QTL can be empirically determined on
the basis of permutation tests.

Functional mapping allows for the test of various
biologically relevant hypotheses regarding the genetic
control of developmental timing. Wu et al. (2004a)
formulated a number of such hypotheses and applied
them to a practical example in poplar trees.

(vi) Model selection

For a practical data set, we should know which
model is optimal to explain the structure of
the covariance matrix. The selection of an optimal
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covariance-structuring model is crucial for increasing
the power of functional mapping and its estimation
precision. In statistics, there are several criteria for
model selection although none of them perform
the best under all circumstances. Here, we used the
commonly used Bayesian information criterion (BIC)
(Schwarz, 1978) as the model selection criterion of the
optimal combination of two submodels with parsi-
monious parameters. The BIC is defined as

BIC= -2 In LQ,.Q|M)
+dimension(Q,,, Q,|M)In(n), for j=2,1,0.

where Qu,- and Q‘, are the MLEs of parameters under
a particular model (M), dimension (2,,€2,[r) re-
presents the number of independent parameters under
this model and # is the total number of observations
on all individuals. The optimal model is the one that
displays the minimum BIC value.

3. Results

A doubled-haploid (DH) population with 111 lines
was generated by crossing an indica rice variety Gui-
630 and a japonica rice variety Taiwanjing (Weng
et al., 2000). A linkage map composed of 175
RFLP markers was constructed for the DH popu-
lation, covering a total length of 1225 ¢cM. This DH
population was grown with replicates in a field trial
(Zhou et al., 2001). For each plant, the number of
developed leaves on the main stem was counted, and
the length of the developing leaf was measured every
5-7 days from day 30 after sowing until the full
development of the leaf. These measured data were
used to estimate the leaf age of a plant (y) using

y=Number of developed leaves
Length of the developing leaf
Final length of the developing leaf”
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Table 2. BIC information criteria for leaf age data from different combinations of sub-models

Correlation structure

Variance

function® Mean vector CS AR EXP GAU CAU HYP UNI TRI DEX SAD? ARMA*“

0 RIC 15377 2072:0 2390-4 420-3 18889 1790-8 4522 9469 25343 18481 24012
POW 1582:5 2260-5 2507-1 4079 19206 17897 4347 987-4 26532 17293 25656
PAR 1599-8 2319-8 25662 423-5 1883-3 1806:3 4524 9955 27042 17739 26174
LEG 15351 2069-3 2387-7 400-4 1886-7 17881 4493  963-6 2531-6 18443 23983

1 RIC 23787 25657 3206:5 313-1 2416-1 1880:5 6353 9635 24666 18944 30655
POW 2411-5 28159 30337 3089 16422 18477 6531 11387 3221-3 17768 25459
PAR 2436-7 2766:1 30129 379-6 2420-3 2812:4 770-3 10962 2792-3 18039 2604-7
LEG 2357-3 2881-3 31675 3751 22809 21869 8074 8846 28509 18912 23519

2 RIC 2037-4 23234 26658 3232 18515 17356 4647 11175 26922 1779-8 25322
POW 2095-6 2385-8 2712:8 4251 18154 18185 4856 1103-1 2734-8 18069 2747-8
PAR 2003-3 2159-0 25162 3943 19154 18070 4852 11085 26136 18941 25322
LEG 2003-3 2159-0 25972 3972 1909-5 18070 4852 11156 26136 18974 21752

@ The variance structure is modelled by a power equation of different orders 0-2.

5 SAD is specified as the first-order SAD model.

¢ ARMA is specified as the autoregressive moving average model with the first-order AR part and the first-order MA part.

The growth of leaf age of a plant can be fit by a
mathematical equation. We will use three equations
to model leaf age growth which include:
(1) Richards’ (RIC) model expressed as

g(t)=a(l +be= ) =7,

(2) A power curve (POW) expressed as
g(t)=c+at’,

(3) A parabolic curve (PAR) expressed as

a+bt

)=——
&0 1 +ct+de2’

where the parameters a, b, ¢ and/or d in the three
above equations can be explained in a biological
sense. By estimating these parameters and testing
their differences among different QTL genotypes, we
can determine whether and how a QTL triggers an
effect on leaf age growth trajectories.

Considering the data of leaf age growth may not
follow any curve, we use a non-parametric approach
based on Legendre (LEG) polynomials (Meyer, 2001 ;
Yang et al., 2006) to approximate the dynamic change
of leaf age in development. In this study, the Legendre
polynomial of order 2 is considered and expressed as

g(1)=by+ bt +by(1-57*—0-5),

where 7= — 142 x 52

These parametric and non-parametric approaches
are incorporated into the framework of functional
mapping, along with modelling the structure of the
covariance matrix by the standard deviation function,
d()=0*(1+Y,_,b,t") with different orders (see
eqn (5)), and the correlation function (Table 1). All
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possible combinations between standard deviation
functions and correlation functions are each incor-
porated into functional mapping. By calculating the
BIC values, an optimal combination can be deter-
mined. Table 2 tabulates the BIC values for each
combination of standard deviation and correlation
functions under different submodels of the mean vec-
tor. It can be seen that different combinations give
markedly different BIC wvalues. In general, the
Gaussian model of the correlation function performs
best among all the models, followed by the uniform
distribution model. Combing the Gaussian model and
the standard deviation function of order 1 with the
power curve for the mean vector provides an optimal
fit of the data (Table 2).

Figure 1 gives the profile of LR test statistics across
all the 12 chromosomes under the optimal combi-
nation. Permutation tests based on 1000 replicates
have been used to determine the genome-wide em-
pirical critical threshold for significance declaration.
There are a total of six peaks for the LR profile that
surpass the threshold, suggesting the detection of
QTL for leaf age growth. These QTLs are located on
different chromosomes 1, 2, 6, 7, 10 and 11, respect-
ively (Fig. 1). Table 3 tabulates the estimates of the
curve parameters for each QTL genotype and the
parameters that model the structure of the covariance
matrix. As shown by the estimates of the standard
errors obtained with the bootstrapping approach, the
parameter estimation has reasonably high precision.
Using the estimated curve parameters, two curves for
leaf age growth are drawn for each QTL genotype
(Fig. 2). Based on the differences in curve shape
between the two QTL genotypes, all the six QTLs
detected display a substantial effect on leaf age growth
during the entire development of plants.
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Table 3. The MLEs of the model parameters and their asymptotic standard errors in the parentheses under the
combination of POW and GAU distribution models for leaf age growth trajectories

QQ qq Covariance matrix
Position
QTL Chr Marker interval a, b, 2 dp bo o loa p bi(x1073)
1 1 C178-RZ776 0967 0-592 6269 0692 0-642 5-864 0-224 0-628 5-121
(0-134)  (0:026) (0-179) (0-135) (0-027) (0-150) (0-006)  (0-001) (0-311)
2 3 C1032-RZ142 0-688 0-643 5-867 0942 0-598 6234 0-224 0-629 0-013
(0-149)  (0-029) (0-170) (0-143) (0-030) (0-216) (0-007)  (0-002) (0-003)
3 6 RG4241-C358 0-948 0-595 6298 0-667 0-650 5-897 0-219 0-627 1-101
(0-102)  (0-020) (0-143) (0-085) (0-017) (0-104) (0-007) (0-002) (0-211)
4 7 RG128-R1394 0-649 0-655 5-926 0-998 0-584 6-135 0-225 0-628 0-0112
(0-150)  (0-031) (0-228) (0-153) (0-032) (0-198) (0-006) (0-001) (0-001)
5 10 RZ892-RZ561 0918 0-602 6-301 0-701 0-639 5-807 02187 0628  43-222
(0-162)  (0-033) (0-212) (0-139) (0-033) (0-228) (0-014) (0-002) (7-489)
6 11 C189-C6A 0-666 0-650 5-895 0-991 0-587 6-190 0-217 0-627 0-086
(0-151)  (0-031) (0-158) (0-688) (0-061) (0-866) (0-012) (0-002) (0-001)
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Fig. 1. The profile of the log-likelihood ratios between the full and reduced (no QTL) model for leaf age growth
trajectories across the genome. The genome-wide threshold value is given as a horizontal line. Ticks indicate the positions
of markers on linkage groups.
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Leaf age

Leaf age

6 1 1 1
5 15 25 35 5 15 25 35

Time (day)

Time (day)

Fig. 2. Two growth curves each presenting two groups

of genotypes (bold lines are for QQ) at the six QTLs,
symbolized by 1, 2, ..., 6, detected on chromosome 1, 3, 6,
7, 10 and 11, respectively.

4. Discussion

Functional mapping incorporates fundamental prin-
ciples behind biological processes or networks that
are bridged with mathematical functions into a QTL
mapping framework (Ma et al., 2002; Wu & Lin,
2006). Functional mapping involves not only model-
ling time-dependent expected mean vectors of QTL
genotypes but also the structure of the within-subject
residual covariance matrix. The mean vectors of
QTL genotypes were usually modelled by biological
meaningful functions including a few key parameters
that define the shape and function of a particular
biological network (see also Wu et al., 2002). Because
of this implementation with biological principles,
functional mapping provides more sensible and
interpretable results than previous QTL mapping
approaches (Wu & Lin, 2006).

Functional mapping is also advantageous in stat-
istics because the structure, rather than all the
elements, of the mean vector and the covariance
matrix is estimated, which can largely reduce the
number of parameters to be estimated. Original
functional mapping capitalizes on a simple statistical
process, such as the AR process, to model the
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covariance structure (Ma et al., 2002). In subsequent
modelling, several more complicated processes, such
as SAD, have been implemented, leading to signifi-
cant results for QTL detection (Zhao et al., 2005).
However, there are a number of other statistical
processes (see Henderson, 1982; Jaffrezic & Pletcher,
2000; Meyer, 2001) that may better suit functional
mapping than the AR or SAD models given a
particular data set. In this article, we implement
a comprehensive set of statistical models for the
structure of the covariance matrix, provide a system-
atic procedure for selecting an optimal approach for
the mean-covariance structure, and then exemplify
the utility of our model selection idea using a real
example from the rice genetic mapping project (Weng
et al., 2000; Zhou et al., 2001).

Our implementation includes the modelling of the
covariance matrix with parametric or parametric
variance and correlation functions. Depending on the
complexity of a problem, parametric functions may
be specified by one single or more parameters, or can
be stationary and non-stationary. In some situations,
no parametric functions are available to capture
the pattern of the covariance matrix, in which we use
non-parametric modelling based on the Legendre
polynomial to fit changes of the variances and covari-
ances (Gao & Yang, 2006; Yang et al., 20006).
Incorporated into a random regression model
(Kirkpatrick et al., 1994; Meyer, 2001), the Legendre
polynomial displays the changes of the covariance
matrix in a linear way, thus largely facilitating the
result interpretation and computation of functional
mapping. In a data analysis using a published
example for leaf age growth in rice, all possible com-
binations of the submodels for the mean vector and
covariance matrix have been considered. An optimal
combination based on the model selection criterion,
BIC, was determined, which includes the Gaussian
model for the correlation structure, the power equa-
tion of order 1 for the variance structure and power
curve for the mean vector (Table 2). Although the
result was not shown in Table 2, such a combination
is in fact better than the fitting of the covariance
matrix with the Legendre polynomial for this
particular example. For example, the Legendre poly-
nomial of the best order 2 gives the BIC values of
2227 to 2491.

The model framework proposed in this article will
provide a powerful tool for functional mapping of
QTL that determine the developmental pattern
of dynamic traits. The framework allows for the
choice of the best fitness of the mean-covariance
structure for a particular data. With this framework,
we are in an excellent position to study and map the
detailed genetic architecture of complex traits that
undergo developmental changes in an organism’s
lifetime.
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