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1. Introduction. Let X be an alphabet, and let X+ denote the free semigroup on
X , consisting of all non-void (finite) words over X . A semigroup S satisfies the identity
u ≈ v, where u, v ∈ X+, if φ(u) = φ(v) holds in S for any homomorphism φ : X+ → S.
Let |w| denote the length of a word w ∈ X+. If k � 2 and |u|, |v| � k, then the identity
u ≈ v is said to be k-testable [20, 22] if: (a) the prefixes of u and v of length k − 1
coincide, (b) the suffixes of u and v of length k − 1 coincide and (c) the sets of subwords
of u and v of length k coincide. A semigroup S is k-testable if it satisfies all k-testable
identities; consequently, the class of all k-testable semigroups is a variety, which we
denote by Tk. A semigroup is locally testable if it is k-testable for some k, that is, if it
belongs to some of the varieties Tk.

The notion of local testability originated from formal language theory, where it
plays a significant role. It was first introduced by McNaughton and Papert [17], and
since then it was a subject of various investigations in theoretical computer science; we
refer to the survey [19] for an overview, see also [3, 14]. An algebraic treatment of this
notion is also fruitful, and it is not limited exclusively to semigroup-theoretical aspects
[16, 20, 22], but pertains to the more classical setting of combinatorial group theory as
well [10].

In the course of investigating a particular variety of algebras, it is often the first
step to solve the word problem for free objects of that variety – this is just equivalent to
the problem of algorithmic recognition of identities satisfied by the variety in question.
Now assume that V is a locally finite variety. With effective solutions of word problems
of free objects in V at hand, it might become possible either to explicitly determine,
or, at least, to asymptotically estimate the size of Fn(V), the free algebra of V freely
generated by an n-element set, n � 1. The sequence of cardinalities fn(V) = |Fn(V)| is
called the free spectrum of V . An interesting general-algebraic fact is that the rate of
growth of fn(V) is intimately connected to the structural properties of V . For example,
for a locally finite group variety V , we have log2 |fn(V)| ∈ O(nc) if and only if V consists
of step-c nilpotent groups, while otherwise log2 |fn(V)| is at least exponential [11, 18].
Some general-algebraic ramifications of structural features implied by free spectra
may be found in [2, 12]. Let us also mention that the free spectrum of a variety has a
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‘companion’, a closely related invariant called the pn-sequence; we refer, e.g. to [5, 6]
for several results and references concerning pn-sequences of semigroups.

In this note, we determine the asymptotic class of fn(Tk), the free spectrum of the
variety of k-testable semigroups, for any k � 2. In this way, we put the recent note of
Kátai-Urbán and Szabó [13] in a more general context, thus obtaining their result as
a corollary. Namely, the note [13] is concerned with the free spectrum of the variety A
generated by the five-element semigroup A2 = 〈 a, b | a2 = a, b2 = 0, aba = a, bab =
b 〉 (see [15] for more information on the prominent role of A2 in semigroup theory).
However, by [22, Theorem 2], we have that A actually coincides with T2, the variety of
2-testable semigroups. Our result is now as follows.

THEOREM 1.1.

fn(Tk) ∼ n2(k−1)2nk
.

Here, we write an ∼ bn for two sequences {an} and {bn} if limn→∞ an
bn

= 1. Hence,
[13, Theorem 4.3] is just the case k = 2 in the above statement.

2. Preliminaries. Let Xn = {x1, . . . , xn}. For any r � 1, we denote by Xr
n the set

of all words over Xn of length r,

Xr
n = {xi1 · · · xir : 1 � i1, . . . , ir � n}.

No distinction is made between X1
n and Xn itself. For a word w ∈ X+

n and r � |w|, we
define hr(w) to be the prefix of w of length r; analogously, tr(w) is the suffix of w of
length r.

As noted in [22], there is a convenient way to express the k-testability of a semigroup
identity u ≈ v in terms of graphs. Namely, for w ∈ X+

n let �k(w) be the directed graph
whose vertices are all subwords of w of length k − 1 (multiple occurrences of a subword
being denoted by the same vertex), while a → b is an edge if and only if there is a
subword w′ of w of length k such that a = hk−1(w′) and b = tk−1(w′); equivalently, the
suffix of a of length k − 2 coincides with the prefix of b of the same length.

LEMMA 2.1 ([22]). Let u, v ∈ X+
n such that |u|, |v| � k. An identity u ≈ v holds in

Tk if and only if hk−1(u) = hk−1(v), tk−1(u) = tk−1(v) and �k(u) = �k(v).

Therefore, upon defining a binary relation ρn on X+
n by (u, v) ∈ ρn if and only if

u ≈ v is an identity holding in Tk, by well-known general-algebraic results [4] we obtain
that ρn is a (fully invariant) congruence of the free semigroup X+

n , while X+
n /ρn is the

free object of Tk, freely generated by Xn/ρn (where |Xn/ρn| = n). So, to each ρn-class
containing a word w such that |w| � k it is possible to adjoin, in an injective fashion, a
triple (�, a, b) consisting of a digraph � (induced by any word from w/ρn) and two of
its vertices a, b (representing hk−1(w) and tk−1(w), respectively). Of course – as we shall
shortly see – not every such triple is admissible.

In fact, given k and n, there is a fixed digraph B(n, k − 1) of which any � constructed
as above is a subgraph. The vertex set of B(n, k − 1) is Xk−1

n , the set of all words of
length k − 1 over Xn, while edges are defined exactly as already described: a → b is an
edge if and only if a = hk−1(u) and b = tk−1(u) for some word u ∈ Xk

n . In the latter case,
it is said that the edge a → b represents u.
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A (directed) walk on a digraph (V, E) is pseudo-Eulerian, if it contains each directed
edge from E at least once. (A closed pseudo-Eulerian walk is sometimes called a Chinese
postman walk; see [1] for basic notions and background in digraph theory.) A directed
graph that contains a pseudo-Eulerian walk must have at most one non-trivial (weakly)
connected component, and the walk in question visits each vertex from that component
at least once.

LEMMA 2.2. (1) For any word w ∈ X+
n such that |w| � k, the digraph �k(w) is a

(weakly) connected subgraph of B(n, k − 1) that contains a pseudo-Eulerian walk.
(2) For any connected subgraph H of B(n, k − 1) containing a pseudo-Eulerian walk,

there exists a word w such that |w| � k and �k(w) = H.

Proof. (1) is obvious from the definition of the graph �k(w).
(2) Let a0 → · · · → ap be a pseudo-Eulerian walk in H. Then, for any i > 0, we

have ai = tk−1(ai−1)xmi for some xmi ∈ Xn. It is now straightforward to verify that

w = a0xm1 · · · xmp = a0t1(a1) · · · t1(ap) = h1(a0) · · · h1(ap−1)ap

is a word with the required properties. �
Hence, the elements of Fn(Tk) represented by words of length � k can be identified

with triples (�, a, b) such that a, b ∈ V (�) and � is a connected subgraph of B(n, k − 1)
containing a pseudo-Eulerian walk from a to b.

Note that the digraphs of the type B(n, �) are well-known and widely investigated
in graph theory and combinatorics in general: these are the so-called de Bruijn digraphs
[7–9]. For example, B(n, 2) is the complete digraph with loops on n vertices, while for
any � � 2, we have that B(n, � + 1) is the line graph of B(n, �). Ultimately, we are going
to utilise a result from the spectral theory of de Bruijn graphs in order to prove our
main result.

3. Estimating the free spectrum of Tk.

LEMMA 3.1.

fn(Tk) � n2(k−1)2nk + nk − n
n − 1

.

Proof. The second summand is equal to the sum
∑k−1

m=1 nm counting the number of
words over Xn of length � k − 1. As we have seen in the previous section, if |w| � k,
then the classes w/ρn are in a one-to-one correspondence with triples (�, a, b), where
� is a connected subgraph of the de Bruijn digraph B(n, k − 1) possessing a pseudo-
Eulerian walk from a to b. There are precisely (nk−1)2 ways to choose the pair (a, b),
while a connected subgraph of a digraph D is completely determined by a choice of
edges from E(D). Since B(n, k − 1) has a total of nk edges, an upper bound 2nk

holds
for the number of ways in which the subgraph � can be selected. �

Clearly, the upper bound provided by the above lemma is asymptotically equivalent
to n2(k−1)2nk

. Therefore, in the following we are going to look for a lower bound
dn,k � fn(Tk) such that dn,k ∼ n2(k−1)2nk

, thus completing the proof of Theorem 1.1.
To achieve this, we follow a strategy (that resembles the one from [13]) of focusing to
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words inducing digraphs with closed pseudo-Eulerian walks. Recall that a digraph is
strongly connected if there is a directed path between any pair of its vertices.

LEMMA 3.2. A connected digraph D has a closed pseudo-Eulerian walk if and only if
it is strongly connected.

Proof. (⇒) Since a pseudo-Eulerian walk of D must traverse each directed edge at
least once, by connectedness it follows that it visits each vertex at least once. Therefore,
for any two u, v ∈ V (D), there is a walk u � v along the considered closed pseudo-
Eulerian walk, and so there is a shortest walk from u to v. Such a walk must be
cycle-free thus it is a path.

(⇐) Let e1, . . . , em be the enumeration of all edges of D, where ei = (ui, vi) for
1 � i � m. Since D is assumed to be strongly connected, there are paths leading from
vi to ui+1 for all 1 � i < m, and from vm to u1. Now, we have a pseudo-Eulerian walk
on D comprising all these paths composed with the enumerated edges. �

The following auxiliary result parallels [13, Lemma 4.1].

LEMMA 3.3. Let H be a connected subgraph of B(n, k − 1) with q vertices. If H has
a closed pseudo-Eulerian walk, then any maximal set of Tk-nonequivalent words w with
�k(w) = H has precisely q2 elements.

Proof. If Tk fails to satisfy w ≈ w′, while �k(w) = �k(w′) = H, then w, w′ must
have either different prefixes, or different suffixes of length k − 1. Since |V (H)| = q
and the prefixes and suffixes in question are vertices of H, there are at most q2 words
that are Tk-nonequivalent and induce H. On the other hand, since H has a closed
pseudo-Eulerian walk, for any u, v ∈ V (H), it has a pseudo-Eulerian walk from u to v:
namely, we can traverse all edges of H at least once by starting from u and returning
to the same vertex by the given closed pseudo-Eulerian walk of H, and then proceed
along the same walk to v. Clearly, there is a word w ∈ X+

n corresponding to the walk
just described; hence, we have a set of q2 words not equivalent in Tk such that all words
in the set induce the same digraph H. �

The basic idea is to use the above lemma in the special case when q = nk−1: we
shall see that (labelled) strongly connected subgraphs of B(n, k − 1) (which necessarily
have the same vertex set as B(n, k − 1) itself) are numerous enough to yield the desired
lower bound. To be more precise, our key observation can be formulated as follows.

PROPOSITION 3.4. Let �n,k denote the number of all strongly connected subgraphs
of the de Bruijn digraph B(n, k − 1), k � 2. Then �n,k ∼ 2nk

. In other words, a random
subgraph of B(n, k − 1) (where edges are selected with probability p = 1/2) is strongly
connected with high probability as n → ∞.

A crucial ingredient for the proof of this proposition comes from spectral graph
theory. Namely, in [8] Delorme and Tillich provide bounds for eigenvalues and a
number of spectral indices of de Bruijn graphs. For a graph G, call a partition (S, V (G) \
S) of its vertex set a cut. The edge boundary ∂S of G with respect to this cut is the set of
all edges (u, v) such that u ∈ S and v 
∈ S (there is a natural analogue of this notion for
undirected graphs, too). The isoperimetric number of G, i(G), is defined as the minimum
of the quotient |∂S|/|S| with S ranging over all non-void subsets of V (G) such that
|S| � |V (G)|/2.
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LEMMA 3.5 ([8]). If � � 2 then

i(B(n, �)) � n
4(� − 1)

.

Actually, the lower bound that appears in Theorem 9 of [8] is twice the above one,
n/(2(� − 1)), but it concerns the ‘undirected version’ of B(n, �) in which multiple edges
and loops are allowed. Since B(n, �) is an Eulerian digraph (i.e. the in-degree equals the
out-degree at any vertex), it readily follows that a same number of directed edges cross
an arbitrary cut in both directions. Therefore, |∂S| (and so the isoperimetric number) in
B(n, �) is half of that in its undirected twin. Also, the condition � � 2 is not mentioned
in the original formulation of the cited result, but a careful reading of [8] shows that it
must be assumed in order to have all calculations valid (and, of course, for the above
quotient to be meaningful in the first place).

Proof of Proposition 3.4. Let Nn,k be the number of all subgraphs of B(n, k − 1)
with the same vertex set that are not strongly connected; then �n,k + Nn,k = 2nk

. If G
is such a graph, then there exists a cut (S, Xk−1

n \ S) crossed by no edge of G. Since
B(n, k − 1) is Eulerian, there is no loss of generality to assume that |S| � nk−1/2. For
a fixed cut with the latter property, there are precisely 2nk−|∂S| subgraphs of B(n, k − 1)
with the same vertex set none of whose edges cross the considered cut (here, ∂S denotes
the edge boundary of S in B(n, k − 1)). By Lemma 3.5 we have

|∂S| � i(B(n, k − 1))|S| � n|S|
4(k − 2)

,

provided k � 3. Note that this can be freely assumed, since the case k = 2 has been
already dealt with in [13]; alternatively, for k = 2, we can use the obvious fact that
|∂S| = |S|(n − |S|) � n|S|/2. In any case, for any k � 2, there exists a positive number
β (depending only on k) such that |∂S| � βn|S| holds for all the considered cuts.

Now, if (S, Xk−1
n \ S) is an arbitrary cut in B(n, k − 1), write for brevity s = |S|

and s∗ = min{s, nk−1 − s}. We obtain the following estimate:

Nn,k �
nk−1−1∑

s=1

(
nk−1

s

)
2nk−βns∗ = 2nk

nk−1−1∑
s=1

(
nk−1

s

) (
2−βn)s∗

= 2nk
nk−1−1∑

s=1

(
nk−1

s∗

) (
2−βn)s∗

� 2nk+1

⌊
nk−1+1

2

⌋
∑
s=1

(
nk−1

s

) (
2−βn)s

.

We use the well-known inequality
(m

r

)
�

(me
r

)r
to establish that

(
nk−1

s

)
�

(
nk−1e

s

)s

� (nk−1e)s = 2((k−1) log2 n+log2 e)s � (2α log2 n)s

for a suitably chosen constant α (that depends only on k) and n � 2. Therefore, we
have

Nn,k

2nk � 2 ·

⌊
nk−1+1

2

⌋
∑
s=1

(2α log2 n−βn)s.
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For n large enough we are going to have α log2 n − βn < 0, implying (2α log2 n−βn)s �
2α log2 n−βn for all s � 1 and thus

Nn,k

2nk � (nk−1 + 1)2α log2 n−βn = nα(nk−1 + 1)
2βn

.

It immediately follows that

lim
n→∞

Nn,k

2nk = 0,

that is, �n,k ∼ 2nk
. �

Proof of Theorem 1.1. An upper bound for fn(Tk) is provided by Lemma 3.1.
As for the lower bound, Lemma 3.3 implies that for any strongly connected
subgraph of B(n, k − 1) there are n2(k−1) words not equivalent in Tk that induce the
subgraph in question. Hence, fn(Tk) � n2(k−1)�n,k, where �n,k is the number of strongly
connected subgraphs of B(n, k − 1). Now Proposition 3.4 completes the proof of the
theorem. �

REMARK 3.6. In this note, we used the definition of k-testability that appears in
[22], and that originated from [3]. This variant of k-testability is consistent with [15,
21] so that A is indeed the variety of 2-testable semigroups. An alternative definition
of k-testability is featured in [20] and several other references, but the impact of this
alternative is minor to our main result: under the modified definition, the asymptotic
class of the resulting free spectrum is n2k2nk

.
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