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REPRESENTATIONS BY HERMITIAN FORMS IN A 
FINITE FIELD OF CHARACTERISTIC TWO 

JOHN D. FULTON 

1. Introduction. Throughout this paper, we let q = 2W
} w a positive 

integer, and for u = 1 or 2, we let GF(qu) denote the finite field of cardinality 
qu. Let ~ denote the involutory field automorphism of GF(q2) with GF(q) as 
fixed subfield, where â = aQ for all a in GF{q2). Moreover, let | | denote the 
norm (multiplicative group homomorphism) mapping of GF(q2) onto GF(q), 
where \a\ — a • â = aQ+1. 

Let / denote any primitive element of GF(q2) over GF(q). Then GF(q2) = 
{a + bl: a, b £ GF(q)}, a + bl = a + bl\ and \a + bl\ = a2 + (I + l*)ab + 
I'+W. 

L e t ^ c denote the c-dimensional vector space of c-tuples x = (#i, #2, • • • , xc) 
over GF(q2). If h( • , • ) is a Hermitian scalar product o n ^ c X ^ c and if 38 is 
any ordered basis for7^c , then there exist elements htj in GF(q2) such that 

c c 

(1.1) A(x, x) = 2 ] X) htPiXj = x#x*, 

where H = Qitj) is the c X c Hermitian matrix of the Hermitian form defined 
by h( • , • ) o n ^ c relative to 38 and where for any a X b matrix X over GF(q2), 
X* denotes the conjugate, transpose of X. 

Let vector spaces *f n and i^m have ordered bases 38 and ^ 1 , respectively. 
Let Hermitian form h( • , • ) of rank k on7^w have matrix 4̂ relative to 38 and 
let Hermitian form h\{ • , • ) of rank 5 on i^m have matrix 5 relative to 38\. 
We seek the number of m X n matrices X of prescribed rank r such that for 
all v e^m, 

(1.2) ijBrç* = ftito, r?) = AfoX, rfX) = riXAX*ri*. 

That is, we seek the number oi m X n matrices X of rank r over GF(q2) such 
that 

(1.3) XAX* = B, 

where A is n X n, Hermitian of rank k and where B is m X m, Hermitian of 
rank s. 

Hodges [11] has solved the problem of this paper for finite fields GF(q2) of 
odd cardinality q2. It should be pointed out here that the methods used in our 
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170 JOHN D. FULTON 

paper apply as well to the odd cardinality q2 case as to the even and rely more 
heavily on the classical theory of Hermitian forms than does the paper by 
Hodges. Had q2 been odd, we would have chosen / in the second paragraph of 
this section to be equal to g(«+1)/2

> where g is any generator of the cyclic multi­
plicative group of GF(q2). In that case, a + bl = a + blQ = a — bl and 
\a + bl\ = a2 — vb2 for all a, b £ GF(q2) and for I2 = v. We will point out 
other minor alterations in this paper which will apply to the determination of 
rank r solutions X to (1.3) over GF(q2), q2 odd. 

Carlitz and Hodges [7] have found the number of m X n matrices X of all 
ranks over GF(q2), q2 odd, which satisfy (1.3), but did not find the number of 
specified rank as did Hodges and as is done in our paper for q2 even. Wan and 
Yang [16] have employed partitioned matrices with many blocks to find all 
m X n matrices X of full rank m which are solutions to (1.3). Our paper relies 
more heavily on the classical theory of Hermitian forms than does that of Wan 
and Yang for the full rank case. Finally, we establish in Section 4, recurrence 
relations whose solution in Section 5 yields the number of rank r solutions to 
(1.3). These recurrences are of the same class of recurrence relations en­
countered by Buckhiester [2; 3; 4], Fulton [10], and Perkins [14] and solved 
by Carlitz [6]. 

2. Preliminaries. If h( . , . ) is a Hermitian scalar product of rank k on 
vector space7^w over GF(q2), it may be seen in the text by Jacobson [12, p. 153], 
for example, that there exists an ordered basis (vi, . . . , vk, f i, . . . , Çn~k) oî^n 

such that the matrix of h( • , • ) relative to this ordered basis is the diagonal 
matrix D — D[bi, . . . , bkl 0, . . . , 0], where 0 ^ bt = h(vu vt), i = 1, . . . , k. 

Since each bt above is a Hermitian element of GF(q2) (bt Ç GF(q)), choose 
element cf Ç GF(q) such that c2 = bt. Then ctCi = ctCiQ = ct

2 = bt. Hence, 
there exists an ordered basis (coi, . . . , o)k, f i, . . . , fw_*) such that the matrix of 

h{ • , • ) relative to this basis is 

Carlitz and Hodges [7] use a theorem by Dickson [8, p. 46] to show that if q2 

is odd, there exists a basis (coi, . . . , œk, f i, . . . , Çn-k) of ̂ n such that the matrix 

of h( • , • ) relative to this basis is \ k , where Ik is the k X k identity 
matrix. L J 

Let M(r, k, n, s, m) be the number of m X n matrices X of rank r over 
GF(q2) which satisfy equation (1.3). Since A is n X n Hermitian of rank k, 
there exists an ordered basis £§\ for ^ n and, hence a matrix P of change of 

basis such that PAP* = \ {* j? , where if P = (ptj), P* = (pi*) with ptj* 

= pji. Similarly, since B ism X m Hermitian of rank s, there exists an ordered 

basis &2 iori^m and a matrix Q of change of basis such that QBQ* = 

Thus, the m X n matrix X of rank r over GF(q2) satisfies (1.3) if and only if 

[Ï » • 
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the m X n matrix Z = QXP~l of rank r satisfies 

«•» * [ ? ! ! ] * • - f r S]-
Hence, ikf (r, &, w, s, m) is the number of rank r, m X n matrices Z over GF(q2) 
which are solutions to (2.1). 

Partition Z as Z = * 2 , where Zi is 5 X &, Z2 is 5 X (n — k), Z3 is 
^ -" TZi Z21 

(w — 5) X fe, and Z4 is (m — 5) X (n — k). Then Z = * ^2 of rank r 
satisfies (2.1) if and only if 

(2.2) [£][*•,*•]-[£ î\. 
Thus, 

T 

(2.3) M(r,k,n, s,m) = ^ M(t,k,k, s,m)g(r — t,k,n,m), 

where for each m X k matrix ~ | of rank £ which satisfies (2.2), 

rz2i 
g(r — t, k, n, m) is the number of m X (n — k) matrices _2 over GF(q2) 

f"Zi z 2 l •- -J 
such that Z = 2 is m X » of rank r ^ s. Brawley and Carlitz [1] 

|_Z3 Z4J 
have found g(r — t, k, n, m) to be 

(2.4) g(r - t, k, n, m) = \ n ~ * 1 2 « — + < > i f (g2- - g
2«+'>) 

with 
n—fc 

n k1 -1) , — r—t n 

n (̂  -1) n («' -1) 

a q-binomial coefficient. 
In Section 3, we determine Af(s, &, k, s, s), the number of rank s, s X k 

solutions Zi over GF(q2) to 

(2.5) Z1Z1* = / . . 

In Section 4, we establish recurrence relations whose solution in Section 5 
yields M(t, k, k, s, m) and, thus, by (2.3), M(r, k, n, s, m). 

The remainder of this section contains needed results on exponential sums, 
on quadratic forms, and on the classical theory of Hermitian scalar products 
denned on Y c Y.Y c. 
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172 JOHN D. FULTON 

Consider the mapping r of GF(q), q = pw, p an a rb i t ra ry prime, onto GF(p), 

defined by r(a) = a + a? + ap2 + . . . + apW~\ Define e(a) = ( - l ) r ( a ) . Then 

it is widely known and an easy exercise t h a t the exponential sum 

M ç *<«)-{« !}:;£ 
Dickson [8, pp. 197-199] has shown t h a t every full r ank quadra t ic form 

/ ( • ) defined oni^n over GF(q), q = 2W, can, by appropr ia te choice of ordered 
basis fo r7^ n , be wri t ten in exactly one of the three forms 

(2.7) fix) = odXu+i + x2xu+2 + . • • + xux2u + x2u+1
2, n = 2u + 1, 

(2.8) f(x) = XiXu+i + x2xu+2 + . . . + xux2u, n = 2u, or 

(2.9) f(x) = x&u+i + . . . + xux2u + x2w+i2 + x2u+i x2u+2 + bx2u+2,
2 

where in (2.9), b is any element of GFiq) such t h a t the polynomial x2 + x + b 
is irreducible in GF(q)[x]. Full rank quadra t ic f o r m / ( • ) in n variables is said 
to be of type $ = 0, 1, or — 1 according a s / ( • ) is equivalent to (under change 
of basis mi^n) (2.7), (2.8), (2.9), respectively. Carli tz [5] has examined the 
seemingly difficult task of determining from its coefficients the type of a 
quadrat ic form defined on vector space 7 ^ , n even over GFiq), q even. In 
part icular, if fix) = J2i^i^j^n ^tj %i %j denotes a quadra t ic form of full rank n 
ovi'f n, he defines the exponential sum 

(2.10) S if) = Z eifM), 
yern 

and shows tha t 

(2.11) S(f) = { ° > nodd' 
\<t>q , n even. 

Hence, (2.10) and (2.11) can be used to determine the type of a full rank n 
quadrat ic f o r m / ( • ) defined o n 7 ^ w over GFiq), q and n even. 

Let h( • , • ) denote a Hermit ian scalar product defined on an w-dimensional 
(finite) vector space over a field F such t h a t the equation x + x = b has a 
solution x in F for every Hermit ian element b of F. If ff is a subspace of 7 ^ , 
then ff1- will denote the subspace 5 ^ = {v 6 ^ : h(y, a) = 0 for all a Ç y 7 } . 
T h e radical of a subspace 5 ^ is the subspace Rad (J/*7) = £f C\ t5^-L. A subspace 
5 ^ of ^ is said to be nonisotropic, isotropic, or totally isotropic according as 
Rad {Sf) is {0}, is not {0}, or i s 5 ^ , respectively. T h e Hermit ian scalar product 
h( • , • ) is said to be nondegenerate (full rank) or degenerate according as R a d ^ 
is or is not {0}, respectively. Subspaces Sf \ and j ^ 2 of i^ are said to be h-
equivalent if and only if there exists a linear isomorphism U of S^i onto $f 2 

such t h a t hix, v) = hixU, rjU) for all x, *7 € J^i- Also, if [/ defines an h-
equivalence of ^ with itself, then U is said to be an h-unitary transformation 
on-V. 

https://doi.org/10.4153/CJM-1977-017-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-017-5


REPRESENTATIONS 173 

Witt's Theorem applies in our setting [12, p. 162]. We restate it here as 
Theorem 2.1. 

THEOREM 2.1. If S^i and y2 are nonisotropic and h-equivalent subspaces of 
vector spaced, where h( • , • ) is a nondegenerate, Hermitian scalar product oni^', 
then y i1- and y\± are h-equivalent. 

Jacobson [12, p. 167] uses Theorem 2.1 to prove another version of Witt's 
Theorem for h( • , • ) a nondegenerate Hermitian scalar product on w-dimen-
sional vector space i^. We restate the theorem as Theorem 2.2 for later 
reference. 

THEOREM 2.2. If y is a sbuspace ofV, then dim (y1-) = n - dim (y). 
Moreover, if y with basis (771, . . . , r]m) is isotropic with basis (771, . . . , r]v) for 
Rad (y), then there exist linearly independent vectors fii, . . . , fiv ini^ such that 

(l i = j 
h(vi, Pj) = \Q i9£j> i = 1, . . . ,m,j = 1, . . . ,v 

and such that subspace 38 = [fii, . . . , 0 J is totally isotropic. Moreover y C\ 38 — 
{0} and y © 38 is nonisotropic. Thus, every h-equivalence of a subspace y off 
can be extended to an h-unitary transformation on^f '. 

We conclude this section with the cardinality |^n(<Z2)| of the unitary sub­
group tf/n(q

2) of the full linear group of n X n nonsingular matrices over 
GF{q2). This cardinality may be found in [15, p. 33], for example: 

(2.12) \<%n{q*)\ = g<*2-B"2 f l (31 - ( - ! ) ' ) • 

3. Determination of M(s, k, k, s, s). The m X k matrix \ l of rank t 

over GF(q2) satisfies (2.2) if and only if Zi, s X k of rank s, satisfies (2.5), and 

Z3, {m — s) X k such that Z = x has rank /, satisfies RS(Z3) C (RS(Z))±, 

where RS(Zt) is the row space of matrix Zt. We determine M(s, k, k, s, s), 
the number s X k, rank 5 solutions to (2.5). Let et denote the ith unit vector 
of 7 ^ over GF(q2). Then y 1 = [ei, . . . , es] is a nonisotropic subspace of 7 ^ . 
Moreover, the identity linear transformation / defines an /^-equivalence of y \ 
with itself. By Theorem 2.1, relative to the basis of elementary unit vectors 
iox'f k, there exists P £ ^k(q

2) extending / . Let J be the subgroup of unitary 
matrices P £ °àk(q

2) such that P extends / . Clearly, J' is isomorphic to 

[Til 

Let Zx = satisfy (2.5) and let y2 = RS(Zi), nonisotropic. Then 

T : S^i —• J^2 such that {tt)T = f it i = 1, . . . , s, defines an ^-equivalence of 
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5f\ onto 5^2- By Theorem 2.1, there exists P\ G ^idq2) such that P i extends T. 
Moreover, thecoset JPX of J in ^ (g2) is precisely { U G ^k(q

2): UextendsT}. 
Hence, the number solutions Zx to (2.5) is the index of J in ^k(q

2). That is, 

(3.1) M(s, k, k, s, s) = |«T*((Z2)|/I^*-.((Z2)I, 

where the cardinalities of ^ ( g 2 ) and &k-s(q
2) are given by (2.12). 

4. Recurrences for Af(/, &, &, s, m). Suppose Zi is any of the M(s, k, k, s, ni) 
solutions to (2.5), where M (s, &, k, s, m) is given by (3.1). Let t = s + u. For 

each such Zi, let N(u, k, s, m) be the number of m X k matrices Z = M 
of rank / such that Z satisfies (2.2). Then 

(4.1) M(t, k, k, s, m) = M(s, k, k, s, s)N(u, k, s, m). 

Hence, to complete the problem posed in this paper we need only determine 
N(u, k, s, tn), the number of (w — s) X k matrices Z3, for given Zi, s X k of 
rank / satisfying (2.5), such that 

-Œ (4.2) Z = x has rank /, and 

(4.3) RS(Zz) C ( ^ ( Z ) ) ^ 

Let^7" = {x G ^ * : A(x> x) = 0}, /&(•,• ) nondegenerate. Thus, we identify 
the following recurrence for N(u, k, s, m)\ 

(4.4) N(u, k, s, m) = K(u, k, s)N(u, k, s, m — 1) 

+ L(u, k, s)N(u — 1, k, s, m — 1), 

where for given (m — 1) X k matrix Z = * of rank t = 5 + u satisfying 

(2.2), K(u, k, s) is the number of vectors f G 7 ^ such that 

(4.5) f G Rad (RS(Z)) C\3T = Rad (RS(Z)) 

and where for given (m — 1) X k matrix Z = * of rank £ — l = s + w — 1 

satisfying (2.2), L(u, k, s) is the number of f G ^k such that 

(4.6) (f G [ ( ^ 5 ( Z ) ) - L - RS(Z)] C\T. 

We proceed to determine K(u, k, s). Suppose for given Z = * , (m — 1) 

X * of rank / = 5 + u satisfying (2.2), f G ^ and satisfies (4.5). Let Zx = 

and let fi , . . . , £M be rows of Z3 such that RS(Z) = [%i, . . . , Xs, £i, • • • , &*]• 
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Now Rad(RS(Z)) QRS(Z). Thus, f = Eî-ia«x< + T,ï~J>ièt. Since each 
£, e RS{ZZ) C RSiZ^, i = 1, . . . , w, and since f Ç Rad (2?S(Z)) C 
^ ( Z i ) ) - 1 , a, = A(f, x>) = 0,i = 1 , . . . , s. Hence, f 6 [£i, . . . , £ j . Conversely, 
if f G [fi, • • • , &*], f satisfies (4.5). Hence, Rad(i?S(Z)) = [£x, . . . , £J, and, 
therefore, 

(4.7) ' K(u,k,s) = çw. 

An expression for L(w, &, 5) is not so readily determined. Suppose for given 

Z = \ l , (m - 1) X k of rank * - l = s + w - l satisfying (2.2), f 6 ^ 

and satisfies (4.6). Let Z\ = 

Xi 

. Let £1, . . . , £w_i be linearly independent 

row vectors of Z3 such that RS{Z) = fxi, . . . , Xs, £1, • • • , £u-i]. We saw in 
the determination of an expression for K(u, k,s) that Rad(i?5(Z)) = [£ i , . . . , £ j . 
For the present consideration Rad(RS(Z)) = [£1, . . . , £M_J. By Theorem 2.2, 
there exist vectors 0i, . . . , /3w_i i n ^ ^ such that 

* ( * * * > - { M ^ 7 

i, j = 1, . . . , u — 1, such that h{xu Pj) = 0, i = 1, . . . , s, j = 1, . . . , w — 1, 
and such that the subspace ^ = [0i, . . . , Pu-i] is totally isotropic. More­
over, -vk = RS(Z) ® 38 e (&s(z) e J*)1-. Let ^ = c&s(z) e âS)1- = 
[71, 72 , . . . , 7d], where d = dim <3T = & — s — 2(w — 1). Hence, dim(i^5(Z))J- = 
* - dim RS(Z) = (u - 1) + d. Now 

(4.8) ( ( ^ ( Z ) ) ^ - RS(Z) C\T = (RSiZ))-1 C\T - Rad RS(Z). 

Clearly, {RS(Z))± = [£b . . . , k_lf 71, 72, . . . , 7J , while Rad RS(Z) = 
[£1, . . . , £w_i]. Since by Theorem 2.2, RS(Z) © ^ is nonisotropic, so is^T non-
isotropic. Thus, we can assume that the basis 71, 72, . . . , y a f or 3£ has been 
chosen such that h(yu 7j) = àijt the Kronecker delta. If f G ^ such that 
f satisfies (4.6), then f = X*~la*£« + Xlc*7*> where f G Rad RS(Z) and where 

(4.9) o = A(r,r) = E *<?<• 

Therefore, in order to determine L(u, k, s), we must find the number of 
solutions (ci, . . . , Q ) Ç ^ over GF(q2) to (4.9). Now each ct in GF(g2) can 
be written as ct = xt + fe+z, where, for g2 even, / is a primitive element of 
GF(q2) over GF{q) and where each x* G GF(q). Thus, (4.9) can be used to 
define a quadratic form in 2d variables o n ^ d over GF(q), 

(4.10) /(xi, . . . , x2d) = £ cfii = É (x,2 + (lQ + l)xtxd+1 + lQ+1xd+i2), 
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for which we seek the number of solutions to / (# i , . . . , x2d) = 0. Relative to 
the ordered basis of elementary unit vectors for ir

2a, the matrix of / is (in 
partitioned form) 

Hence, the matrix of the symmetric, alternating bilinear form associated with 

/ i s 

U 0j' (4.12) G + GT = (/* + /) 

Since from (4.11) and (4.12), G + GT has full rank 2d, f is a quadratic form 
of full rank 2d on 7^d. 

Using (2.10) and (2.11), we seek to determine the type <j> of/. Now from 
(2.10), 

(4.13) d 

S(f) = . Z . . . . *(f(*i *«)), 

= I 1 Z E e ( S j
2 +(r + /)S(Zd+i + /'+W<2). 

* 2 i Zd+i 

Carlitz [5] shows that 

(4.14) X e(a2 + ab + kb2) = -q 
a,b£GF(Q) 

if k G GF(q) such that the polynomial x2 + x + & is irreducible in GF(q)[x], 
A change of variable transforms (4.13) into a product of d exponential sums of 
the form (4.14), where the polynomial x2 + x + lQ+1(lQ + /)~2 is irreducible 
in GF(q)[x]. (It is reducible in GF(q2)[x]). Hence, 

(4.15) S(f) = ( - g ) * = ( - l ) V , 

and / has type </> = — 1 if d is odd and type 0 = 1 if d is even. It is seen in [9] 
that the number of solutions to /(xi, . . . , x2d) = 0, where / is a full rank 
quadratic form of type <j> on vector s p a c e ^ 2 d over GF(q), q even, is given by 

(4.16) Q(d) = q2d^ + <t>qd~'(q - 1) = q**~l + {-l)dqd~^q - 1), 

where </>, the type of/, is 1 if / is equivalent to (2.8) and is —1 if is equivalent 
to (2.9). 

Now |Rad RS(Z)\ = qu~1. Hence, for q2 even, 

(4.17) L(u, k, s) = çT'Qid) - qu~l = q^iQW ~ 1). 

If q2 were odd, then Y^c^i = ]C<(**2 ~ vxd+i
2)t where v = /2 = gff+1, g a 

generator for the multiplicative group of GF(q2). Dickson [8, p. 47] shows that 
the number of solutions to X ^ ^ T = 2]1(xz2 ~~' v%d+i2) = 0, for g odd, is given 
by (4.16) and thus L(u, k, s) is given by (4.17) for q even and q odd. In view 
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of the comments by Kaplansky [13, p. 36] concerning the values in GF(q) of 
|c| = cc for c in GF(q2)} this should not be surprising. 

Thus, we have developed an explicit recurrence expression for N(u, k, s, m). 
Recalling that d = k - s - 2(u - 1) and applying (4.7), (4.16), and (4.17) 
to (4.4), we obtain 

(4.18) N(u, k, s, m) = quN(u, k, s, m - 1) 

+ f-'iQik - s - 2(u - 1)) - l)N(u - 1, k, s, m - 1) 

with initial conditions 

(4.19) N(u, k, s, s) = / l , u = 0 
lO, u > 0 ' 

5. Solution to the recurrence for N(u, k, s, m). Carlitz [6], after examin­
ing a recurrence arising in a paper by Perkins [14], gave solutions for a class of 
recurrences, or finite difference equations of the form 

(5.1) V(u} k, s, m) = quV(u, k, s, m — 1) + A (u, k, s) V(u — 1, k, s, m — 1), 

where A (u, k, s) is known. Carlitz applied the change of variable V(u, k, s, m) 
= qumV(u, k, s, m) to transform (5.1) to the equation 

(5.2) V(u, ky s, m) — V(u, k, s, m — 1) 

+ ql~m-uA(u, k, s)V{u - 1, k} s, m - 1). 

Then, he applied the operator E, where E(f(u)) = f(u + 1), E°(f(u)) = f(u), 
and E~l{j{u)) = f(u — 1), to write (5.2) in the simple recurrence form 

(5.3) V(u} k, s, m) = (1 + ql~m-uA(u, k, s)E~1)V(u, k, s, m - 1) 

and applied the initial conditions and the relationship 

m 

(M) n [i + rtw£-'i 

sM» <rm + 1 / 2 i ( i-1 ) gW)g{u - 1 ) . . . g(« - » + 1 ) £ - 4 

to solve (5.2) and, hence, (5.1). Using Carlitz' methods, we have as solution 
to the finite difference equation (4.18) with initial conditions given by (4.19), 

(5.5) N(u, k, s, m) = \ m ~~ S fi Ui, k, s), 
L u J i=i 

[ VYl — 5 I 
is a q-

binomial coefficient. To summarize, we conclude with the following theorem. 

THEEOEM 5.1. The number M(r, k, n, s, m) of m X n matrices X of rank r 
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over GF(q2), q2 even, such that XAX* = B for specified Hermitian A of rank k 
and specified Hermitian B of rank s , 0 ^ s ^ r ^ k ^ n and 0 ^ 2(r — s) ^ 
k — s, is given by 

r 

M(r, k, n, s,m) = ^ M(t, k, k, s, m)g(r — t, k, n, m), 

where 
g(r — t, k, n, m) = n — k \ 2t(n-k-r+t) TTT / 2 m _ 

_ r — t J j=o 
- q2U+j) 

and where 
M(t, k, k, s, m) = M(s, k, k, s, s)N(u, k, s, m) 

with 
M(s,k,k,s,s) = |^*((Z2)|/ |^-S((Z2)| 

and 

-[".-']fl N(u,k,s,m) = \ M l L(i,k,s). 
L u J i=i 

L(i, k, s) is given by (4.16) and (4.17). 

Proof. W e n e e d o n l y p o i n t o u t t h a t t h e i n e q u a l i t y 0 ^ 2 (r — s) ^ k — s 

fol lows f rom T h e o r e m 2 .2 . 
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