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We describe two congruences a and y contained in £ on an arbitrary orthodox
semigroup. Let S be a right unipotent semigroup. We show that (i) a is an inverse
semigroup congruence and v is the finest fundamental inverse semigroup congruence on
S, (ii) S is a union of groups if and only if y=.% on § and (iii) S is a band of groups if and
only if a =% on S.

Let A be a regular semigroup and let x € A. Throughout the paper V(x) stands for
the set of inverses of x, and E(A) for the set of idempotents of A. A is said to be an
orthodox semigroup if E(A) is a subsemigroup of A. If A is an orthodox semigroup then
V(b)V(a)< V(ab) for all a, b in A [9]. For the general terminology and notation, the
reader is referred to [2].

The author wishes to thank the referee for his suggestions and remarks.

1. The congruences «, 3, v, 6 and . Let S be an orthodox semigroup and let
E = E(S). The greatest idempotent-separating congruence u on S (Howie [5, Theorem
VI. 1.17], Meakin [7]) is given by the rule:

(x,y)ep=u(S)>x'ex=y'ey
and xex’ = yey’ for all e€ E and for some x'€ V(x) and y' € V(y).
We define the binary relations @ and y on S thus:
(x, y)ea=a(S)e>x’ex = y'ey for all e € E and for some x'e V(x), y'e V(y);

(x, y)Ey=7(S)x'exy’ey =x'ex and
y'eyx'ex =y'ey for all e € E and for some x'e V(x), y’' € V(y).

The proof of Theorem 1 below is like Meakin’s (loc. cit.) derivation of u for S.

THEOREM 1. Let S be an orthodox semigroup and let E = E(S). Then
(1) « and vy are congruences on S,
(2) v is the greatest congruence contained in £ on S.

Proof. Clearly «a is reflexive and symmetric. Let (x, y) € a. Then there exist x'€ V(x)
and y'e V(y) such that x’ex=y'ey for all ec E. Let x"€ V(x) and y"e V(y). Taking in
turn e = xx" and e = yy”, we have x'x = y'xx"y and y'y = x'yy"x. Therefore x'x = x'xy'y =
y'y. If (y, z)€ a then y*ey=2z'ez for all e€ E and some y*€ V(y), z'€ V(z). So y*y=
2'z=1z'yy'z. Set p=y*yx' and q = z'yy’. Then pxp = y*(yx'xy*yx') = y*yx'=p and xpx =
xy*y(x'x) =xy*y=(xy'y)y*y=xy'y =x. Therefore pe V(x). Similarly ge V(z). Now,
for all ecE, we have pex=y*y(x'ex)=y*y(y'ey)=y*(yy'e)y =2z'(yy'e)z = qez, giving
(x, z) € a. So « is transitive and hence an equivalence relation on S.
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Let aeS and a'e V(a). Then for all ee E we have a'(x'ex)a=a’(y’ey)a and
x'(a’ea)x = y'(a'ea)y. Since a'ea € E [9], we get that « is a congruence on S.

We now consider vy, which is clearly reflexive and symmetric. Let (x, y)€y. Then
x'exy’ey = x'ex and y’eyx’ex = y'ey for all e€ E and some x'€ V(x), y'e V(y). If (y, z)ey
then there exist inverses y* of y and z' of z such that y*eyz'ez = y*ey and z'ezy*ey =
Z'ez. Since S is orthodox, we have y'ey = y'(eyy*ey). Therefore x'exz'ez = x'exy’eyz’ez =
x'ex(y'eyy*ey)z'ez = x'ex(y'eyy*ey) = x'exy’ey = x’ex.  Similarly, 2'ezx'ex=2z'ez. So
(x, z)€v, and v is an equivalence relation.

Let aecS and a'e V(a). Then since (x,y)ey, for all eeE we have
x'(a’ea)xy’(a’'ea)y = x'(a’ea)x and y'(a’ea)yx’'(a’ea)x = y'(a’ea)y. Therefore (ax, ay)€ y.
Furthera'x'exaa’y’eya = a'(x'exy’ey)aa’y’eya = a'x'exy’'(eya)(a’y'e)(eya)=a'x’exy’(eya) =
a'(x'exy’ey)a = a'x’'exa. Similarly, a'y'eyaa’x’exa = a'y’eya. Thus (xa, ya)ey, and y is a
congruence on S.

As for the other part, if (x,y)evy, taking e=x'x we have x'xy'xx'y=x'x. So
xy'xx'y = x and hence xy'y = x. Similarly yx'x =y. Therefore (x,y)e £ and yc &.

Now let i be a congruence on S such that n < £. Let (x, y)€ 5. Then, for all e E, we
have (ex,ey)e £. So for all inverses p of ex and q of ey, we have pexqgey = pex and
geypex = gey. Taking p=x*e and q=y*e, where x* and y* are inverses of x and y
respectively, we get that (x, y)e y and hence that n < y. This completes the proof of the
theorem.

CoroLLARY. If & is a congruence on an orthodox semigroup, then y=%.

REMARK. Let § be an orthodox semigroup and let x, y€ S. Then, since y< &, we
have (x, y)€ v if and only if x'exy’ey = x'ex and y'eyx'ex = y'ey for all ec E(S), x'€ V(x)
and y'e V(y).

ReEMARK. Let § be an orthodox semigroup and let E = E(S). Define the binary
relations B and & on S thus:

(x,y)€ B & xex' = yey' for all ec E and some x'€ V(x), y'€ V(y);
(x, y)€ 8 © xex'yey' = yey' and yey'xex’ = xex' for all e € E and some x'€ V(x), y'e V(y).

Then B and 8§ are congruences on S, and § is the greatest congruence contained in & on
S. Trivially B< 8(a < v), and it follows from the definitions of a, B, v,  and u that
p=aNB=yNé.

A semigroup is said to be fundamental if the only congruence on it contained in ¥ is
the trivial congruence. Since p is the greatest congruence on S contained in %, it follows
that S is fundamental if and only if u is the trivial congruence on S. We omit the proof.of
the following result which is similar to the one known for inverse semigroups (Howie [4],
Munn [8)).

LEMMA 1. Let S be an orthodox semigroup. Then S/u is a fundamental orthodox
semigroup and the band of idempotents of S/p. is isomorphic to E(S).
Theorem 2 below shows how certain homomorphic images of S are related.

https://doi.org/10.1017/50017089500003384 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500003384

ON RIGHT UNIPOTENT SEMIGROUPS II 65

THEOREM 2. Let S be an orthodox semigroup. Write L=S/n, M=S/a, N=S5/y,
a'=a(L), ¥'=y(L) and y"= y(M). Then

(1) L/a’' is isomorphic to M,

(2) L/y' and M]y" are isomorphic to N.

Proof. By [2, Theorem 1.6], the mappings 6:L—M, ¢:L—-N and ¢y:M—N
defined by (ap)6 = aa, (ap)¢ = ay and (xa)¢ = xy(a, x€ S), are surjective homomorph-
isms. Let a, b€ S. Then, since every idempotent of M is the image of an idempotent of L
[6], we have (a,b)ea if and only if (ap,bu)ea’. So 800 '=a’, proving (1). Since
(a, b)e vy if and only if (au, bu)€ y', we get the first part of (2). If x, y € S, then (x, y) € vy if
and only if (xa, ya) € ", proving the other part of (2).

REMARK. Write T=S/B, B'=pB(L) and &' = 86(T). Then proceeding as above we get
L/B’' isomorphic to T, and T/8’ isomorphic to §/8.

2. Right unipotent semigroups. Let A be an orthodox semigroup and let E = E(A).
The finest inverse semigroup congruence ¢ on A (Hall [3], Yamada [14]) is given by the
rule: (x, y)€ o if and only if V(x)= V(y).

A is said to be a right (left) unipotent semigroup if every principal right (left) ideal of
A has a unique idempotent generator. Let S be a right unipotent semigroup and let a € S.
Then (i) fef = fe for any two idempotents e, f of S, and (i) aa’= aa™ for any a’, a* in
V(a) [11). Further, B is the greatest idempotent-separating congruence on S [12]. Since
B =& follows from the definition of S, we have u=8=8 on S. That pu=a=p on an
inverse semigroup is well known (Howie [4]).

THEOREM 3. Let S be an orthodox semigroup and let E = E(S). Then the following
statements are equivalent:

(A) S is a right unipotent semigroup;

(B) S/a is an inverse semigroup;

(C) S/v is an inverse semigroup.

Proof. Assume (A). Let g, he E. Then, for all ec E, we have ghehg = ghe = ghegh
[11]. This, since V(gh)= V(hg), implies that (hg, gh) € a. Since every idempotent of S/a is
the image of an idempotent of S [6], we get (B).

(B) implies (C) since S/vy is a homomorphic image of S/ [2, p. 17]. That (C) implies
(A) follows from [13]. For a direct proof, assume (C). Let g, he E. Then, since vy is
contained in &, we have (gh, hg) e £. Therefore ghg = gh, proving (A) [11].

THEOREM 4. Let S be a right unipotent semigroup and let E = E(S). Write P = S/o and
w' = u(P). Then

(1) P/p’' is isomorphic to S/,

(2) v is the finest fundamental inverse semigroup congruence on S.

Proof. By Theorem 3 we have o <v. So, proceeding on the lines of the proof of
Theorem 2, we get (1). From this result and Lemma 1 it follows that S/ is a fundamental
inverse semigroup. Let p be a congruence on S such that §/p is a fundamental inverse

H

https://doi.org/10.1017/50017089500003384 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500003384

66 P. S. VENKATESAN

semigroup. Let x, y € S be such that (x, y) € v. Then, since $/p is inverse, we have (xp, yp)€ p
on S/p. This, since S/p is fundamental, implies that (x, y)€ p and hence that y<p.

COROLLARY (1o the proof of (1)). The semilattice E(S/o) is isomorphic to the semilattice
E(S/v).

3. Unions of groups. In this section we consider right unipotent semigroups which
are unions of groups.

Let S be a right unipotent semigroup, let E = E(S) and let x € S. Let the symbols (Px)
and (Qx) denote statements as follows:

(Px) exe =ex and ex’e=ex’' for all e€ E and for some x'e V(x).
(Ox) xex'=xx'e for all ec E and x'€ V(x).

Then (i) (Qx) implies (Px) for any x in S, (ii) S is a union of groups if and only if (Px)
is satisfied for all x in S and (iii) §/B is isomorphic to E if and only if (Qx) is satisfied
for all x in S [12].

Let S be a right unipotent semigroup which is a union of groups. Then Green’s
relations on S are related thus: =92 =% and R = ¥ [10].

THEOREM 5. Let S be a right unipotent semigroup and let E = E(S). Then the following
statements are equivalent:

(A) S is a union of groups;

(B) S/o is a semilattice Y of groups, where Y is isomorphic to E(S/o);

(C) S/v is a semilattice;

(D) y =¥ (equivalently, £ is a congruence on S);

(E) S is a semilattice Z of left groups, where Z is isomorphic to S/v.

Proof. That (A) implies (B) is well known [2, pp. 126-129]. Assume (B). Let x€ S,
x'e V(x) and e € E. Since the idempotents of S/o are in the centre of S/o [2, p. 127], we
have (ex)o = (xe)a; that is, V(ex)= V(xe). Now both x'e and ex' are inverses of ex. This,
since § is right unipotent, implies that exex’= exx’. Similarly ex'ex = ex'x. Therefore
q (x'ex)(x'xex'x) = x'(exex')x = x'(exx")x = x'ex
an
(x'xex'x)(x’ex) = x'x(ex’ex) = x'xex’x.

So (x, x'x)€ v and hence, by Theorem 3, S/y is a semilattice, proving (C).

Assume (C). We first prove that (Px) is satisfied for all xe S. Let x€ S, x'e V(x) and
ec E. Then (x'e, ex’)e y. This, since y< &, implies that (exx'e)(xex’) = exx'e. Therefore,
since S is right unipotent, we have exex’'= exx’ and hence

exe = ex(x'xe) = ex(x'xex'x) = (exex")x = (exx)x = ex.

Similarly ex'e = ex’. So (Px) is satisfied for all xe S.

Now let (x,y)e Z. If x'e V(x) and y’e V(y) then xy’'y =x and yx'x=y. So, for all
ecE, using (Pxy'), we have x'exy'ey=x'(exy’'e)y=x'exy'y=x'ex and, similarly,
y'eyx'ex = y'ey. Therefore (x, y)ey and £ < y. Since yc ¥, we get (D).

Assume (D). Let xe S and x'€ V(x). Then (x, x'x) € £. Since £ is a congruence, for
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all ee E we have (ex,ex'x)e ¥ and hence exex'x =ex. Therefore ex = ex(x'xex'x)=
ex(x'xe) = exe. Similarly ex’ = ex’e and so (Px) is satisfied for all x€ S. Thus S is a union of
groups. Now (E) follows from [2, Theorem 4.6] and [10]. Clearly (E) implies (A), proving
the theorem.

REeMARK. By the corollary to Theorem 4, the semilattices Y and Z that occur in
Theorem S are isomorphic.

In the proof of Theorem 6 below, for any x€ S, x~! denotes the inverse of x in the
group H,.

THEOREM 6. Let S be a right unipotent semigroup and let E = E(S). Then the following
statements are equivalent:

(A) S is a band of groups;

(B) (Qx) is satisfied for all x in S;

©) a=y=%;

(D) B=% =R (equivalently, R is a congruence on S);

(E) S is a band E of groups.

Proof. Assume (A). Then abS = a®bS for all a, b in S [1], [2, p. 129]. Let xe S and
e€ E. Put a=x and b=x""e. Since ex™' € V(xe) and xx™' = x"'x, from ab$S = abS we get
that (xx™'e, xex™') € R. Therefore xx ‘e = xex™!, giving (B).

Assume (B). Let x,y€S, x'e V(x) and y'e V(y). Suppose that (x,y)e £ Then
xy'y=x and yx'x =y. Write a = y'yx'. Since a € V(x) and xy'e V(yx'), for all e€ E, using
(Qyx"), we have aex = y'(yx'exy’)y = y'(yx'xy’'e)y = y'ey. Therefore (x, y) € a, proving that
Fca. So we get (C).

Assume (C). We first prove that (Qx) is satisfied for all xe S. Let x€ S, x'e V(x) and
ee E. Since (x', xx') € %, by hypothesis we have (x', xx') € a; that is, pex' = qexx’ for some
pe V(x') and qe V(xx'). Premultiplying the equation by xx', we get xx'pex' = xx'qexx’.
Since S is right unipotent, x'p = x'x and xx'q = xx'. Therefore xex' = xx'exx’ = xx'e, and (Qx)
is satisfied for all x€ S. This implies that S is a union of groups and (x, xx~')e 8 for all
xe S [12]. Hence

(x,y)eBe(xx, yy )eB
SxxT=yy™!
S(x, y)eR.

Since B =p < #, we get (D).

Assume (D). Let x€S, x'e V(x) and ee E. Then, since (x,xx)e R, we have
(xe, xx'e) € R. This implies that xex’ = xx'e. So (Qx) is satisfied for all x€ S and hence S is
a union of groups. Now by [7, Theorem 4.3] we have HH, c H;, for all f, ge E, giving
(E). Triviaily (E) implies (A). Hence the theorem.

Note added in proof. Statement (2) of Theorem 1 is known. See Téru Saitd, Note on
quasi-inverse semigroups, Semigroup Forum 6 (1973), 129-132.
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