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We describe two congruences a and y contained in 2E on an arbitrary orthodox
semigroup. Let S be a right unipotent semigroup. We show that (i) a is an inverse
semigroup congruence and y is the finest fundamental inverse semigroup congruence on
S, (ii) S is a union of groups if and only if y = X on S and (iii) S is a band of groups if and
only if a = if on S.

Let A be a regular semigroup and let x e A. Throughout the paper V(x) stands for
the set of inverses of x, and £(A) for the set of idempotents of A. A is said to be an
orthodox semigroup if E(A) is a subsemigroup of A. If A is an orthodox semigroup then
V(b)V(a)s V(ab) for all a, b in A [9]. For the general terminology and notation, the
reader is referred to [2].

The author wishes to thank the referee for his suggestions and remarks.

1. The congruences a, |3, y, 8 and /x. Let S be an orthodox semigroup and let
E = E(S). The greatest idempotent-separating congruence /x on S (Howie [5, Theorem
VI. 1.17], Meakin [7]) is given by the rule:

(x, y)e /x = /Lt(S)Ox'ex = y'ey

and xcx' = yey' for all e e E and for some x' e V(x) and y' e V(y).

We define the binary relations a and y on S thus:

(x, y)ea = a(S)€>x'ex = y'ey for all e e £ and for some x'e V(x), y'e V(y);

(x, y)ey = y(S)Ox'exy'ey = x'ex and

y'eyx'ex = y'ey for all e e E and for some x' e V(x), y' e V(y).

The proof of Theorem 1 below is like Meakin's (loc. cit.) derivation of /x for S.
THEOREM 1. Let S be an orthodox semigroup and let E = E{S). Then
(1) a and y are congruences on S,
(2) 7 is the greatest congruence contained in X on S.

Proof. Clearly a is reflexive and symmetric. Let (x, y)e a. Then there exist x'e V(x)
and y'e V(y) such that x'ex = y'ey for all eeE. Let x"e V(x) and y"e V(y). Taking in
turn e = xx" and e = yy", we have x'x = y'xx"y and y'y = x'yy"x. Therefore x'x = x'xy'y =
y'y. If (y, z)ea then y*ey = z'ez for all eeE and some y*eV(y), z'eV(z). So y*y =
z'z = z'yy'z. Set p = y*yx' and q = z'yy'. Then pxp = y*(yx'xy*yx') = y*yx' = p and xpx =
xy*y(x'x) = xy*y = (xy'y)y*y = xy'y = x. Therefore peV(x). Similarly qeV(z). Now,
for all eeE, we have pex = y*y(x'ex) = y*y(y'ey) = y*(yy'e)y = z'(yy'e)z = qez, giving
(x, z) ea.So a is transitive and hence an equivalence relation on S.
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Let aeS and a'£V(a). Then for all eeE we have a'(x'ex)a = a'{y'ey)a and
x'(a'ea)x = y'(a'ea)y. Since a'eaeE [9], we get that a is a congruence on S.

We now consider y, which is clearly reflexive and symmetric. Let (x, y) e 7. Then
x'exy'ey = x'ex and y'eyx'ex = y'cy for all e e E and some x' e V(x), y' e V(y). If (y, z) e y
then there exist inverses y* of y and z' of z such that y*eyz'ez = y*ey and z'ezy*ey =
z'ez. Since S is orthodox, we have y'ey = y'(eyy*ey). Therefore x'exz'ez = x'exy'eyz'ez =
x'ex(y'eyy*ey)z'ez = x'ex(y'eyy*ey) = x'exy'ey = x'ex. Similarly, z'ezx'ex = z'ez. So
(x, z)e y, and 7 is an equivalence relation.

Let aeS and a'eV(a). Then since (x,y)ey, for all eeE we have
x'(a'ea)xy'(a'ea)y = x'(a'ea)x and y'(a'ea)yx'(a'ea)x = y'(a'ea)y. Therefore (ax, ay)ey.
Further a'x'exaa'y'eya = a'(x'exy'ey)aa'y'eya = a'x'exy'(eya)(a'y'e)(eya) = a'x'exy'(eya) =
a'{x'exy'ey)a = a'x'exa. Similarly, a'y'eyaa'x'exa = a'y'eya. Thus (xa, ya)e-y, and y is a
congruence on S.

As for the other part, if (x, y)ey, taking e = x'x we have x'xy'xx'y = x'x. So
xy'xx'y = x and hence xy'y = x. Similarly yx'x = y. Therefore (x, y)ei? and y £ X.

Now let 17 be a congruence on S such that TJ C= <£. Let (x, y) e TJ. Then, for all eeE, we
have (ex, ey) e i?. So for all inverses p of ex and q of ey, we have pexqey = pex and
qeypex = qey. Taking p = x*e and q = y*e, where x* and y* are inverses of x and y
respectively, we get that (x, y) e y and hence that TJ C y. This completes the proof of the
theorem.

COROLLARY. If i? is a congruence on an orthodox semigroup, then y = SE.

REMARK. Let S be an orthodox semigroup and let x,yeS. Then, since y c if, we
have (x, y) e y if and only if x'exy'ey = x'ex and y'eyx'ex = y'ey for all e e E(S), x' e V(x)
and y'e V(y).

REMARK. Let S be an orthodox semigroup and let E = E(S). Define the binary
relations 0 and 8 on S thus:

(x, y) e /3 O xex' = yey' for all e e E and some x' € V(x), y'e V(y);

(x, y)eSOxex'yey' = yey' and yey'xex' = xex' for all e e E and some x'e V(x), y'e V(y).

Then |3 and 8 are congruences on S, and 8 is the greatest congruence contained in 91 on
S. Trivially j3 g 8(a c y), and it follows from the definitions of a, /3, y, 8 and /u, that

A semigroup is said to be fundamental if the only congruence on it contained in $f is
the trivial congruence. Since \i is the greatest congruence on S contained in Sif, it follows
that S is fundamental if and only if \i is the trivial congruence on S. We omit the proof.of
the following result which is similar to the one known for inverse semigroups (Howie [4],
Munn [8]).

LEMMA 1. Let S be an orthodox semigroup. Then S/JU, is a fundamental orthodox
semigroup and the band of idempotents of S/JU, is isomorphic to E(S).

Theorem 2 below shows how certain homomorphic images of S are related.
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THEOREM 2. Let S be an orthodox semigroup. Write L = S/n., M=S/a, N=S/y,
a' = a(L), y' = y{L) andy"=y(M). Then

(1) L/a' is isomorphic to M,
(2) L/y' and M/y" are isomorphic to N.

Proof. By [2, Theorem 1.6], the mappings 0:L->M, <f>:L-*N and i|>:M-*N
defined by (an)d = aa, (afi)</> = ay and (xa)<(i = xy(a, xe S), are surjective homomorph-
isms. Let a, beS. Then, since every idempotent of M is the image of an idempotent of L
[6], we have (a,b)ea if and only if (afi,bfi)ea'. So B°6~1 = a', proving (1). Since
(a, b) e y if and only if (o/x, bp) e y', we get the first part of (2). If x, y e S, then (x, y) 6 y if
and only if (xa, ya)e y", proving the other part of (2).

REMARK. Write T=S//3, |3' = /3(L) and 8' = 8(T). Then proceeding as above we get
L//3' isomorphic to T, and T/8' isomorphic to S/8.

2. Right unipotent semigroups. Let A be an orthodox semigroup and let E = E(A).
The finest inverse semigroup congruence a on A (Hall [3], Yamada [14]) is given by the
rule: (x, y)ea if and only if V(x)= V(y).

A is said to be a right (left) unipotent semigroup if every principal right (left) ideal of
A has a unique idempotent generator. Let S be a right unipotent semigroup and let aeS.
Then (i) fef = fe for any two idempotents e, f of S, and (ii) aa' = aa* for any a', a* in
V(a) [11]. Further, /3 is the greatest idempotent-separating congruence on S [12]. Since
/3 = 8 follows from the definition of S, we have /x = /? = 8 on S. That /n = a = /3 on an
inverse semigroup is well known (Howie [4]).

THEOREM 3. Let S be an orthodox semigroup and let E = E(S). Then the following
statements are equivalent:

(A) S is a right unipotent semigroup;
(B) S/a is an inverse semigroup;
(C) S/y is an inverse semigroup.

Proof. Assume (A). Let g, he E. Then, for all e e JS, we have ghehg = ghe = ghegh
[11]. This, since V(gh) = V(fig), implies that (hg, gh)ea. Since every idempotent of Slot is
the image of an idempotent of S [6], we get (B).

(B) implies (C) since Sly is a homomorphic image of S/a [2, p. 17]. That (C) implies
(A) follows from [13]. For a direct proof, assume (C). Let g, h e E. Then, since y is
contained in % we have (gh, hg) e X. Therefore gftg = gh, proving (A) [11].

THEOREM 4. Let S be a right unipotent semigroup and let E = E(S). Write P=S/cr and
pt' = /j.(F). Then

(1) P/fi' is isomorphic to Sly,
(2) y is the finest fundamental inverse semigroup congruence on S.

Proof. By Theorem 3 we have a Q y. So, proceeding on the lines of the proof of
Theorem 2, we get (1). From this result and Lemma 1 it follows that Sly is a fundamental
inverse semigroup. Let p be a congruence on S such that S/p isjj fundamental inverse
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semigroup. Let x, y e S be such that (x, y) e y. Then, since Sip is inverse, we have (xp, yp) £ /i
on S/p. This, since Sip is fundamental, implies that (x, y) e p and hence that 7 £ p.

COROLLARY (to the proof of (1)). The semilattice E(Slcr) is isomorphic to the semilattice
E(Sly).

3. Unions of groups. In this section we consider right unipotent semigroups which
are unions of groups.

Let S be a right unipotent semigroup, let E = E(S) and let xeS. Let the symbols (Px)
and (Qx) denote statements as follows:
(Px) exe = ex and ex'e - ex' for all eeE and for some x'e V(x).
(Ox) xex' = xx'e for all eeE and x 'eV(i) .

Then (i) {Qx) implies (Px) for any x in S, (ii) S is a union of groups if and only if (Px)
is satisfied for all x in S and (iii) S//3 is isomorphic to E if and only if (Ox) is satisfied
for all x in S [12].

Let S be a right unipotent semigroup which is a union of groups. Then Green's
relations on S are related thus: / = 2) = X and 91 = 94f [10].

THEOREM 5. Let S be a right unipotent semigroup and let E = E(S). Then the following
statements are equivalent:

(A) S is a union of groups;
(B) SI a is a semilattice Y of groups, where Y is isomorphic to E(Sla);
(C) Sly is a semilattice;
(D) y = £ (equivalently, X is a congruence on S);
(E) S is a semilattice Z of left groups, where Z is isomorphic to Sly.

Proof. That (A) implies (B) is well known [2, pp. 126-129]. Assume (B). Let xeS,
x'e V(x) and eeE. Since the idempotents of Sla are in the centre of SI a [2, p. 127], we
have (ex)o- = (xe)<j; that is, V(ex)= V(xe). Now both x'e and ex' are inverses of ex. This,
since S is right unipotent, implies that exex' = exx'. Similarly ex'ex = ex'x. Therefore

(x'ex)(x'xex'x) = x'(exex')x = x'(exx')x = x'cx
and

(x'xex'x)(x'ex) = x'x(ex'ex) = x'xex'x.

So (x, x'x)ey and hence, by Theorem 3, Sly is a semilattice, proving (C).
Assume (C). We first prove that (Px) is satisfied for all xeS. Let xeS, x'e V(x) and

eeE. Then (x'e, ex')ey. This, since yc <£, implies that (exx'e)(xex') = exx'e. Therefore,
since S is right unipotent, we have exex' = exx' and hence

exe = ex(x'xe) = ex(x'xex'x) = (exex')x = (exx')x = ex.

Similarly ex'e = ex'. So (Px) is satisfied for all xeS.
Now let (x, y)e<£. If x'e V(x) and y'e V(y) then xy'y = x and yx'x = y. So, for all

eeE, using (Pxy'), we have x'exy'ey = x'(exy'e)y = x'exy'y = x'ex and, similarly,
y'eyx'ex = y'ey. Therefore (x, y)e 7 and # £ y. Since y s i ? , we get (D).

Assume (D). Let xeS and x'€ V(x). Then (x,x'x)e<SP. Since if is a congruence, for
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all eeE we have (ex, ex'x)eS£ and hence exex'x = ex. Therefore ex = ex(x'xex'x) =
ex(x'xe) = exe. Similarly ex' = ex'e and so (Px) is satisfied for all x e S. Thus S is a union of
groups. Now (E) follows from [2, Theorem 4.6] and [10]. Clearly (E) implies (A), proving
the theorem.

REMARK. By the corollary to Theorem 4, the semilattices Y and Z that occur in
Theorem 5 are isomorphic.

In the proof of Theorem 6 below, for any xeS, x"1 denotes the inverse of x in the
group Hx.

THEOREM 6. Let S be a right unipotent semigroup and let E = E(S). Then the following
statements are equivalent:

(A) S is a band of groups;
(B) (Ox) is satisfied for all x in S;
(C) a = y = S£;
(D) /3 = "3i = §t (equivalently, 9t is a congruence on S);
(E) S is a band E of groups.

Proof. Assume (A). Then abS = a2bS for all a, b in S [1], [2, p. 129]. Let xeS and
eeE. Put a = x and b = x~le. Since ex"1 e V(xe) and xx"1 = x"1*, from abS = a2bS we get
that (xx~'e, xex'^e 9?. Therefore xx~1e = xex~\ giving (B).

Assume (B). Let x, yeS, x'eV(x) and y'e V(y). Suppose that (x, y)eS£. Then
xy'y = x and yx'x = y. Write a = y'yx'. Since ae V(x) and xy'6 V(yx'), for all eeE, using
(Qyx'), we have aex = y'(yx'exy')y = y'(yx'xy'e)y = y'ey. Therefore (x, y)e a, proving that
X s a. So we get (C).

Assume (C). We first prove that (Qx) is satisfied for all xeS. Let xeS, x'e V(x) and
eeE. Since (x', xx')e58, by hypothesis we have (x', xx')e a; that is, pex' = qexx' for some
pe V(x') and qe V(xx'). Premultiplying the equation by xx', we get xx'pex' = xx'qexx''.
Since S is right unipotent, x'p = x'x and xx'q = xx'. Therefore xex' = xx'exx' = xx'e, and (Qx)
is satisfied for all xeS. This implies that S is a union of groups and (x, xx-1)ej3 for all
x € S [12]. Hence

O(x ,y )6« .

Since /3 = /x Q "3t, we get (D).
Assume (D). Let xeS, x'eV(x) and eeE. Then, since (x, xx')e% we have

(xe, xx'e) e §t. This implies that xex' = xx'e. So (Ox) is satisfied for all x e S and hence S is
a union of groups. Now by [7, Theorem 4.3] we have HfHg g Hh for all /, g e E, giving
(E). Trivially (E) implies (A). Hence the theorem.

Note added in proof. Statement (2) of Theorem 1 is known. See Toru Saito, Note on
quasi-inverse semigroups, Semigroup Forum 6 (1973), 129-132.
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