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1. Introduction

In 1929, Nevanlinna established the first and second main theorems for meromorphic
functions on the complex plane, and derived a defect relation with 2 as a precise upper
bound. In 1933, Cartan [4,8] showed that a linearly non-degenerate holomorphic curve
f : C → P

n(C) that intersects q (> n) hyperplanes, say, Hj ∈ P
n(C) for j = 1, 2, . . . , q,

located in general position satisfies the defect relation
q∑

j=1

δ(Hj , f) � n + 1. (1.1)

Later, Ahlfors [1], using an innovative geometric method, generalized this result to lin-
early non-degenerate meromorphic maps on C

m. This theory was greatly extended by
Carlson, Griffiths and King [3,7] around 1972–1973, when they studied the value distribu-
tion of algebraically non-degenerate meromorphic maps f : M → N from affine algebraic
varieties to smooth projective algebraic varieties with the additional assumption that
dim M � dim N , which turns out to be crucial and is extremely difficult to remove.
Subsequently, Stoll [16,17] generalized all those results to algebraically non-degenerate
meromorphic maps defined on parabolic manifolds.
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Recently, Ru [14] removed this dimensional restriction and obtained the following
result.

Theorem 1.1. Let f : C → V ⊆ P
N (C) be an algebraically non-degenerate holomor-

phic curve to a non-singular projective algebraic variety V such that dim V = n � 1, and
let D1, D2, . . . , Dq ∈ P

N (C) be q (> n) hypersurfaces located in general position. Then,
it follows that

q∑
j=1

δ(Dj , f) � n + 1, (1.2)

where the term ‘in general position’ here denotes the condition

n⋂
k=0

supp(Djk
) ∩ V = ∅

for any distinct subset {j0, j1, . . . , jn} of {1, 2, . . . , q}.

Actually, this result answers a question by Stoll [17] on an extension for the complex
projective space P

n(C) concerning hypersurfaces, and extends a former one [13] that
solved a conjecture by Shiffman [15] which weakened the desired sharper defect relation
concerning hypersurfaces in smooth complex projective algebraic varieties conjectured
by Griffiths [3,7]. (See also [5].)

In this paper, we apply the notion ‘generalized p-parabolic manifolds’, introduced by
Wong and Wong [21], to extend Theorem 1.1 for algebraically non-degenerate meromor-
phic maps defined on such manifolds.

The parabolic manifold (see [16,17]) has the affine algebraic variety as a prototype,
and the concept of parabolicity is based on the very existence of a non-negative plurisub-
harmonic exhaustion τ defined on a Kähler manifold (M, ω) such that φ := log τ satisfies
the following complex Monge–Ampère equation

(ddcφ)m ≡ 0 (1.3)

on M \{τ = 0}, where m := dimM , yet (ddcφ)m−1 �≡ 0. If we can weaken this condition,
we should get something new. The concept of p-parabolicity depends on the existence
of a non-negative plurisubharmonic exhaustion τ such that, for 1 � p � m, φ := log τ

satisfies the generalized complex Monge–Ampère equation

(ddcφ)p ∧ ωm−p ≡ 0 (1.4)

on M \{τ = 0}. Note that m-parabolicity is just the classical notion of parabolicity. One
thing of interest is that (see [21, Theorem 2.10]) for a parabolic Stein manifold M of
dimension m with a strictly plurisubharmonic parabolic exhaustion τM , the holomorphic
vector bundle E of rank r � 2 over M , its dual vector bundle E∗ and the corresponding
projectivizations P(E) and P(E∗) over M are not parabolic but do satisfy identities
analogous to the one above: for example, for P(E) we have

(ddcφ)m−1 ∧ ωr−1 �≡ 0 and (ddcφ)m ∧ ωr−1 ≡ 0, (1.5)
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where φ is the pull-back of φM := log τM on M , and ω is some Kähler metric on P(E) (see
[21, Lemma 2.9]). See [2] and the references therein for more details on this matter. With
this new concept, Wong and Wong [21] obtained certain first and second main theorems,
and showed that a linearly non-degenerate meromorphic map f : M → P

n(C) defined on
M , an algebraic vector bundle over an affine algebraic variety or its projectivization (of
rank no less than 2 if necessary for p-parabolicity) that intersects q (> n) hyperplanes,
say, Hj ∈ P

n(C) for j = 1, 2, . . . , q, in general position satisfies the defect relation

q∑
j=1

δ(Hj , f) � n + 1. (1.6)

Our main result is the following.

Theorem 1.2. Let f : M → V ⊆ P
N (C) be an algebraically non-degenerate mero-

morphic map from M , either an affine algebraic variety or an algebraic vector bundle
over an affine algebraic variety or its projectivization, to a smooth projective algebraic
variety V with dim V = n � 1, and let D1, D2, . . . , Dq ∈ P

N (C) be q (> n) hypersurfaces
in general position. Then, we have

q∑
j=1

δ(Dj , f) � n + 1, (1.7)

where the term ‘in general position’ means the same as it did in Theorem 1.1.

Remark 1.3. Note that when M represents the projectivizations of an algebraic
vector bundle E over an affine algebraic variety or its dual bundle E∗, we shall assume
rank(E) � 2 to guarantee the existence of some Kähler metric on M .

2. Generalized manifolds

Following [21], we give the definition of generalized p-parabolic manifolds below. In
addition, § §2 and 3 basically follow [20] and [21].

Definition 2.1. A Kähler (complex) manifold (M, ω) of dimension m is said to be
a generalized p-parabolic manifold for 1 � p � m if there exists a plurisubharmonic
function φ such that

(i) {φ = −∞} is a closed subset of M with strictly lower dimension,

(ii) φ is smooth on the open dense set M \ {φ = −∞}, with ddcφ � 0, such that

(ddcφ)p−1 ∧ ωm−p �≡ 0 and (ddcφ)p ∧ ωm−p ≡ 0. (2.1)

Accordingly, we shall define

τ := eφ and σ := dcφ ∧ (ddcφ)p−1 ∧ ωm−p, (2.2)
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where τ is non-negative and is called a p-parabolic exhaustion on M , and we have

(ddcτ)p ∧ ωm−p �≡ 0, dσ = (ddcφ)p ∧ ωm−p ≡ 0, (2.3)

(ddcτ)j = τ j{(ddcφ)j + jdφ ∧ dcφ ∧ (ddcφ)j−1} for j = 1, 2, . . . , p, (2.4)

where we naturally set Ω := (ddcτ)p ∧ ωm−p to be the volume form on M .
Correspondingly, for any positive real number r > 0, we write

M [r] := {x ∈ M | τ(x) � r2},

M(r) := {x ∈ M | τ(x) < r2},

M〈r〉 := M [r] \ M(r) = {x ∈ M | τ(x) = r2}.

From Stokes’s formula and the second equality in (2.3), for any r > 0 it follows imme-
diately that ∫

M〈r〉
σ = κ, (2.5)

where κ is a constant dependent only upon the structure of M .
The Green–Jensen formula on generalized p-parabolic manifolds is as follows (see [21,

Theorem 1.3]). Let M be a generalized p-parabolic manifold of dimension m with 1 �
p � m, and let Υ be a plurisubharmonic or plurisuperharmonic function on M . Then,
for r > s > 0, we have∫ r

s

dt

t2p−1

∫
M [t]

ddc[Υ ] ∧ (ddcτ)p−1 ∧ ωm−p = 1
2

∫
M〈r〉

Υσ − 1
2

∫
M〈s〉

Υσ, (2.6)

where the operation ddc[Υ ] is taken in the sense of currents (distributions).
We will now list some general assumptions that we will work with in this paper.
First, we introduce the notion of associated maps. Let f : M → P

n(C) be a linearly
non-degenerate meromorphic map defined on a generalized p-parabolic manifold M of
dimension m, and let f̃ : M → C

n+1 be a reduced representation of it. Then, for some
global meromorphic (m − 1, 0)-form B on M , we define the first B-derivative f̃ ′

B of f̃ ,
say, on the local holomorphic coordinate chart (z, Uz), by

df̃ ∧ B = f̃ ′
B dz1 ∧ dz2 ∧ · · · ∧ dzm,

and define inductively the kth B-derivative f̃
(k)
B of f̃ by

df̃
(k−1)
B ∧ B = f̃

(k)
B dz1 ∧ dz2 ∧ · · · ∧ dzm

for k = 1, 2, . . . , n. They are independent of the choice of the local holomorphic coordinate
chart, and thus are globally well defined. As a consequence, for k = 1, 2, . . . , n, the kth
preassociated map f̃k of f is defined by

f̃k := f̃ ∧ f̃ ′
B ∧ · · · ∧ f̃

(k)
B : M → ∧k+1

C
n+1,
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and, correspondingly, the generated kth associated map fk of f is defined by

fk := [f̃k] : M → P(∧k+1
C

n+1) = P
nk(C) for nk =

(
n + 1
k + 1

)
− 1. (2.7)

We now give some general conditions under which we shall proceed.

(A1) (M, τ, ω) denotes a generalized p-parabolic manifold which possesses a globally
defined meromorphic (m − 1, 0)-form B such that, for any linearly non-degenerate
meromorphic map f : M → P

n(C), the kth associated map fk is well defined for
k = 0, 1, . . . , n, where we set f0 := f and where fn is constant.

(A2) There exists a Hermitian holomorphic line bundle (L, �) that admits a holomorphic
section µ such that, for some increasing function Y (τ), we have

mim−1|µ|2�B ∧ B̄ � Y (τ)(ddcτ)p−1 ∧ ωm−p, (2.8)

where we write the index

im−1 :=
(

i
2π

)m−1

(m − 1)!(−1)(m−1)(m−2)/2.

Remark 2.2. Note here that the existence of B is guaranteed only if we choose it to
be meromorphic rather than holomorphic. The reason for the second assumption is that,
as we define the associated maps via a meromorphic form B, we need to compensate its
singularities by some holomorphic section of some holomorphic line bundle that vanishes
exactly at those points. Furthermore, for an affine algebraic variety (which is parabolic),
or an algebraic vector bundle over an affine algebraic variety or its projectivization (of
rank r � 2, if needed, which are p-parabolic), B can be given rationally, (L, �) can be
chosen to be algebraic, Ap (see (3.7)) is algebraic, and Y (τ) � (1 + τ)nM for some positive
integer nM (see [21, Remark 6.7 and Corollary 7.2]). In particular, under the hypothesis
of Theorem 1.2, conditions (A1) and (A2) are automatically satisfied.

3. Value distribution theory

In this section we give some fundamental notation, facts and results in value distribution
theory on generalized p-parabolic manifolds following [20,21].

Let f : M → P
n(C) be an algebraically non-degenerate meromorphic map defined on

a generalized p-parabolic manifold such that dimM = m and 1 � p � m, let ωFS be the
Fubini–Study metric on P

n(C) and let D ∈ P
n(C) be a hypersurface of degree d. The

characteristic function of f , the proximity function and the counting function of f with
respect to D are defined, respectively, for a fixed s > 0 and any r > s, as

Tf (r, s) :=
∫ r

s

dt

t2p−1

∫
M [t]

f∗ωFS ∧ (ddcτ)p−1 ∧ ωm−p, (3.1)

mf (D; r) := 1
2

∫
M〈r〉

log
1

‖f ; D‖2 σ, (3.2)
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and

Nf (D; r, s) :=
∫ r

s

dt

t2p−1

∫
M [t]

θD
f ∧ (ddcτ)p−1 ∧ ωm−p, (3.3)

where we write the globally well-defined norm

‖f ; D‖ :=
|〈f, D〉|

‖f‖d‖D‖ , (3.4)

which falls into the closed region R[0, 1], such that, on the local holomorphic coordinate
chart (z, Uz),

‖f‖|Uz :=

√√√√ n∑
s=0

|f̂s|2

for a reduced representation f̃ : = (f̂0, f̂1, . . . , f̂n) of f on (z, Uz), and

‖D‖ :=
√∑

|d̂t|2

for the coefficients d̂t of the homogenous form D̃ defining D, and set

θD
f |Uz := div D̃(f̃)|Uz = div〈f, D〉|Uz = ddc[log |〈f, D〉||2Uz

]

in the sense of currents by the classical Poincaré–Lelong formula.
From the Green–Jensen formula, we immediately derive the following.

Theorem 3.1 (first main theorem). Let f : M → P
n(C) be a non-constant mero-

morphic map defined on a generalized p-parabolic manifold M , and let D ∈ P
n(C) be a

hypersurface of degree d such that f(M) �⊆ D. Then, for r > s > 0, we have

dTf (r, s) = Nf (D; r, s) + mf (D; r) − mf (D; s). (3.5)

Proof. The proof is just standard. Actually, on the local holomorphic coordinate chart
(z, Uz), by (3.4), it follows that

ddc[log ‖f ; D‖|2Uz
] = ddc[log |〈f, D〉||2Uz

] − dddc[log ‖f‖|2Uz
],

which yields the conclusion by proper integration and application of the Green–Jensen
formula, since ddc[log ‖f‖|2Uz

] = f∗ωFS|Uz by definition. �

Then, the defect of f with respect to the hypersurface D is defined as

δ(D, f) := lim inf
r→+∞

mf (D; r)
dTf (r, s)

= 1 − lim sup
r→+∞

Nf (D; r, s)
dTf (r, s)

. (3.6)

Now, for each 0 � k � n − 1, we turn to a linearly non-degenerate meromorphic map
on a generalized p-parabolic manifold M of dimension m with 1 � p � m satisfying the
general conditions (A1) and (A2), and define an important auxiliary function

Ψk :=
mim−1f

∗
k ωk

FS ∧ B ∧ B̄

(ddcτ)p ∧ ωm−p
=

‖f̃k−1‖2‖f̃k+1‖2

‖f̃k‖4

1
Ap

, (3.7)
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where ωk
FS is the Fubini–Study metric on P(∧k+1

C
n+1), and Ap, 1 � p � m, is the pth

symmetric polynomial of the matrix (τab̄) with respect to the Kähler metric ω. Actually,
A1 is the trace of (τab̄), while Am is the determinant det(τab̄) (> 0).

The corresponding analytic Plücker formula now shows the following.

Theorem 3.2 (Wong and Wong [21, Theorem 5.2]). Let f : M → P
n(C) be a

linearly non-degenerate meromorphic map on a generalized p-parabolic manifold M of
dimension m with 1 � p � m satisfying the general conditions (A1) and (A2). Then, for
r > s > 0 and 0 � k � n − 1, we have

Nk(r, s) + Tfk−1(r, s) + Tfk+1(r, s) − 2Tfk
(r, s) − Ricp(r, s) = Sk(r, s), (3.8)

where
Sk(r, s) := 1

2

∫
M〈r〉

log Ψkσ − 1
2

∫
M〈s〉

log Ψkσ, (3.9)

Tfk
(r, s) denotes the characteristic function of fk, the kth associated map of f , such that

Tf−1(r, s) = Tfn(r, s) = 0 and Tf0(r, s) = Tf (r, s), Nk(r, s) denotes the counting function
of the kth globally defined stationary divisor

ςk := dk+1 + dk−1 − 2dk (3.10)

such that d−1 + d0 = 0, where dk is a global divisor defined, on the local holomorphic
coordinate chart (z, Uz), by some meromorphic function gk such that dk|Uz = div gk with
f̃k|Uz = gkξk for a reduced representation ξk of fk on (z, Uz), and Ricp(r, s) denotes the
counting function of div Ap for the holomorphic function Ap, that is,

Ricp(r, s) :=
∫ r

s

dt

t2p−1

∫
M [t]

θ0
Ap

∧ (ddcτ)p−1 ∧ ωm−p. (3.11)

Then, summing up (3.8) with the telescoping trick yields the following.

Corollary 3.3 (Wong and Wong [21, Lemma 5.4]). Under the assumptions of
Theorem 3.2 and for r > s > 0, we have

NRamf (r, s) − (n + 1)Tf (r, s) − 1
2n(n + 1) Ricp(r, s) =

n−1∑
k=0

(n − k)Sk(r, s), (3.12)

where NRamf (r, s) is the counting function of the ramification divisor div f̃n.

Next, we prove a version of the calculus lemma that suffices for us.

Proposition 3.4 (Wong and Stoll [20, Corollary 2.4]). Let h be a non-negative
measurable function defined on a generalized p-parabolic manifold M of dimension m

with 1 � p � m such that h(ddcτ)p ∧ ωm−p is locally integrable, and let s > 0 be such
that

T (r) :=
∫ r

s

dt

t2p−1

∫
M [t]

h(ddcτ)p ∧ ωm−p (3.13)
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is well defined for all r � s. Then, hσ and (log h)σ are integrable over M〈r〉 for almost
all r � s such that, for the constant κ given in (2.5), we have∫

M〈r〉
(log h)σ ·�· κ log+ 1

κ

∫
M〈r〉

hσ ·�· κ(1 + ε)(log+ T (r) + log+ log+ r), (3.14)

where ε > 0 is arbitrary, and the notation ‘·�·’ indicates that the estimate holds outside
a set of positive real numbers in R

+ with finite Lebesgue measure.

Proof. Following Wong and Stoll (see [20, Corollary 2.4]), we can see that

r2p−1 d
dr

T (r) =
∫

M [r]
h(ddcτ)p ∧ ωm−p, (3.15)

so that, by (2.4) for the case j = p, which yields

(ddcτ)p ∧ ωm−p = pτp dφ ∧ dcφ ∧ (ddcφ)p−1 ∧ ωm−p = pτp−1 dτ ∧ σ, (3.16)

and Fubini’s theorem, we obtain∫
M [r]

h(ddcτ)p ∧ ωm−p = 2p

∫ r

0
t2p−1 dt

∫
M〈t〉

hσ, (3.17)

which implies that hσ is integrable over M〈r〉 for almost all r > 0, and hence, by
the concavity of the logarithmic function, so is (log h)σ. In addition, r2p−1dT (r)/dr is
absolutely continuous by (3.15) and (3.17), so that it is differentiable. Hence, we can
follow [20, Corollary 2.3] and its equality (2.8) to get the desired result. �

From Theorem 3.2 and Proposition 3.4, we can estimate Tfk
(r, s) in terms of Tf (r, s).

Actually, we can get a more precise estimate analogous to its counterpart as proved
in [20, Corollary 3.9]. However, for our purpose, the following one is adequate.

Proposition 3.5 (Stoll [17, Proposition 10.9]). Under the assumptions of Theo-
rem 3.2, and for r > s > 0 and 0 � k � n − 1, it follows that

Tfk
(r, s) ·�· 3kTf (r, s) + 1

2 (3k − 1)(m0(L; r, s) + Q0(r, s)), (3.18)

where, for µ and Y (τ) stated in (2.8), we write

m0(L; r, s) := 1
2

∫
M〈r〉

log
1

|µ|2
�

σ − 1
2

∫
M〈s〉

log
1

|µ|2
�

σ (3.19)

and Q0(r, s) := Ricp(r, s) + κ log+ Y (r2) + κ log+ log+ r.

Proof. In order to explore the method in [17, Proposition 10.9], we need to check
that Nk(r, s) � 0 in (3.8), as here we get the associated maps fk through a meromorphic
(m − 1, 0)-form B. For this reason, we need the following equality:

Ψk =
‖f̃k−1‖2‖f̃k+1‖2

‖f̃k‖4

1
Ap

=
‖f̃k ∧ f̃ ′

k‖2

‖f̃k‖4

1
Ap

(0 � k � n − 1). (3.20)
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Here the first equality is given by [21, (5.4)]. The second one follows from [18, Lemma
6.1]. For completeness, we outline the proof. Actually,

f̃k = f̃ ∧ f̃ ′
B ∧ · · · ∧ f̃

(k−1)
B ∧ f̃

(k)
B and f̃ ′

k = f̃ ∧ f̃ ′
B ∧ · · · ∧ f̃

(k−1)
B ∧ f̃

(k+1)
B .

Also, by the Gram–Schmidt method, there is an orthonormal basis e0, e1, . . . , en of C
n+1

such that

f̃
(u)
B =

u∑
l=0

au,lel for u = 0, 1, . . . , k + 1,

which implies that

f̃v = a0,0a1,1 · · · av,ve0 ∧ e1 ∧ · · · ∧ ev for v = k − 1, k or k + 1,

f̃ ′
k = a0,0a1,1 · · · ak−1,k−1(ak+1,ke0 ∧ e1 ∧ · · · ∧ ek + ak+1,k+1e0 ∧ · · · ∧ ek−1 ∧ ek+1),

and

f̃k ∧ f̃ ′
k = (−1)k(k−1)/2a2

0,0a
2
1,1 · · · a2

k−1,k−1ak,kak+1,k+1e0 ∧ e1 ∧ · · · ∧ ek ∧ ek+1,

so that

‖f̃k ∧ f̃ ′
k‖ = |a2

0,0a
2
1,1 · · · a2

k−1,k−1ak,kak+1,k+1|
= |a0,0a1,1 · · · ak−1,k−1||a0,0a1,1 · · · ak−1,k−1ak,kak+1,k+1|
= ‖f̃k−1‖‖f̃k+1‖.

Now, on the local holomorphic coordinate chart (z, Uz), we write f̃k|Uz
= gkξk for a

reduced representation ξk of fk on (z, Uz), that is,

dim{ξ−1
k {0} ∪ ξ−1

k {∞}} � m − 2.

It then follows immediately that ξk ∧ ξ′
k = gξ for a reduced representation ξ of fk ∧ f ′

k on
(z, Uz) such that g−1{∞} ⊆ ξ−1

k {∞} so that g is a holomorphic function by the Remmert
Extension Theorem. Hence, the proof of [17, Lemma 7.2 ], along with our equality (3.20),
applies to show that the kth stationary divisor defined by (3.10) satisfies

ςk = div g, (3.21)

so that Nk(r, s) � 0, where by abuse of notation ξ−1
k {0} and ξ−1

k {∞} denote the sets of
common zeros and poles of the ξk coordinate functions, respectively.

On the other hand, we need to estimate the term Sk(r, s) as in [17, Proposition 10.8].
As a matter of fact, by (2.8) and (3.7), it is straightforward to show that∫ r

s

dt

t2p−1

∫
M [t]

Ψk|µ|2�(ddcτ)p ∧ ωm−p =
∫ r

s

dt

t2p−1

∫
M [t]

mim−1|µ|2�f∗
k ωk

FS ∧ B ∧ B̄

�
∫ r

s

dt

t2p−1

∫
M [t]

Y (τ)f∗
k ωk

FS ∧ (ddcτ)p−1 ∧ ωm−p

� Y (r2)Tfk
(r, s), (3.22)
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which, together with (3.9), (3.14) for ε > 0 and (3.19), gives the following estimate:

Sk(r, s) = m0(L; r, s) + 1
2

∫
M〈r〉

log(Ψk|µ|2�)σ − 1
2

∫
M〈s〉

log(Ψk|µ|2�)σ

·�· m0(L; r, s) + 1
4κ(2 + ε)(log+(Y (r2)Tfk

(r, s)) + log+ log+ r)

− 1
2

∫
M〈s〉

log(Ψk|µ|2�)σ

·�· m0(L; r, s) + 1
2κ(1 + ε)(log+ Y (r2) + log+ Tfk

(r, s) + log+ log+ r). (3.23)

Hence, for ε = 1, noting that Nk(r, s) � 0, by (3.8) we can derive

Tfk+1(r, s) ·�· 2Tfk
(r, s) + Ricp(r, s) + Sk(r, s)

·�· 3Tfk
(r, s) + m0(L; r, s) + Ricp(r, s) + κ log+ Y (r2) + κ log+ log+ r,

(3.24)

which implies the desired estimate (3.18) by a routine induction. �

As stated earlier, application of the proof in [20, Corollary 3.9] gives a more precise esti-
mate of Tfk

(r, s) than (3.18). However, we only need it for the situation for log+ Tfk
(r, s),

otherwise (3.18) suffices. On the other hand, from (3.10), (3.21) and the telescoping trick,
the ramification divisor div f̃n is non-negative, so that NRamf (r, s) � 0.

Finally, the corresponding Ahlfors–Stoll estimate gives the following result.

Theorem 3.6 (Wong and Wong [21, Theorem 6.8]). Let f : M → P
n(C) be a

linearly non-degenerate meromorphic map defined on a generalized p-parabolic manifold
M of dimension m with 1 � p � m satisfying the general conditions (A1) and (A2), and
let H ∈ P

n(C) be a hyperplane. Then, for any real number 0 < λ < 1, and for r > s > 0
and 0 � k � n − 1, we have

∫ r

s

dt

t2p−1

∫
M [t]

|µ|2�
‖fk+1; H‖2

‖fk; H‖2−2λ
Ψk(ddcτ)p ∧ ωm−p

·�· Y (r2)
(

λ + 2
λ

Tfk
(r, s) +

2 log 2
λ

)
,

(3.25)
where (see (2.7)), on the local holomorphic coordinate chart (z, Uz), we define

fk(z)�H|Uz := 〈f̃k(z), H̃〉|Uz : ∧k+1
C

n+1 × C
n+1 → ∧k

C
n+1 (3.26)

basically by operation between dual bases, and write the global norm

‖fk; H‖ :=
|fk �H|
‖fk‖‖H‖ ∈ R[0, 1], (3.27)

which is given by [20, (1.17)] or [21, (6.3)].

An immediate consequence of Theorem 3.6 is the following result.
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Corollary 3.7. Under the assumptions of Theorem 3.6, for any real numbers ε > 0
and 0 < λ < 1, and for r � s > 0 and 0 � k � n − 1, it follows that

log+
∫

M〈r〉
|µ|2�

‖fk+1; H‖2

‖fk; H‖2−2λ
Ψkσ ·�· (1 + ε)(log+ Tf (r, s) + Q1(r, s)), (3.28)

where

Q1(r, s) := log+ m0(L; r, s) + log+ Y (r2) + log+ Ricp(r, s) + log+ log+ r.

Proof. From (3.25), and Propositions 3.4 and 3.5, we derive that

log+
∫

M〈r〉
|µ|2�

‖fk+1; H‖2

‖fk; H‖2−2λ
Ψkσ ·�·

2 + ε

2
(log+(Y (r2)Tfk

(r, s)) + log+ log+ r)

·�· (1 + ε)(log+ Tf (r, s) + Q1(r, s)).

�

4. A second main theorem

In this section, using the notation, facts and results in § §2 and 3, we give a second main
theorem, slightly improving on that of Wong and Wong [21, Theorem 7.1], using the
main idea from [12] (see also [10,19]).

Theorem 4.1 (second main theorem). Let f : M → P
n(C) be a linearly non-

degenerate meromorphic map defined on a generalized p-parabolic manifold M satisfying
the general conditions (A1) and (A2), and let Hj ∈ P

n(C) be q arbitrary hyperplanes for
j = 1, 2, . . . , q. Then, for r > s > 0, we have∫

M〈r〉
max

K
log

∏
j∈K

1
‖f ; Hj‖

σ

·�· (n + 1)Tf (r, s) − NRamf (r, s)

+ 1
2n(n + 1)m0(L; r, s) + 1

2n(n + 1) Ricp(r, s) + 1
2κn(n + 1) log+ Tf (r, s)

+ 1
2κn(n + 1)(log+ m0(L; r, s) + log+ Y (r2) + log+ Ricp(r, s) + log+ r),

(4.1)

where the maximum is taken over all subsets K of {1, 2, . . . , q} such that the generating
linear forms of the hyperplanes in each set are linearly independent.

Proof. Let K ⊆ {1, 2, . . . , q} be such that the corresponding linear forms are linearly
independent. Without loss of generality, we set q > n and #K = n + 1. Now, let T be
the set of all injective maps ι : {0, 1, . . . , n} → {1, 2, . . . , q} such that the linear forms
H̃ι(0), H̃ι(1), . . . , H̃ι(n) are linearly independent. Furthermore, we write

Γ := max
1�j�q

{ n−1∑
k=0

mfk
(Hj ; s)

}
,
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a constant, and

Λ(r) := min
0�k�n−1

{
1

1 + Tfk
(r, s)

}
(< 1),

where Tfk
(r, s) is the characteristic function of the kth associated map of f given by (2.7),

and mfk
(H; s) is defined by (3.2) only switching the norm (3.4) to (3.27).

Then, for the case where the hyperplanes involved are located in general position, the
Ru–Stoll product-to-sum estimate (see [12, Lemma 3.2])

q∏
j=1

1
‖f ; Hj‖

� cq

∑
ι∈T

n∏
v=0

1
‖f ; Hι(v)‖

(4.2)

will immediately yield Wong and Wong’s second main theorem (see [21, Theorem 7.1])
in a slightly more precise form, since the estimate

n−1∑
k=0

(n − k)Sk(r, s) ·�· O(log+(rTf (r, s)))

which Wong and Wong applied for their proof does not necessarily hold in general, where
the constant cq depends only on the q hyperplanes Hj . Also, from the Green–Jensen
formula, we see that, by definition, the term m0(L; r, s) is equal to

m0(L; r, s) = T (L; r, s) − N(θ0
µ; r, s), (4.3)

where T (L; r, s) is defined via the pull-back of the first Chern form on (L, �).
Below, we follow [10, Theorem 2.1] to outline the proof.
For any ι ∈ T and fixed z �∈ If , the indeterminacy of f , we can apply the Wong–Stoll

product-to-sum estimate (see [20, Lemma 1.12]), that is, for some dk > 1,

n∏
v=0

‖fk+1(z); Hι(v)‖2

‖fk(z); Hι(v)‖2−2Λ(r) � dk

( n∑
v=0

‖fk+1(z); Hι(v)‖2

‖fk(z); Hι(v)‖2−2Λ(r)

)n−k

, (4.4)

in order to derive that (noting that fn is a constant), for some constant d > 1,

n∏
v=0

1
‖f(z); Hι(v)‖2

=
n−1∏
k=0

n∏
v=0

( ‖fk+1(z); Hι(v)‖2

‖fk(z); Hι(v)‖2−2Λ(r)

1
‖fk(z); Hι(v)‖2Λ(r)

)

� d

n−1∏
k=0

( n∑
v=0

‖fk+1(z); Hι(v)‖2

‖fk(z); Hι(v)‖2−2Λ(r)

)n−k n−1∏
k=0

n∏
v=0

1
‖fk(z); Hι(v)‖2Λ(r) . (4.5)
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As a consequence, we have∫
M〈r〉

max
K

log
∏
j∈K

1
‖f ; Hj‖2 σ =

∫
M〈r〉

max
ι∈T

log
n∏

v=0

1
‖f ; Hι(v)‖2

�
n−1∑
k=0

∫
M〈r〉

max
ι∈T

log
( n∑

v=0

‖fk+1; Hι(v)‖2

‖fk; Hι(v)‖2−2Λ(r)

)n−k

σ

+
n−1∑
k=0

n∑
v=0

∫
M〈r〉

max
ι∈T

log
1

‖fk; Hι(v)‖2Λ(r) σ + O(1).

(4.6)

For the first term, by definitions of Sk(r, s) and m0(L; r, s), we see that

n−1∑
k=0

∫
M〈r〉

max
ι∈T

log
( n∑

v=0

‖fk+1; Hι(v)‖2

‖fk; Hι(v)‖2−2Λ(r)

)n−k

σ

=
n−1∑
k=0

∫
M〈r〉

max
ι∈T

log
( n∑

v=0

|µ|2�
‖fk+1; Hι(v)‖2

‖fk; Hι(v)‖2−2Λ(r) Ψk

)n−k

σ

− 2
n−1∑
k=0

(n − k)(Sk(r, s) − m0(L; r, s)) + O(1), (4.7)

which, together with (3.12), (3.14) (for ε = 1) and (3.28), implies that

1
2

n−1∑
k=0

∫
M〈r〉

max
ι∈T

log
( n∑

v=0

‖fk+1; Hι(v)‖2

‖fk; Hι(v)‖2−2Λ(r)

)n−k

σ

·�· κ

n−1∑
k=0

1
2 (n − k) max

ι∈T
log+ 1

κ

∫
M〈r〉

n∑
v=0

|µ|2�
‖fk+1; Hι(v)‖2

‖fk; Hι(v)‖2−2Λ(r) Ψkσ

+
n−1∑
k=0

(n − k)m0(L; r, s) −
n−1∑
k=0

(n − k)Sk(r, s) + O(1)

·�· κ

n−1∑
k=0

1
2 (n − k) max

1�j�q
log+

∫
M〈r〉

|µ|2�
‖fk+1; Hj‖2

‖fk; Hj‖2−2Λ(r) Ψkσ

+ κ 1
4n(n + 1) log q + 1

2n(n + 1)m0(L; r, s)

+ (n + 1)Tf (r, s) + 1
2n(n + 1) Ricp(r, s) − NRamf (r, s) + O(1)

·�·
1
2κn(n + 1)(log+ Tf (r, s) + log+ m0(L; r, s) + log+ Y (r2)

+ log+ Ricp(r, s) + log+ log+ r) + 1
2n(n + 1)m0(L; r, s)

+ (n + 1)Tf (r, s) + 1
2n(n + 1) Ricp(r, s) − NRamf (r, s) + O(1). (4.8)

For the second term, we need the following estimate:

Tfk
(r, s) � Nfk

(H; r, s) + mfk
(H; r) − mfk

(H; s), (4.9)
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which can be proved in exactly the same way as [17, (8.21)], via proper integration, as
the proofs on pp. 151–153 of [17] only involve reduced representations of the associated
maps. Thus, by definitions of Γ and Λ(r), it follows from (4.9) that

1
2

n−1∑
k=0

n∑
v=0

∫
M〈r〉

max
ι∈T

log
1

‖fk; Hι(v)‖2Λ(r) σ

�
∑
ι∈T

n−1∑
k=0

n∑
v=0

Λ(r)
∫

M〈r〉
log

1
‖fk; Hι(v)‖

σ

� q!
n−1∑
k=0

q∑
j=0

Λ(r)mfk
(Hj ; r)

� q!
n−1∑
k=0

q∑
j=0

Λ(r)(Tfk
(r, s) + mfk

(Hj ; s)) + O(1) = O(1), (4.10)

which together with (4.8) yields the desired result. �

5. Chow weight and Hilbert weight

In this section, we state some necessary facts in algebraic geometry, and refer the reader
to [14] and the references therein for more details.

Let Y ⊆ P
N (C) be a smooth complex projective algebraic variety of dimension n and

degree ∆ (for the case Y = P
N (C), it follows that n = N and ∆ = 1). Then, up to a

constant scalar, we can associate it with a unique polynomial

PY (u0, u1, . . . ,un) = PY (u00, u01, . . . , u0N ; . . . ; un0, un1, . . . , unN ) (5.1)

in n + 1 blocks of N + 1 variables ui = (ui0, ui1, . . . , uiN ) for i = 0, 1, . . . , n, which is
called the (Cayley–Bertini-van der Waerden–)Chow form of Y such that

1. PY is irreducible in the ring C[u00, u01, . . . , u0N , u10, . . . , un−1N , un0, un1, . . . , unN ]
of complex polynomials with (n+1)(N +1) variables, and is homogenous of degree
∆ in each block ui = (ui0, ui1, . . . , uiN ) for i = 0, 1, . . . , n; and

2. PY (u0, u1, . . . ,un) = 0 if and only if Y ∩ Hu0 ∩ Hu1 ∩ · · · ∩ Hun �= ∅, where, for
i = 0, 1, . . . , n, Hui

is the hyperplane generated by ui as the zero set of

H̃ui(w) := uiw = ui0w0 + ui1w1 + · · · + uiNwN

for the coordinate w = (w0, w1, . . . , wN ) of C
N+1.

Now, for a tuple of non-negative real numbers c = (c0, c1, . . . , cN ) ∈ R
N+1
�0 and an

auxiliary variable t, we consider the decomposition of Chow form as

PY (tc0u00, t
c1u01, . . . , t

cN u0N ; . . . ; tc0un0, t
c1un1, . . . , t

cN unN )

= te0G0(u0, u1, . . . ,un) + te1G1(u0, u1, . . . ,un) + · · ·
+ terGr(u0, u1, . . . ,un), (5.2)
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where G0, G1, . . . , Gr ∈ C[u00, u01, . . . , u0N , u10, . . . , un−1N , un0, un1, . . . , unN ] and e0 >

e1 > · · · > er � 0. Then, the Chow weight of Y with respect to c is defined by

eY (c) := e0. (5.3)

On the other hand, for each distinct subset J = {j0, j1, . . . , jn} of {0, 1, . . . , N} with
the order j0 < j1 < · · · < jn, we define the bracket

[J ] = [J ](u0, u1, . . . ,un) := det(uijk
)i,k=0,1,...,n, (5.4)

where ui = (ui0, ui1, . . . , uiN ) for i = 0, 1, . . . , n. Then, for the integer

α :=

(
N + 1
n + 1

)
,

we set J1, J2, . . . , Jα to be all the subsets of {0, 1, . . . , N} with cardinality n + 1. It is
known that the Chow form PY can be rewritten as a homogenous polynomial of degree
∆ in the variables {[J1], [J2], . . . , [Jα]}. Further, for any J ∈ {J1, J2, . . . , Jα} and any
c = (c0, c1, . . . , cN ) ∈ R

N+1
�0 , we have

[J ](tc0u00, t
c1u01, . . . , t

cN u0N ; . . . ; tc0un0, t
c1un1, . . . , t

cN unN )

= t
∑

j∈J cj [J ](u00, u01, . . . , u0N ; . . . ; un0, un1, . . . , unN ). (5.5)

Note that for the case Y = P
N (C), it is trivially a scalar-multiplication property of the

determinant of the matrix (uij)i,j=0,1,...,N (see [9, Theorem IV, p. 41]).
Next, we denote by IY the prime ideal in C[w0, w1, . . . , wN ] defining Y (IY = 1

for the case Y = P
N (C)), and set C[w0, w1, . . . , wN ]m to represent the vector space

of homogenous polynomials of degree m (including 0) in C[w0, w1, . . . , wN ]. For Im :=
IY ∩ C[w0, w1, . . . , wN ]m, the Hilbert function of Y is defined by

HY (m) := dimC(C[w0, w1, . . . , wN ]m/Im); (5.6)

in other words, it is the dimension of the quotient vector space C[w0, w1, . . . , wN ]m/Im

over C. Then, from the general theory of Hilbert polynomials, it follows that

HY (m) = ∆
mn

n!
+ O(mn−1). (5.7)

On the other hand, we define the mth Hilbert weight of Y with respect to a tuple of
non-negative real numbers c = (c0, c1, . . . , cN ) ∈ R

N+1
�0 by

SY (m, c) := max
{ HY (m)∑

l=1

alc =
HY (m)∑

l=1

N∑
j=0

aljcj

}
, (5.8)

where the maximum is taken over all sets, with cardinality HY (m), of tuples of non-
negative integers al = (al0, al1, . . . , alN ) ∈ N

N+1
�0 with

∑N
j=0 alj = m, such that, for each

corresponding set of monomials{
wal :=

N∑
j=0

w
alj

j

∣∣∣∣ l = 1, 2, . . . , HY (m)
}

,
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its generated set of residue classes, module Im, forms a basis of C[w0, w1, . . . , wN ]m/Im.
Then, a result of Mumford (see [11, Proposition 2.11]) gives us

SY (m, c) = eY (c)
mn+1

(n + 1)!
+ O(mn). (5.9)

Now, combining (5.7) and (5.9) yields

lim
m→∞

1
mHY (m)

SY (m, c) =
1

∆(n + 1)
eY (c), (5.10)

where the two terms
SY (m, c)
mHY (m)

and
eY (c)

∆(n + 1)

are called the mth normalized Hilbert weight and the normalized Chow weight of Y with
respect to c, respectively.

Finally, we list two results, each giving a lower bound for the Chow weight and the
Hilbert weight, respectively, that suffice for our purpose.

Proposition 5.1 (Ru [14, Theorem 2.1]; Evertse and Ferretti [6, Theo-
rem 4.1]). Let Y ⊆ P

N (C) be a smooth projective algebraic variety of dimension n and
degree ∆. Then, for any positive integer m (> ∆) and any c = (c0, c1, . . . , cN ) ∈ R

N+1
�0 ,

we have

1
mHY (m)

SY (m, c) � 1
∆(n + 1)

eY (c) − 1
m

∆(2n + 1) max
0�j�N

{cj}. (5.11)

Proposition 5.2 (Ru [14, Lemma 3.2]). Under the hypothesis of Proposition 5.1,
for any distinct subset {j0, j1, . . . , jn} ⊆ {0, 1, . . . , N} and any tuple of non-negative real
numbers c = (c0, c1, . . . , cN ) ∈ R

N+1
�0 , and for the coordinate w = (w0, w1, . . . , wN ) of

C
N+1, the condition Y ∩ {wj0 = wj1 = · · · = wjn

= 0} = ∅ implies that

1
∆

eY (c) �
n∑

k=0

cjk
. (5.12)

6. Second main theorem and defect relation

Finally, in this last section, we shall prove our main result. Conventionally, we first
need to establish a second main theorem. The essential idea for its proof is that we can
apply the algebraic-geometric method developed earlier to construct an isomorphism h

between some smooth complex projective algebraic variety Y that is a surjective finite
morphism image of V , and a subvariety of some higher-dimensional complex projective
space P

nY

(C), so that we can take advantage of the value distribution properties of the
associated linearly non-degenerate meromorphic map F .

Theorem 6.1 (second main theorem). Let f : M → V ⊆ P
N (C) be an alge-

braically non-degenerate meromorphic map from a generalized p-parabolic manifold M
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that satisfies the general conditions (A1) and (A2) to a smooth projective algebraic
variety V such that dim V = n � 1, and let D1, D2, . . . , Dq ∈ P

N (C) be q (> n) hyper-
surfaces, located in general position and of degrees d1, d2, . . . , dq, respectively. Then, for
any ε > 0 and r > s > 0, we have

q∑
j=1

1
dj

mf (Dj ; r) ·�· (n + 1 + ε)Tf (r, s)

+ cm(m0(L; r, s) + Ricp(r, s) + κ log+ Y (r2) + κ log+ r), (6.1)

where the term ‘in general position’ is defined in Theorem 1.1, κ is given by (2.5), Y (τ)
by (2.8), Ricp(r, s) by (3.11), m0(L; r, s) by (3.19) and cm � 1 is a constant.

Proof. Without loss of generality, we assume that all the q hypersurfaces Dj are
of the same degree d, since otherwise replacing D̃j by D̃

d/dj

j would achieve this aim,
where d is the least common multiplier of the dj and D̃j is the homogenous form of
degree dj that defines Dj for j = 1, 2, . . . , q. Also, the ‘in general position’ hypothesis
of the q hypersurfaces Dj on V shows that at any point z �∈ If , the indeterminacy of
f , ‖f(z); Dj‖ = 0 (see (3.4)) for at most n Dj values, while ‖f(z); Dj‖ > 0 for all the
remaining ones, which implies that, by the continuity of f and the compactness of V ,
there exists a positive constant C > 0 such that ‖f ; Dj‖ > C, except for at most n Dj

values, on M \ If . As an immediate consequence, it yields that

q∑
j=1

mf (Dj ; r) =
∫

M〈r〉
log

q∏
j=1

1
‖f ; Dj‖

σ

�
∫

M〈r〉
max

{j0,j1,...,jn}⊆{1,2,...,q}

{
log

n∏
k=0

1
‖f ; Djk

‖

}
σ + O(1). (6.2)

Now, we define a map

ψ : V ⊆ P
N (C) → P

q−1(C) by ψ([x]) =: [D̃1(x) : D̃2(x) : · · · : D̃q(x)] (6.3)

for the coordinate x ∈ C
N+1, and write Y := ψ(V ) such that, from the ‘in general

position’ assumption of the q hypersurfaces Dj on V , ψ is a well-defined surjective (and
injective if q = n + 1 and d = 1) finite morphism from V to Y , a smooth complex
projective algebraic variety of P

q−1(C). Then we have

dim Y = dim V = n and ∆ := deg Y � dn deg V. (6.4)

Our next step is to construct an isomorphism between Y and a subvariety in some
higher-dimensional projective space. For this purpose, for a positive integer m, we use
the Hilbert function for Y ⊆ P

q−1(C) to define

nY
m := HY (m) − 1 and qY

m :=

(
q + m − 1

m

)
− 1. (6.5)
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Now, for qY
m + 1 tuples of non-negative integers al = (al1, al2, . . . , alq) ∈ N

q
�0 with∑q

j=1 alj = m, and the coordinate y = (y1, y2, . . . , yq) of C
q, we write

yal :=
q∑

j=1

y
alj

j for l = 0, 1, . . . , qY
m.

Note that when the subscript l of al runs through {0, 1, . . . , qY
m}, yal runs through

the set containing all the possible homogenous monomials of degree m in the variables
{y1, y2, . . . , yq}. Then, the Veronese embedding theorem shows

ψY
m : P

q−1(C) ↪→ P
qY

m(C) such that ψY
m([y]) = [ya0 : ya1 : · · · : y

aqY
m ], (6.6)

where ya0 , ya1 , . . . ,y
aqY

m are all the homogenous monomials of degree m in some order.
Also, we set Ym to be the smallest linear subvariety of P

qY
m(C) containing ψY

m(Y ). It is
straightforward to see that a linear form

∑qY
m

l=0 βlvl vanishes identically on Ym (and thus
defining a hyperplane), for the coordinate v = (v0, v1, . . . , vqY

m
) of C

qY
m+1 if and only if∑qY

m

l=0 βly
al , as a homogenous polynomial of degree m, vanishes identically on Y (and

thus defining a hypersurface). In other words, there exists an isomorphism

C[y1, y2, . . . , yq]m/(IY )m � Ỹm such that yal ↔ vl for l = 0, 1, . . . , qY
m, (6.7)

where IY is the prime ideal in C[y1, y2, . . . , yq] defining Y , (IY )m is the vector space
of homogenous polynomials of degree m in IY and Ỹm := C[v0, v1, . . . , vqY

m
]1/IYm

is the
quotient vector space of the linear forms in C[v0, v1, . . . , vqY

m
] modulo the prime ideal IYm

in C[v0, v1, . . . , vqY
m

]1 generating Ym. Hence, we have dim Ym = dim Ỹm − 1 since Ym is
a linear subvariety of P

qY
m(C), which, together with the definition of HY (m), (6.5) and

(6.7), shows that Ym is an nY
m-dimensional linear subspace of P

qY
m(C), so that there exist

qY
m + 1 linear forms L̃0, L̃1, . . . , L̃qY

m
in C[w0, w1, . . . , wnY

m
] such that

ϕY
m : P

nY
m(C) → Ym ⊆ P

qY
m for ϕY

m([w]) := [L̃0(w) : L̃1(w) : · · · : L̃qY
m

(w)] (6.8)

is a linear isomorphism between P
nY

m(C) and Ym, where w = (w0, w1, . . . , wnY
m

) is the
coordinate of C

nY
m+1. Now, (6.6) and (6.8) yield an isomorphism between the smooth

projective algebraic variety Y and a subvariety of P
nY

m(C) such as

h := (ϕY
m)−1 ◦ ψY

m : Y → P
nY

m(C). (6.9)

As a consequence, together with our assumptions on f and the q hypersurfaces Dj ,
(6.3) and (6.9) imply that

F := h ◦ ψ ◦ f : M → P
nY

m(C) (6.10)

is a linearly non-degenerate meromorphic map defined on the generalized p-parabolic
manifold M that satisfies the general conditions (A1) and (A2).

In the following, for fixed z ∈ M \ If , we set cz = (cz
1, c

z
2, . . . , c

z
q) ∈ R

q
�0 by

cz
j := log

1
‖f(z); Dj‖

� 0 for j = 1, 2, . . . , q. (6.11)
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By definitions of the Hilbert function and the Hilbert weight, and that of qY
m, there exists

a subset Lz, dependent on z, of {0, 1, . . . , qY
m} with cardinality HY (m) = nY

m + 1 such
that {yal : l ∈ Lz} is a basis of C[y1, y2, . . . , yq]m/(IY )m and such that

SY (m, cz) =
∑
l∈Lz

alc
z. (6.12)

Note that, for the coordinate w ∈ C
Hm(Y ), L̃l(w) = yal follows by (6.6) and (6.8), which

implies that, for l = 0, 1, . . . , qY
m, if Ll is the hyperplane generated by L̃l, then, for a

reduced representation f̃ of f , and the one F̃ of F , the identity

〈F, Ll〉 = L̃l(F̃ ) =
q∏

j=1

(D̃j(f̃))alj =
q∏

j=1

〈f, Dj〉alj (6.13)

holds by (6.3) and (6.10). Hence, from (6.11), (6.12) and (6.13), and noting that #Lz =
HY (m) and

q∑
j=1

alj = m for l = 0, 1, . . . , qY
m,

we have

log
∏

l∈Lz

‖Ll‖
|〈F (z), Ll〉|

= log
∏

l∈Lz

q∏
j=1

1
|〈f(z), Dj〉|alj

+ O(HY (m))

= log
∏

l∈Lz

q∏
j=1

{
1

‖f(z); Dj‖alj

(
1

‖f(z)‖d‖Dj‖

)alj
}

+ O(HY (m))

=
∑
l∈Lz

q∑
j=1

alj

(
log

1
‖f(z); Dj‖

+ log
1

‖f(z)‖d‖Dj‖

)
+ O(HY (m))

=
∑
l∈Lz

alc
z − d log ‖f(z)‖

( ∑
l∈Lz

q∑
j=1

alj

)
+ O(HY (m))

= SY (m, cz) − dmHY (m) log ‖f(z)‖ + O(HY (m)),

which gives us the following estimate:

SY (m, cz) � max
L

log
∏
l∈L

‖Ll‖
|〈F (z), Ll〉|

+ dmHY (m) log ‖f(z)‖ + O(HY (m))

= max
L

log
∏
l∈L

1
‖F (z); Ll‖

− HY (m) log ‖F (z)‖

+ dmHY (m) log ‖f(z)‖ + O(HY (m)), (6.14)

where the maximum is taken over all subsets L ⊆ {0, 1, . . . , qY
m} with #L = nY (m) + 1

such that L̃l, l ∈ L, are linearly independent.
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Then, combining the conclusions of Proposition 5.1 with (6.14) yields

1
∆(n + 1)

eY (cz) � 1
mHY (m)

SY (m, cz) +
∆(2n + 1)

m
max

1�j�q
{cz

j}

� 1
mHY (m)

(
max

L
log

∏
l∈L

1
‖F (z); Ll‖

− HY (m) log ‖F (z)‖
)

+ d log ‖f(z)‖ +
∆(2n + 1)

m
max

1�j�q
{cz

j} + O

(
1
m

)
. (6.15)

Also, the ‘in general position’ assumption of the q hypersurfaces Dj on V implies
that the conclusions of Proposition 5.2 hold for any distinct subset {j0, j1, . . . , jn} of
{1, 2, . . . , q}, which together with (6.11) and (6.15) shows that

log
n∏

k=0

1
‖f(z); Djk

‖

= cz
j0 + cz

j1 + · · · + cz
jn

� 1
∆

eY (cz)

� n + 1
mHY (m)

(
max

L
log

∏
l∈L

1
‖F (z); Ll‖

− HY (m) log ‖F (z)‖
)

+ d(n + 1) log ‖f(z)‖ +
∆(n + 1)(2n + 1)

m
max

1�j�q
{cz

j} + O

(
1
m

)

� n + 1
mHY (m)

(
max

L
log

∏
l∈L

1
‖F (z); Ll‖

− HY (m) log ‖F (z)‖
)

+ O

(
1
m

)

+ d(n + 1) log ‖f(z)‖ +
∆(n + 1)(2n + 1)

m
max

1�j�q

{
log

1
‖f(z); Dj‖

}
. (6.16)

However, we now encounter a problem, that is, the functions log ‖F (z)‖ and log ‖f(z)‖
are usually not globally defined. In order to take integration over M〈r〉, we need to avoid
this difficulty. Hence, we resort to the concept of ‘reduced representation sections’ of F

and f (see [17]). We only do this for F in detail, as the case for f is similar.
Set {F̃α, Uα} to be a system of local reduced representations of F such that, on Uα ∩

Uβ(�= ∅), we have
F̃α = hαβF̃β

for a non-vanishing holomorphic function hαβ : Uα ∩Uβ → C
∗. Then, {hαβ} forms a basic

cocycle so that there exists a holomorphic line bundle HF on M , with a holomorphic
frame atlas {sF

α , Uα} such that, on Uα ∩ Uβ , we have

sF
α = hβαsF

β ,

which is called the hyperplane section bundle of F . Now, define a holomorphic section

F̃ ∗
α(z) := (z, F̃α(z)) ∈ Γ (Uα, M × C

nY
m+1)
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such that, on Uα ∩ Uβ , it satisfies

F̃ ∗
α ⊗ sF

α = hαβF̃ ∗
β ⊗ sF

α = F̃ ∗
β ⊗ sF

β . (6.17)

Hence, there is a global holomorphic section χ ∈ Γ (M, (M × C
nY

m+1) ⊗ HF ), called the
standard reduced representation section of F , such that χ|Uα = F̃ ∗

α ⊗ sF
α .

Set �1 to be the standard Hermitian metric along the fibres of the trivial bundle
M × C

nY
m+1 and ℘1 to be a Hermitian metric along the fibres of HF . Then, we can apply

our Green–Jensen formula to the function log ‖χ‖�1⊗℘1 to get

∫ r

s

dt

t2p−1

∫
M [t]

ddc log ‖χ‖2
�1⊗℘1

∧ (ddcτ)p−1 ∧ ωm−p

= 1
2

∫
M〈r〉

log ‖χ‖2
�1⊗℘1

σ − 1
2

∫
M〈s〉

log ‖χ‖2
�1⊗℘1

σ,

which can be rewritten as

TF (r, s) − THF
(r, s) =

∫
M〈r〉

log ‖F‖�1 ⊗ ‖sF ‖℘1σ −
∫

M〈s〉
log ‖F‖�1 ⊗ ‖sF ‖℘1σ, (6.18)

where THF
(r, s) is defined via the pull-back of the first Chern form on (HF , ℘1).

Analogously, we derive that

Tf (r, s) − THf
(r, s) =

∫
M〈r〉

log ‖f‖�2 ⊗ ‖sf‖℘2σ −
∫

M〈s〉
log ‖f‖�2 ⊗ ‖sf‖℘2σ, (6.19)

where each term is self-evident from the context.
Then, from the constructions of ψ, ψY

m, ϕY
m and F , this leads to

(‖F‖�1)|Uα = (‖f‖�2)|dm
Uα

,

which implies that (‖sF ‖℘1)|Uα
= (‖sf‖℘2)|dm

Uα
and HF = Hdm

f (from the transition func-
tions hαβ), so that, by definition, we derive the following estimate:

THF
(r, s) = dmTHf

(r, s), (6.20)

which, together with (6.18) and (6.19), yields

TF (r, s) = dmTf (r, s). (6.21)

Now, (6.16) turns out to be

log
n∏

k=0

1
‖f(z); Djk

‖ � n + 1
mHY (m)

max
L

log
∏
l∈L

1
‖F (z); Ll‖

+
∆(n + 1)(2n + 1)

m
max

1�j�q

{
log

1
‖f(z); Dj‖

}
+ O

(
1
m

)
, (6.22)
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which, by application of (3.5) and noting (6.2), implies that
q∑

j=1

mf (Dj ; r) �
∫

M〈r〉
max

{j0,j1,...,jn}⊆{1,2,...,q}

{
log

n∏
k=0

1
‖f ; Djk

‖

}
σ + O(1)

� n + 1
mHY (m)

∫
M〈r〉

max
L

log
∏
l∈L

1
‖F ; Ll‖

σ

+
∆(n + 1)(2n + 1)

2m

q∑
j=1

∫
M〈r〉

log
1

‖f ; Dj‖2 σ + O

(
1
m

)

=
n + 1

mHY (m)

∫
M〈r〉

max
L

log
∏
l∈L

1
‖F ; Ll‖

σ

+
∆(n + 1)(2n + 1)

m

q∑
j=1

(dTf (r, s) − mf (Dj ; s)) + O

(
1
m

)

� n + 1
mHY (m)

∫
M〈r〉

max
L

log
∏
l∈L

1
‖F ; Ll‖

σ

+ dq
∆(n + 1)(2n + 1)

m
Tf (r, s) + O

(
1
m

)
, (6.23)

where the term O(1/m) depends only on the q hypersurfaces Dj and thus is very small
for sufficiently large m.

Our final step is to apply the second main theorem proved in § 4 for the linearly non-
degenerate meromorphic map F : M → P

nY
m(C) and the qY

m + 1 hyperplanes’ Ll values.
Now, noting that NRamF (r, s) � 0 (see the note immediately after Proposition 3.5) and
nY

m = HY (m) − 1, the estimate (4.1) yields that, for any ε > 0,∫
M〈r〉

max
L

log
∏
l∈L

1
‖F ; Ll‖

σ ·�· (HY (m) + ε)TF (r, s) + { 1
2HY (m)(HY (m) − 1) + ε}

· (m0(L; r, s) + Ricp(r, s) + κ log+ Y (r2) + κ log+ r),
(6.24)

which combined with (5.7), (6.21) and (6.23) shows that

q∑
j=1

mf (Dj ; r) ·�· d

(
(n + 1) +

n + 1
HY (m)

ε + q
∆(n + 1)(2n + 1)

m

)
Tf (r, s)

+ Cm(m0(L; r, s) + Ricp(r, s) + κ log+ Y (r2) + κ log+ r), (6.25)

where
Cm := ∆

n + 1
2n!

mn−1 + O(mn−2)

is a constant dependent upon m.
Now, for m sufficiently large, we can suppose

n + 1
HY (m)

� 1
2

and q
∆(n + 1)(2n + 1)

m
� ε

2
, (6.26)
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which, combined with (6.25), yields the desired estimate (6.1) for cm = Cm/d. (In general,
cm depends on both m and the degrees of the hypersurfaces involved.) �

6.1. Defect relation

Now, when M is assumed to be either an affine algebraic variety or an algebraic vector
bundle over an affine algebraic variety or its projectivization, via Remarks 1.3 and 2.2,
(3.11) and (3.19), it follows that

m0(L; r, s) + Ricp(r, s) + κ log+ Y (r2) = O(log+ r),

so that we naturally have a stronger estimate

lim inf
r→+∞

m0(L; r, s) + Ricp(r, s) + κ log+ Y (r2)
Tf (r, s)

= 0, (6.27)

and hence, from (6.1), by letting ε → 0, this yields immediately that

q∑
j=1

δ(D, f) � n + 1. (6.28)
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