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ON THE GENERALISED DOMINATED
CONVERGENCE THEOREM

CHEW TUAN SENG

In this paper, we give another version of the generalised dominated convergence theorem,
which is better than other convergence theorems for Perron integrals in the sense that it
can be applied more easily.

1 INTRODUCTION AND DEFINITIONS

Recently, some convergence theorems have been proved for Perron, Denjoy and
Henstock-Kurzweil integrals, namely the controlled convergence theorem [2,3,6,7], the
generalised mean convergence theorem [5], and the generalised dominated convergence
theorem [5]. For brevity, we denote the various convergence in the above convergence
theorems by CC, GMC and GDC, respectively. In [5], we proved that GDC implies CC
[5, Lemma] which in turn implies GMC [6, Lemma]. Conversely, if a sequence {/„} is
GMC then there exists a subsequence {/n(i)} of {/n}> which is CC [5, p.139]. In this
note, another version of the generalised dominated convergence theorem will be given,
which has useful applications, as we shall see in Theorem 4. We also prove, that if a
sequence {/„} is CC then there exists a subsequence which is GDC.

A function H is said to be a major function of a function / in [a, 6] if D_H(x) > — oo
for all but a countable number of points x, and

DH{x) ^ f{x) almost everywhere in [a, 6]

where D_ denotes the lower derivative. A function G is said to be a minor function of /
in [a, b] if — G is a major function of —/ in [a,b]. We assume in [5] that D_H{x) > — oo
for every x and DH{x) > f(x) for every x. However, for the present case, a major
function H is still VBG* [8, p.234], and furthermore the characteristic function of a
set of measure zero is Perron integrable and its integral is zero. Hence it is easy to
check that the generalised dominated convergence theorem [5, Theorem 2] still holds.
We shall consider the following conditions:

(i) fn{x) -+ /(x) almost everywhere in [a, b] as n —* oo where each /„ is
Perron integrable on [a,b] (for definitions, see [5, 8]);
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(ii) the primitives Fn of / „ converge uniformly on [a, 6];
(ii)/ the primitives Fn(x) of / „ converge pointwise at each x to a continuous

function F(x) in [a, b];

(iii) fn has at least one common major function and at least one common

minor function in [a, 6];
(iii)/ [a, b] is the union of a sequence of closed sets Xi and on each Xi, fn is

dominated by a Lebesgue integrable function;
(iv) the primitives Fn of / n are ACG* uniformly in n (for definitions, see

[5,8]);
(v) [a,6] is the union of a sequence of closed sets Xi and for every i and

e > 0 there is an integer N such that for every partial division of [a, b]

given by

Go ^ a i < bi ^ a2 < 62 ^ • • • ^ o-p < bp ^ b

with aj ,&i ,02 , 6 2 , . . . , ap ,bp belonging to Xi, we have
p

2_^u{Fn — Fm; [a,i,bi]) < e whenever n,m ^ TV

where w denotes the oscillation of Fn — Fm over [aj,6j].

We recall that {/„} is CC if (i), (ii) and (iv) hold, {/„} is GDC if (i), (ii) and
(iii) hold and that {/„} is GMC if (i), (ii) and (v) hold.

2 MAIN RESULTS

We state the main results as follows:

THEOREM 1. (Second Generalised Dominated Convergence Theorem) If condition
(i), (ii) and (Hi)' hold, then f is Perron integrable on [a, 6] and we have

,6 rb

OO.r f
/ fn(x)dx —> / f(x)dx as n

v a J aThis convergence theorem can be applied more easily than other convergence the-
orems mentioned above, since condition (iii)', which is in terms of Lebesgue integrable
functions, can easily be checked, whereas major functions in (iii) and ACG» in (iv) are
harder to deal with.

THEOREM 2. The above theorem holds true with condition (ii) replaced by condi-
tion (ii)'.

THEOREM 3. If a sequence of functions {/„} is CC then there exists a subsequence
of {/„} which satisfies (i), (ii) and (Hi)'-

We note that Theorem 3 reduces to the corresponding well-known result for
Lebesgue integrable functions when Xi — [a, b] for all i.
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3 P R O O F S OF THE MAIN RESULTS

We need the following four lemmas. The first two lemmas are given in [8, p.216].
However they are modified slightly here for our purpose.

LEMMA 1. [8, Lemmas 2.1, p.216\. If g is a nonnegative function Lebesgue in-

tegrable on an intervai [a,6], (hen for every e > 0, there exists a function G with

DG(x) > —oo for all x except a countable number of points such that (a) G\x) = g(x)

almost everywhere on [a, 6], (b) \G(x)\ < e at every point x of [a, 6] .

PROOF: Let H be the primitive of g. Let a = oo < Oj < a-i < ... an = b be a
partition of [a, 6] such that the oscillation of H is less than e on each of the intervals
[a; ,a(+i] , where i = 0,1,2 . . . ,n — 1. We may choose a; such that DH{a,i) > —oo
for i = 1,2. . . 7i — 1. Let F be a function which is constant on each [a;,a;+1] with
F(a-i) = H(a,i). Writing G = H — F, note that G is nondecreasing on each [ai, a,+ j ) ,
thus DG(x) = —oo only at points x = a;, for i = 1,2 ... ,n — 1. Furthermore, (a) and
(b) hold. |

LEMMA 2. [8, Lemma 2.2, p.216]. If g is a nonnegative function which is Lebesgue
integrable on an interval J — \a, b] and if P is a closed set in J, then for every e > 0,
there exists a function G with DG(x) > - c o for all x except a countable number of
points such that (a) G'(x) = g(x) at almost all the points x of J - P, (b) G(x) = 0
and G'(x) = 0 at all points x of P and (c) \G(x + h)\ ^ e\h\ for every x of P and
every h.

PROOF: This lemma follows from Lemma 1 and the proof of Lemma 2.2 in [8]. |

LEMMA 3. Let [a,b] be the union of a sequence of closed sets Xi with Xi C Xi+\

for all i. Let g be a function defined on [a,b] such that g is Lebesgue integrable on

each Xi. Then \g\ is dominated by a major function.

PROOF: For each i, define gi{x) = \g(x)\ if x £ Xi and zero otherwise. Then
each g{ is Lebesgue integrable on [a, 6]. Let G\ be the primitive function of gi. Next
we shall use Lemma 2 to define G\ for i ~£ 2. Applying Lemma 2 with e = 2~l,
P = Xi_\ and g = gi, we obtain a function Gi with DGi{x) > —oo for all x except
a countable number of points. Furthermore, we have:

(a) G\(x) = \g(x)\ almost everywhere in Xi — Xi_1 , and G\(x) = 0 almost

everywhere in [a, b] — Xi;

(b) Gi(x) = G\(x) = 0 for all x € AVi ;
(c) \Gi(x + h)\ ^ \h\2~1 for all x e A;-! •

Let
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then F is a finite-valued function because of (b) and (c). Let x £ [a, 6] and assume
x £ Xn — Xn_i for some n. Then we have

F(x + h)-F(x) y . Gj(x + h) - Gj(x) , ^ Gi(x + h)-Gj(x)
h ~ ^ h + ^ h •••(*h

i=l t=n+l

Thus

DF{x) > \g{x)\ +liminf
Li=n+1

a.e.

Consequently, in view of (c), we have

\g(x)\ < DF(x) + 1 < D[F(x) + F^x)} a.e.,

where F1(x) = x. Note that D_F(x) > -oo for all x except a countable number of
points, in virtue of equality (*) and condition (c). The proof is complete. |

A function F is said to be of bounded variation in the restricted sense on a closed
set X or, in short, VBt(X) if V*(.F; X) is finite, where

and {Ik} is a sequence of non-overlapping intervals whose end-points belong to X,
u)(F;Ik) denotes the oscillation of F on the interval Ik and the supremum is taken
over all such {Ik} •

A function F is said to be of generalised bounded variation in the restricted sense
on [a, b] or VBG* if [a, 6] is the union of a sequence of closed sets Xi such that on
each Xi the function F is VB*(Xi).

LEMMA 4. Conditions (Hi) and (Hi)' are equivalent.

PROOF: It follows from Lemma 3 that (iii)' implies (iii). For the converse, note
that if D_H(x) > —oo for all x except a countable number of points, then H is VBGt

[8, Theorem 10.1, p.234]. Hence H is VB<(Xi) for all i, where [a,b] = \JXi and each
i

Xi is closed. Consequently H'(x) exists almost everywhere and H'[x) is Lebesgue
integrable on each Xi. With this fact, we see at once that (iii) implies (iii)'. |

PROOF OF THEOREM 1: This follows from Lemma 4 and the first GDC Theorem
[5, Theorem 2]. |

PROOF OF THEOREM 2: Theorem 2 can be deduced from Theorem 1 by using the
same argument as in the proof of Theorem 2 in [7]. |
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PROOF OF THEOREM 3: We note that CC implies GMC [6, Lemma] Following
the first half of the proof of Theorem 4 in [5], we obtain a subsequence {/n(i)} of
{/„} which is dominated by a Lebesgue integrable function on Xi. Repeat the above
process for X2 and the sequence of primitives -F^i) of fn(i) obtained above and so on.
Consequently, by the diagonal process, we obtain the required result. |

4 AN APPLICATION

Let D be the space of all Perron integrable functions defined on [a, b]. A functional
G defined on D is said to be control-continuous if G(fn) —> G(f) as n —>oo whenever
/„ is control-convergent to / in D. A functional G defined on D is said to be norm-
continuous if G(fn) —» &'(/) as n - t o o whenever | | / n — / | | —•> 0 as n —» 00. Here || ||
denotes the usual norm of the space D , that is,

= sup{/ f(t)dt;x E[a,b}}.
Ja

It is well-known [1,9] that a linear functional is norm-continuous if and only if there
exists a function g defined on [a, b] such that fg £ D whenever f £ D and

G(f) = / f(t)g(t)dt.

Let L\ be the space of all Lebesgue integrable functions defined on [a,b] with the
usual norm || ||i- A functional G defined on L\ is said to be || ||i-continuous if

~* £"•'(/) a s "• —* 00 whenever ||/n — /| | i —> 0 as n - t o o .

THEOREM 4. A linear functional is norm-continuous in D if and only if it is
control-continuous in D.

PROOF: The necessity follows from the fact that controlled convergence implies
norm convergence. Now we shall prove the sufficiency. Let G be a control-continuous
linear functional in D. First, note that if | |/n — /| |i —» 0 as n —> oo in L\ then
for every subsequence of {/n}, there exists a subsequence which is dominated by a
function in L\ and converges pointwise to / almost everywhere in [<z, 6]. Thus G is
|| || j-continuous in L\ . Consequently, there exists a bounded function g defined on
[a, b] such that

tb

G{f)= I f(t)g{t)dt for a l l / € Lj.

We shall prove that the above equality holds for all f £ D by using Theorem 2.
For every / G D, there exists a sequence {/n} of step functions, which is control-
convergent to / (see [4]) that is to say, {fn} satisfies (i), (ii) and (iv). Obviously,

https://doi.org/10.1017/S0004972700026691 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026691


170 C.T. Seng [6]

{fng} satisfies (i). In view of the boundedness of g and the condition (iv) of {fn},

{fng} satisfies (iii)'. Next, we shall prove that {fng} satisfies (ii)'. Note that

G(fn9X[a,X)) = I fn(t)9(t)dt
J a

and, in view of the controlled continuity of G and the controlled convergence of

{fnX[a,x\}, we have

J a
fn(t)g(t)dt - G(/X[a,*]) asn-»<x>

for every x £ [a>6]» where X[a,x] denotes the characteristic function of an interval
[a, a;]. Thus we need to prove that for every / £ D, G(fx[a,x]) is continuous in x.

Let xn G [a, 6], for n = 1 ,2 . . . , and xn -» x as n -> oo. Let hn = fX[a,xn) and
h = fx[a,x] • Obviously, {hn} satisfies (i) and (iv). Furthermore {hn} satisfies (ii), in
view of the uniform continuity of the primitive F of / over [a,b] and the following
inequality

v ev-1"
J a

hn{t)dt- / h[t)dt «(F; /„),

where w denotes the oscillation of F over /n and /„ is the interval with eudpoints xn

and x . Consequently
G(hn) —* G(h) as n —> oo

Thus G(fx[a,x]) 1S continuous in x . Hence, by Theorem 2,

/ fn(t)g(t)dt -> / f(t)g{t)dt as n -y oo.
*/a •/ a

Therefore
,6

G(/) = / f(t)g(t)dt for all / 6 D
Ja

Consequently, G is norm-continuous [1,9].
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