
1 Introduction

This chapter begins with the basic concepts and properties of stochastic
dominance. It then gives examples of applications of stochastic dominance to
various fields in economics: welfare analysis, finance, industrial organization,
labor, international, health, and agricultural economics. The final subsection
gives an overview of the subsequent chapters.

1.1 Concepts of Stochastic Dominance

1.1.1 Definitions

First-Order Stochastic Dominance (FSD) Let X1 and X2 be two (continu-
ous) random variables with the cumulative distribution functions (CDFs) given
by F1 and F2, respectively.1 In economic applications, they typically cor-
respond to incomes or financial returns of two different populations, which
may vary regarding time, geographical regions or countries, or treatments. For
k = 1, 2, let Qk(τ ) = inf{x : Fk(x) ≥ τ } denote the quantile function of
Xk, respectively, and let U1 denote the class of all monotone increasing (utility
or social welfare) functions. If the functions are assumed to be differentiable,
then we may write

U1 = {u(·) : u′ ≥ 0}.
Definition 1.1.1 The random variable X1 is said to first-order stochastically
dominate the random variable X2, denoted by F1 �1 F2 (or X1 FSD X2),2 if

1 Stochastic dominance can be defined for discrete or mixed continuous–discrete distributions.
However, for the purpose of explanation, we shall mainly focus on continuous random variables,
unless it is stated otherwise.

2 To denote stochastic dominance relations, it is a convention to freely exchange the random
variables with their respective distribution functions. For example, for first-order stochastic
dominance, we may write X1 �1 X2 or F1 FSD F2. The same rule applies to the other concepts
of stochastic dominance defined later.
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Figure 1.1 X1 first-order stochastically dominates X2

any of the following equivalent conditions holds: (1) F1(x) ≤ F2(x) for all
x ∈ R; (2) E[u(X1)] ≥ E[u(X2)] for all u ∈ U1; and (3) Q1(τ ) ≥ Q2(τ ) for
all τ ∈ [0, 1].

This is the definition of weak stochastic dominance. If the inequalities hold
with strict inequality for some x ∈ R, some u ∈ U1, and some τ ∈ [0, 1], then
the above serves as the definition of strong stochastic dominance, while one
has strict stochastic dominance if the inequalities hold with strict inequality
for all x ∈ R, all u ∈ U1, and all τ ∈ [0, 1].3 The equivalence of the three
definitions will be discussed below.

Figure 1.1 illustrates two distributions with a first-order stochastic domi-
nance relation. It shows that, when X1 FSD X2, the CDF of X1 lies below
that of X2. To interpret the FSD relation, suppose that the random vari-
ables correspond to incomes of two different populations. Then, the inequality
F1(x) ≤ F2(x) implies that the proportion of individuals in population 1 with
incomes less than or equal to an income level x is not larger than the proportion
of such individuals in population 2. If we measure poverty by the proportion of
individuals earning less than a predetermined level of income (poverty line) x ,
then this implies that, whatever poverty line we choose, we have less poverty
in F1 than in F2.4 Therefore, the distribution F1 would be preferred by any
social planner having a welfare function that respects monotonicity (u ∈ U1),

3 This classification is adopted from McFadden (1989, p. 115). The distinction among weak,
strong, and strict dominance could be important in theoretical arguments. However, from a sta-
tistical point of view, the theoretically distinct hypotheses often induce the same test statistic
and critical region, and hence the distinction is not very important; see McFadden (1989) and
Davidson and Duclos (2000) for this point.

4 See Section 5.2 for a general discussion about the relationship between poverty and SD concepts.
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explaining the fact that we say that F1 first-order stochastically dominates
F2 when the dominance of the CDFs as functions is the other way around.

To explain the FSD relation in an alternative perspective, write the (weak)
first-order stochastic dominance relation F1 �1 F2 as

P(X1 > x) ≥ P(X2 > x) for all x ∈ R. (1.1.1)

Consider a portfolio choice problem of an investor and suppose that the ran-
dom variables denote returns of some financial assets. Then, (1.1.1) implies
that, for all values of x, the probability of obtaining returns not less than x is
larger under F1 than under F2. Such a probability would be desired by every
investor who prefers higher returns, explaining again the first-order stochastic
dominance of F1 over F2. Conversely, if the two CDFs intersect, then (1.1.1)
does not hold. In this case, one could find an investor with utility function
u ∈ U1 such that E[u(X1)] > E[u(X2)], and another investor with utility
function v ∈ U1 such that E[v(X1)] < E[v(X2)], violating the FSD of F1
over F2.

Second-Order Stochastic Dominance (SSD) To define the second-order
stochastic dominance, let U2 denote the class of all monotone increasing and
concave (utility or social welfare) functions. If the functions are assumed to be
twice differentiable, then we may write

U2 = {u(·) : u′ ≥ 0, u′′ ≤ 0}.
Definition 1.1.2 The random variable X1 is said to second-order stochasti-
cally dominate the random variable X2, denoted by F1 �2 F2 (or X1 SSD
X2), if any of the following equivalent conditions holds: (1)

∫ x
−∞ F1(t)dt ≤∫ x

−∞ F2(t)dt for all x ∈ R; (2) E[u(X1)] ≥ E[u(X2)] for all u ∈ U2; and (3)∫ τ

0 Q1(p)dp ≥ ∫ τ

0 Q2(p)dp for all τ ∈ [0, 1].
For SSD, the accumulated area under F1 must be smaller than the coun-

terpart under F2 below any value of x . If X1 first-order dominates X2, or
equivalently, if F1(x) is smaller than F2(x) for all x , then it is easy to see
that X1 second-order dominates X2, but the converse is not true.

Figure 1.2 illustrates that, even when there is no first-order stochastic domi-
nance between them (i.e., when the two CDFs intersect), X1 may second-order
stochastically dominate X2.

To have second-order stochastic dominance F1 �2 F2, for any negative area
(F2 < F1) there should be a positive area (F1 < F2) which is greater than or
equal to the negative area and which is located before the negative area. To
relate this to the second definition (2) of SSD, consider the expression

E[u(X1)] − E[u(X2)] =
∫ ∞

−∞
[F2(x)− F1(x)] u′(x)dx,
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Figure 1.2 X1 does not first-order stochastically dominate X2, but X1 second-order
stochastically dominates X2

which follows from integration by parts under regularity conditions (lemma
1 of Hanoch and Levy 1969; see also Equation 1.1.6). Whenever u′ is a
decreasing function (i.e., u′′ < 0), the positive area is multiplied by a larger
number u′(x) > 0 than the negative area which comes later on, so that the
total integral becomes non-negative, establishing the second-order stochastic
dominance of X1 over X2 under Definition 1.1.2 (2).

In the analysis of income distributions, the concavity assumption u′′ ≤ 0
implies that a transfer of income from a richer to a poorer individual always
increases social welfare, which is a weaker form of the transfer principle (Dal-
ton 1920). In the portfolio choice problem, on the other hand, the concavity
assumption reflects risk aversion of an investor. That is, a risk-averse investor
would prefer a portfolio with a guaranteed payoff to a portfolio without the
guarantee, provided they have the same expected return. Therefore, the def-
inition implies that any risk-averse investor would prefer a portfolio which
dominates the other in the sense of SSD, because it yields a higher expected
utility.

Higher-Order Stochastic Dominance The concept of stochastic dominance
can be extended to higher orders. Higher-order SD relations correspond to
increasingly smaller subsets of utility functions. Davidson and Duclos (2000)
offer a very useful characterization of stochastic dominance of any order.

For k = 1, 2, define the integrated CDF and the integrated quantile function
to be

F (s)
k (x) =

{
Fk(x) for s = 1∫ x
−∞ F (s−1)

k (t)dt for s ≥ 2
(1.1.2)

and

Q(s)
k (x) =

{
Qk(x) for s = 1∫ x

0 Q(s−1)
k (t)dt for s ≥ 2.

, (1.1.3)
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respectively. For s ≥ 1, let

Us = {u(·) : u′ ≥ 0, u′′ ≤ 0, . . . , (−1)s+1u(s) ≥ 0}
denote a class of (utility or social welfare) functions, where u(s) denotes the
sth-order derivative of u (assuming that it exists).

Definition 1.1.3 The random variable X1 is said to stochastically domi-
nate the random variable X2 at order s, denoted by F1 �s F2, if any of
the following equivalent conditions holds: (1) F (s)

1 (x) ≤ F (s)
2 (x) for all

x ∈R and F (r)
1 (∞) ≤ F (r)

2 (∞) for all r = 1, ..., s − 1; (2) E[u(X1)] ≥
E[u(X2)] for all u ∈ Us; and (3) Q(s)

1 (τ ) ≥ Q(s)
2 (τ ) for all τ ∈ [0, 1] and

Q(r)
1 (1) ≥ Q(r)

2 (1) for all r = 1, ..., s − 1.

Whitmore (1970) introduces the concept of third-order stochastic domi-
nance (s = 3, TSD) in finance; see also Whitmore and Findlay (1978).
Levy (2016, section 3.8) relates the additional requirement u′′′ ≥ 0 to the
skewness of distributions and shows that TSD may reflect the preference for
“positive skewness,” i.e., investors dislike negative skewness but like positive
skewness. Shorrocks and Foster (1987) show that the addition of a “transfer
sensitivity” requirement leads to TSD ranking of income distributions. This
requirement is stronger than the Pigou–Dalton principle of transfers since it
makes regressive transfers less desirable at lower income levels.

If we let s → ∞, then the class U∞ of utility functions has marginal utili-
ties that are completely monotone. This leads to the concept of infinite-order
stochastic dominance, which is the weakest notion of stochastic dominance;
see Section 5.4.3 for details.

Equivalence of the Definitions We now show the equivalence of the condi-
tions that appear in the definitions of SD. For simplicity, we discuss the case of
FSD and SSD, and assume that X1 and X2 have a common compact support,
say X = [0, 1].5

We first establish the following lemma:

Lemma 1.1.1 If F1(x) ≤ F2(x) for all x ∈ R, then E X1 ≥ E X2.

Proof: Recall that, for any nonnegative random variable X with CDF F,

E X =
∫ ∞

0
P (X > t) dt =

∫ ∞

0
[1− F(t)] dt; (1.1.4)

5 The equivalence results can be extended to general random variables, possibly with unbounded
supports; see Hanoch and Levy (1969) and Tesfatsion (1976). The proofs in this subsection
are based on Wolfstetter (1999, chapter 4) and Ross (1996, chapter 9). For a proof of strong
stochastic dominance, see Levy (2016, section 3).
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see, e.g., Billingsley (1995, equation 21.9). Therefore,

E X1 − E X2 =
∫ ∞

0
[P (X1 > t)− P (X2 > t)] dt

=
∫ ∞

0
[F2(t)− F1(t)] dt ≥ 0. (1.1.5)

The following theorem establishes the equivalence of (1) and (2) in
Definition 1.1.1:6

Theorem 1.1.2 F1(x) ≤ F2(x) for all x ∈ R if and only if E[u(X1)] ≥
E[u(X2)] for all u ∈ U1.

Proof: Suppose that F1(x) ≤ F2(x) for all x ∈ R and let u ∈ U1 be an
increasing function. Let u−1(z) = inf {x : u(x) > z}. For any z ∈ R, we have

P (u (X1) > z) = P
(

X1 > u−1(z)
)

= 1− F1

(
u−1(z)

)
≥ 1− F2

(
u−1(z)

)
= P

(
X2 > u−1(z)

)
= P (u (X2) > z) .

Therefore, by Lemma 1.1.1, we have E[u(X1)] ≥ E[u(X2)] for any u ∈ U1.

Conversely, suppose that E[u(X1)] ≥ E[u(X2)] for all u ∈ U1. Let

ux (z) =
{

1 if z > x
0 if z ≤ x

.

Clearly, ux (·) ∈ U1 for each x . Therefore, for each x ∈ R,

P (X1 > x) = E [ux (X1)]

≥ E [ux (X2)]

= P (X2 > x) .

For SSD, the following theorem establishes the equivalence of (1) and (2)
in Definition 1.1.2:7

Theorem 1.1.3
∫ x

0 F1(t)dt ≤ ∫ x
0 F2(t)dt for all x ∈ X if and only if

E[u(X1)] ≥ E[u(X2)] for all u ∈ U2.

6 The equivalence of the conditions (1) and (3) easily follows from monotonicity of the CDFs.
7 For a proof of the equivalence of the conditions (1) and (3), see Thistle (1989, proposition 4).
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Proof: Suppose that E[u(X1)] ≥ E[u(X2)] for all u ∈ U2. Consider the
following function:

ux (z) =
{

z if z ≤ x
x if z > x

.

Obviously, for each x ∈ X , ux (·) ∈ U2 so that

0 ≤ E [ux (X1)]− E [ux (X2)]

=
∫ x

0
[1− F1(t)] dt −

∫ x

0
[1− F2(t)] dt

=
∫ x

0
[F2(t)− F1(t)] dt.

Conversely, suppose that
∫ x

0 F1(t)dt ≤ ∫ x
0 F2(t)dt for all x ∈ X . Since

monotonicity implies differentiability almost everywhere (a.e.), we have u′ >
0 and u′′ ≤ 0 a.e. for each u ∈ U2. Therefore, by integration by parts, we have

�u := E [u(X1)]− E [u(X2)]

= −
∫ 1

0
u(x)d [F2(x)− F1(x)]

=
∫ 1

0
u′(x) [F2(x)− F1(x)] dx (1.1.6)

= u′(1)
∫ 1

0
[F2(t)− F1(t)] dt (1.1.7)

−
∫ 1

0
u′′(t)

∫ t

0
[F2(s)− F1(s)] dsdt.

Since u′ > 0 and u′′ ≤ 0, the assumed condition
∫ x

0 [F2(t)− F1(t)] dt ≥ 0 for
all x ∈ X implies immediately �u ≥ 0. This establishes Theorem 1.1.3.

1.1.2 Basic Properties of Stochastic Dominance

While stochastic dominance relations compare whole distribution functions,
they are also related to the moments and other aspects of distributions.

Let supp(F) denote the support of distribution F. The following theorem
gives sufficient and necessary conditions for the first-order stochastic domi-
nance.

Theorem 1.1.4 Let X1 and X2 be random variables with distribution functions
F1 and F2, respectively. (1) If P(X2 ≤ X1) = 1, then X1 FSD X2; (2) If
min{supp(F1)} ≥ max{supp(F2)}, then X1 FSD X2; (3) If X1 FSD X2, then
E X1 ≥ E X2 and min{supp(F1)} ≥ min{supp(F2)}.
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(1) and (2) in the above theorem give sufficient conditions for the FSD. (1)
holds because, if X1 is not smaller than X2 (with probability 1), then

X1 ≤ x implies X2 ≤ x for all x

=⇒ {X1 ≤ x} ⊆ {X2 ≤ x} for all x

=⇒ P (X1 ≤ x) ≤ P (X2 ≤ x) for all x

=⇒ F1(x) ≤ F2(x) for all x .8

For example, if X1 = X2 + a for a constant a > 0, then (1) implies that X1
FSD X2. (2) says that if the minimum of the support of F1 is not less than the
maximum of the support of F2, then we have first-order stochastic dominance
of X1 over X2. This follows directly from (1).

On the other hand, (3) gives necessary conditions for FSD. That is, if X1
FSD X2, then the mean of X1 is not smaller than the mean of X2. This follows
from the expression9

E X1 − E X2 =
∫ ∞

−∞
[F2(x)− F1(x)] dx, (1.1.8)

which is nonnegative, provided the integral exists; see also Lemma 1.1.1. Also,
if X1 FSD X2, then the minimum of the support of F1 is not smaller than that
of F2. This is called the “left tail” condition because it implies that F2 has
a thicker left tail than F1. This result holds because, otherwise, there would
exist a value x0 such that F1(x0) > F2(x0), and hence X1 could not first-order
stochastically dominate X2.

For second-order stochastic dominance, analogous conditions can be estab-
lished (the proofs are also similar):

Theorem 1.1.5 Let X1 and X2 be random variables with distribution func-
tions F1 and F2, respectively. (1) If X1 FSD X2, then X1 SSD X2; (2) If
min{supp(F1)} ≥ max{supp(F2)}, then X1 SSD X2; (3) If X1 SSD X2, then
E X1 ≥ E X2 and min{supp(F1)} ≥ min{supp(F2)}.

In the above theorem, (3) shows that E X1 ≥ E X2 is a necessary condi-
tion for the SSD. Is there any general condition on variances which is also a
necessary condition for the SSD? In general, the answer is no. However, for
distributions with an equal mean, we can state a necessary condition for the
SSD using their variances.

8 Here, the notation ‘A =⇒ B’ means ‘A implies B’.
9 This holds because, for any random variable X with CDF F ,

E X =
∫ ∞

0
[1− F(x)− F(−x)] dx,

provided the integral exists.

https://doi.org/10.1017/9781108602204.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108602204.002


1.1 Concepts of Stochastic Dominance 9

Theorem 1.1.6 Let X1 and X2 be random variables with E X1 = E X2. If X1
SSD X2, then V ar(X1) ≤ V ar(X2).

To see this, take, for example, a quadratic utility function u(x) = x +
βx2 for β < 0, which certainly lies in U2. Then, Eu(X1) ≥ Eu(X2) and
E X1 = E X2 together immediately imply that V ar(X1) ≤ V ar(X2). The
mean-variance approach in the portfolio choice problem compares only the
first two moments of distributions. A natural question would be whether F1
second-order stochastically dominates F2, if F1 has larger mean and smaller
variance than F2. The answer is no, in general. This can be illustrated using
the following counterexample (Levy, 1992, p. 567):

x P(X1 = x) x P(X2 = x)

1 0.80 10 0.99
100 0.20 1000 0.01

Note that E X1 = 20.8 > E X2 = 19.9 and V ar(X1) = 1468 <

V ar(X2) = 9703. Hence, X1 dominates X2 by the mean-variance criterion.
However, X1 does not second-order stochastically dominate X2 because a risk-
averse investor with utility function u(x) = log(x) would prefer X2 over X1,
since Eu(X1) = 0.4 < Eu(X2) = 1.02; see the next subsection for another
example with continuously distributed random variables.

The foregoing discussion implies that there is no direct relationship between
the mean-variance approach and the stochastic dominance approach in general.
However, in the special case of normal distributions, stochastic dominance can
be related to mean-variance in the following sense:

Theorem 1.1.7 Let X1 and X2 be random variables with normal distributions.
Then, (1) E X1 > E X2 and V ar(X1) = V ar(X2) if and only if X1 FSD X2;
(2) if E X1 > E X2 or V ar(X1) < V ar(X2), then X1 SSD X2.

For more complete discussions on the properties of stochastic dominance,
the reader may refer to Levy (2016) and Wolfstetter (1999, chapters 4–5).

1.1.3 A Numerical Example

The mean-variance criterion has been widely adopted in portfolio choice
problems. It is a simple performance indicator comparing only the first two
moments of distributions; whenever the mean is higher and the variance is
lower for one distribution than for the other, the former distribution is pre-
ferred. However, it is well known that the criterion is valid only in certain
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cases: (1) when the utility function is quadratic, and (2) when the distributions
of the portfolios are all members of a two-parameter family; see Hanoch
and Levy (1969). In reality, however, the assumptions are restrictive and the
stochastic dominance approach provides an ordering of prospects under much
less restrictive conditions.

To illustrate how the two approaches yield different results, we present
a simple numerical example using two prospects, X and Y , with probabil-
ity density functions (PDFs) and cumulative distribution functions (CDFs)
given by

fX (x) = 0.1 · 1(0 ≤ x < 1 or 2 ≤ x ≤ 3)+ 0.8 · 1(1 ≤ x < 2),

fY (x) = 0.5 · 1(0.5 ≤ x ≤ 2.5)

and

FX (x) = 0.1x · 1(0 ≤ x < 1)+ (0.8x − 0.7) · 1(1 ≤ x < 2)

+ (0.1x + 0.7) · 1(2 ≤ x ≤ 3)+ 1(x > 3),

FY (x) = 0.5(x − 0.5) · 1(0.5 ≤ x ≤ 2.5)+ 1(x > 2.5),

respectively, where 1(·) denotes the indicator function. Figure 1.3 depicts the
PDFs and the CDFs of the prospects. Their expected values and variances are
given by E(X) = 3/2, V ar(X) = 17/60, E(Y ) = 3/2, and V ar(Y ) = 1/3.

In terms of the mean-variance criterion, the prospect X is more efficient than
the prospect Y . However, X does not second-order stochastically dominate Y ,
which can easily be observed from Figure 1.3. Since the value of the CDF of
X is greater than that of Y over the region [0, 0.5], the integrated area of the
distribution of X is greater than that of the distribution of Y . This violates the
second-order stochastic dominance of X over Y .

In reality, we do not observe the population distributions FX and FY , but
rather a sample randomly drawn from the distributions. This motivates us
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Figure 1.3 PDFs (left) and CDFs (right) for the simulation design
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1.1 Concepts of Stochastic Dominance 11

Table 1.1 Mean-variance and SSD criteria

Mean-Variance Criterion

Sample Mean Sample Variance

X 1.5002 0.2831
Y 1.4997 0.3329

SSD Test

Rejection rate 0.186

to consider a statistical inference method: a scientific procedure to make a
conjecture, based on samples, on the population distribution.

To give an early idea of SD tests, we draw a sample of size 500 from each
distribution, then test the null hypothesis that “X second-order stochastically
dominates Y ” using a standard SD test (Barrett and Donald [BD] Test; see
Section 2.2.2) at the significance level 0.10. We repeat this procedure 1,000
times. Table 1.1 summarizes the simulation results.

Sample means and sample variances are very close to their population val-
ues, implying that prospect X dominates prospect Y in the sample in terms
of the mean-variance efficiency criterion.10 On the other hand, the estimated
rejection rate of the BD test in the simulation experiment is about 0.186. This
means that the null hypothesis is rejected 186 out of 1,000 times. We may
interpret this result as statistical evidence against second-order stochastic dom-
inance of X over Y , which is consistent with the population relationship. This
implies that SD tests can yield rankings of prospects that are fundamentally
different from those based on the traditional mean-variance criterion.

1.1.4 Extensions and Some Related Concepts

In this subsection, we present a brief overview of some of the extensions and
related concepts of stochastic dominance, which will be discussed in detail in
the subsequent chapters.

Suppose that F1(y|x) and F2(y|x) denote the conditional CDFs of random
variables Y1 and Y2 given X = x, respectively. We say that the distribution of
Y1 (first-order) stochastically dominates the distribution of Y2, conditional on
X , if

F1(y|x) ≤ F2(y|x) for all y, x .

10 More formally, we cannot reject the null hypothesis of “E(X) = E(Y ) and V ar(X) ≤
V ar(Y ).”
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12 Introduction

This concept of conditional stochastic dominance is useful when one
wishes to compare distributions of two population subgroups defined by some
observed covariates X .

Stochastic monotonicity is a continuum version of the stochastic dominance
hypothesis for conditional distributions. Let Y and X denote two random
variables whose joint distribution is absolutely continuous with respect to a
Lebesgue measure on R2. Let FY |X (·|x) denote the distribution of Y con-
ditional on X = x . The hypothesis of stochastic monotonicity is defined
to be

FY |X (y|x) ≤ FY |X
(
y
∣∣x ′) for all y and x ≥ x ′.

For example, if X is some policy or other input variable, it amounts to the
hypothesis that its effect on the distribution of Y is increasing.

The Lorenz curve (LC) plots the percentage of total income earned by vari-
ous portions of the population when the population is ordered by their incomes,
i.e., from the poorest to the richest. It is a fundamental tool for the analysis of
economic inequality. The Lorenz curve is defined to be

Lk(p) =
∫ p

0 Qk(t)dt

μk
,

for p ∈ [0, 1], where Qk(p) and μk denote the quantile function and the mean
of Fk, respectively, for the population k = 1, 2. Lorenz dominance of L1 over
L2 is defined by

L2(p) ≤ L1(p) for all p ∈ [0, 1].
Kahneman and Tversky (1979) criticize the expected utility theory and

introduce an alternative theory, called prospect theory. They argue that individ-
uals would rank prospects according to the expected value of S-shaped utility
functions u ∈ UP ⊆ U1 for which u′′(x) ≤ 0 for all x > 0 but u′′(x) ≥ 0 for
all x < 0. We say that X1 prospect stochastically dominates X2 if∫ x

y
F1(t)dt ≤

∫ x

y
F2(t)dt

for all pairs (x, y) with x > 0 and y < 0.
On the other hand, Levy and Levy (2002) discuss the concept of Markowitz

stochastic dominance. In this case, individuals rank outcomes according to the
expected value of reverse S-shaped utility functions u ∈ UM ⊆ U1 for which
u′′(x) ≥ 0 for all x > 0 but u′′(x) ≤ 0 for all x < 0. We say that X1 Markowitz
stochastically dominates X2 if(∫ y

−∞
+
∫ ∞

x

)
F1(t)dt ≤

(∫ y

−∞
+
∫ ∞

x

)
F2(t)dt

for all pairs (x, y) with x > 0 and y < 0.
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1.1 Concepts of Stochastic Dominance 13

Let F1 and F2 denote two CDFs, both continuous and with supports on
[0,∞). We say that F1 initially dominates F2 up to an (unknown) point x1, if

F1(x) ≤ F2(x) for all x ∈ [0, x1)

with strict inequality for some x ∈ (0, x1). x1 is called the “maximal point of
initial dominance,” when F1 initially dominates F2 up to x1 and F1(x) > F2(x)
for all x ∈ (x1, x1 + ε) for some sufficiently small ε > 0. This concept is
useful to determine whether a stochastic dominance restriction holds over some
unknown subset of the supports.

Let X = (X1, . . . , X K )ᵀ be a vector of K prospects (e.g., asset returns),
and let Y be a benchmark portfolio. We say that Y is stochastic dominance
efficient if there does not exist any portfolio {Xᵀ

λ : λ ∈ �0} that stochas-
tically dominates Y , where �0 is a set of portfolio weights. This concept
allows for full diversification of portfolios and provides a method of inference
based on the first-order optimality condition of an investor’s expected utility
maximization problem.

Convex stochastic dominance, suggested by Fishburn (1974), is an exten-
sion of stochastic dominance to mixtures or convex combinations of distri-
butions. If there are multiple choices available, a decision-maker can make
pairwise comparisons with all prospects and establish whether a given choice
is “SD admissible” in the sense that it is not dominated by any of the other
alternatives. However, it is possible that some members of the SD admissible
set may never be chosen by any individual with utility function in the hypoth-
esized class. Instead, there may exist an “SD optimal” set, which is a subset
of the SD admissible set that consists of the elements that will be chosen by
some individuals with a utility function in the hypothesized class. The concept
of convex stochastic dominance is useful to identify the SD optimal set.

The SD rule provides rankings of distributions based on all utility func-
tions in a certain class. However, this can be restrictive in practice, because a
small violation of the SD rule can make the ranking invalid. Almost stochastic
dominance, suggested by Leshno and Levy (2002), is a weaker concept than
the standard stochastic dominance. It applies to most rather than all decision-
makers by eliminating economically pathological preferences. For example,
let U∗2 (ε) denote the class of all increasing and concave functions with second
derivatives satisfying some restrictions for some ε > 0. We say that X1 ε-
almost second-order stochastically dominates X2, if E[u(X1)] ≥ E[u(X2)]
for all u ∈ U∗2 (ε), or, equivalently,∫ [

F (2)
1 (x)− F (2)

2 (x)
]
+ dx ≤ ε

∫ ∣∣∣F (2)
1 (x)− F (2)

2 (x)
∣∣∣ dx,

where [x]+ = max{x, 0}. This concept also allows us to construct a measure
of disagreement with stochastic dominance.
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Approximate stochastic dominance, introduced by Álvarez-Esteban, del
Barrio, Cuesta-Albertos, and Matrán (2016), is another weaker concept of the
stochastic dominance relationship based on contaminated models. This con-
cept is useful for determining whether one can establish stochastic dominance
after trimming away some fraction of the (possibly contaminated) observa-
tions at the tails. The minimum level of contamination needed to establish
SD can also serve as an alternative measure of disagreement with stochastic
dominance.

Infinite-order stochastic dominance, characterized by Thistle (1993), is the
weakest notion of stochastic dominance. It is defined by letting s →∞ in the
definition of the sth-order stochastic dominance. Since the SD efficient set or
the SD optimal sets are monotonically decreasing in s, the choice based on
infinite-order stochastic dominance yields the smallest SD efficient or optimal
set, which is a useful property for the portfolio choice problem.

There are many related concepts of stochastic dominance, other than the
aforementioned ones. Let X1 and X2 be random variables with the absolute
continuous distributions F1 and F2 with the densities f1 and f2, respectively.
Then, we say that X1 density ratio dominates X2 if

f2(t)

f1(t)
is nonincreasing over t.

It can be shown that this holds if and only if

X1| (a ≤ X2 ≤ b) first-order stochastically dominates X2| (a ≤ X1 ≤ b)

whenever a ≤ b, where X |A denotes the conditional distribution of X given A.

This concept of density ratio (or likelihood ratio) ordering has been frequently
applied in portfolio choice, insurance, mechanism design, and auction theory.

We say that X1 uniformly stochastically dominates X2, if

1− F2(t)

1− F1(t)
is nonincreasing in t ∈ [0, bF2),

where 1 − Fk denotes the survival function for k = 1, 2 and bF2 = inf{x :
F2(x) = 1}. Uniform stochastic ordering is useful in many applications in
which risks change dynamically over time. For example, in choosing medical
treatments, the survival time of treatment A might stochastically dominate that
of treatment B at the initial stage, but it may not be true when patients are
examined at later stages. Also, the concept is used to compare distributions in
the upper tails of financial returns. It is a stronger concept than the FSD.

The concept of SD is also closely related to various concepts of dependence
among random variables. Let X and Y be two random variables with the CDFs
F and G, respectively. We say that Y is positive quadrant dependent on X, if

P (X ≤ x,Y ≤ y) ≥ P (X ≤ x) P (Y ≤ y) for all (x, y).
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We also say that Y is positive expectation dependent on X, if

E (Y )− E (Y |X ≤ x) ≥ 0 for all x .

These concepts have been applied extensively in the literature of finance,
insurance, and risk management. Expectation dependence (Wright, 1987) is
a weaker concept than quadrant dependence, but is a stronger concept than
correlation. Expectation dependence also plays an important role in portfolio
theory, because it is used to determine the necessary and sufficient conditions
for portfolio diversification.

Central dominance (Gollier, 1995) provides the conditions under which a
change in distribution increases the optimal value of a decision variable for
all risk-averse agents. It implies a deterministic change in optimal decision
variables, such as demand for risky assets or a social welfare policy, when the
distribution changes. It is shown that stochastic dominance is neither sufficient
nor necessary for central dominance.

Spatial dominance (Park, 2005) is a generalization of stochastic dom-
inance from the frequency domain to the spatial domain. It allows us to
compare, for example, performances of two assets over a given time inter-
val. It has important implications for optimal investment strategies that may be
horizon-dependent.

1.2 Applications of Stochastic Dominance

The concept of stochastic dominance and related concepts have been applied
to real data in many areas of social and natural sciences. The literature has been
expanding quite rapidly and it is beyond the scope of this book to cover all of
the applications; see Mosler and Scarsini (1993) for an extensive bibliography
on the literature up to the early 1990s. See also Wolfstetter (1999, chapter 5)
for an overview of theoretical developments of SD in economics.

In this section, we briefly summarize some recent empirical applications
of stochastic dominance, mainly to economics. They are chosen to illustrate
the wide applicability of SD concepts and are not meant to be comprehensive.
Some of them will be discussed in more detail in subsequent chapters.

1.2.1 Welfare Analysis

One of the main applications of stochastic dominance is welfare analysis. In
particular, the issues of inequality, poverty, and polarization have frequently
been analyzed using the concept of SD. For an excellent overview of the
literature, see Cowell and Flachaire (2015).

Anderson (2003) uses SD criteria to examine improvements to poverty
alleviation in the United States in the 1980s using the PSID data. Ander-
son (2004a), on the other hand, examines enhancements to polarization,
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welfare, and poverty based on per-capita Gross National Products (GNP) of
different countries. Anderson and Leo (2009) study changes in child poverty,
investment in children, and generational mobility since the introduction of
China’s One Child Policy (OCP) in 1979. They compare child poverty in
China (1987, 2001) with that in other countries such as Canada (1997, 2004),
the United Kingdom (1996, 2002), and India (1994, 2004) by utilizing SD
methods. Evolution of poverty is also studied by Contreras (2001) using
Chilean data from 1990 to 1996 (a period of rapid growth in Chile).

Amin, Rai, and Topa (2003) use SD methods to evaluate whether micro-
credit programs in Bangladesh reach relatively poorer and more vulnerable
people. They test the hypothesis that distributions of consumption and vulnera-
bility of program participants stochastically dominate those of nonparticipants.
They find that the microcredit program effectively reaches the poor, but it is
not very successful at reaching the vulnerable. On the other hand, Skoufias
and Di Maro (2008) investigate the effect of Progressa, which is a conditional
cash transfer program implemented in Mexico, on poverty. They find that the
income distribution of treated households first-order stochastically dominates
that of controlled households, strengthening robustness of the other results
obtained using different methods.

There are also several empirical studies that try to compare distributions of
income and/or other socioeconomic variables using various SD tests. Heshmati
and Rudolf (2014) examine inequality and poverty in Korea using distributions
of income and consumption. Valenzuela, Lean, and Athanasopoulos (2014)
study inequality in income and expenditure distributions in Australia from
1983 to 2010. Maasoumi and Heshmati (2000) consider multivariate gener-
alizations of a univariate SD test to examine Sweden’s income distributions
for the whole population and its subgroups.

Maasoumi, Su, and Heshmati (2013) examine inequality and relative wel-
fare levels over time and among population subgroups using the Chinese
Household Nutrition Survey (CHNS) data. Chen (2008) employs SD methods
to study regional income disparities in Canada. Zarco, Pérez, and Alaiz (2007)
also use an SD method to investigate the effect of the European Union (EU)’s
structural funds on convergence of the income distributions in Spanish regions
for the time period from 1990 to 2003; see also Carrington (2006) and Lion-
takis, Papadas, and Tzouramani (2010) for related results about the regional
income convergence.

Pinar, Stengos, and Topaloglou (2013) emphasize joint dependence among
various attributes of welfare such as income, health, and education (see, e.g.,
Maasoumi 1999 or Fleurbaey 2009 for an overview). Using the concept of
stochastic dominance efficiency (see Section 5.3.2), they propose an optimal
weighting scheme for measuring human development. Compared to the tra-
ditional United Nation’s Development Program’s Human Development Index
(HDI) which puts equal weights to three basic components (life expectancy,
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education, and GNI), the optimal index leads to a marked improvement of
measured development. Based on the panel data of different countries for the
period 1975 to 2000, they present new country rankings that are quite different
from those based on the HDI.

1.2.2 Finance

Another major area of applications of stochastic dominance is financial eco-
nomics. There are numerous applications of SD in the finance literature; see
Levy (2016) and Sriboonchita, Wong, Dhompongsa, and Nguyen (2010) for
extensive surveys. Below we mention just a few recent applications.

SD tests have been implemented to track down evidence of financial mar-
ket inefficiency. One of the representative phenomena demonstrating market
inefficiency is the calendar effect, i.e., investment strategies linked to particu-
lar times may earn more profits. Seyhun (1993) examines the January Effect,
which refers to the unusually large, positive average stock returns during the
last few days of December and the first week of January. Cho, Linton, and
Whang (2007) find empirical evidence for the Monday Effect, the phenomenon
that Monday stock returns are systematically smaller than returns on any other
day of the week (Section 2.5.2).

SD methods have also been used to evaluate the profitability of investment
strategies. Bali, Demirtas, Levy, and Wolf (2009), using the concept of almost
stochastic dominance (see Section 5.4.1), find empirical evidence in favor of
the popular practice of primarily allocating a greater proportion to stocks and
then gradually relocating funds to bonds as the investment horizon shortens.
Ibarra (2013) also finds evidence that bonds dominate stocks at short horizons,
while stocks dominate bonds at long horizons, based on spatial dominance
(see Section 5.5.6). Meanwhile, Abhyankar, Ho, and Zhao (2009) focus on
investors’ preference of value stocks to growth stocks, and demonstrate that the
value premium is country- and sample-specific. Fong, Wong, and Lean (2005)
test the hypothesis that there exist general asset pricing models that explain the
Momentum Effect, which is a tendency for portfolios of stocks that have per-
formed well in recent months to continue to earn positive returns over the next
year. Fong (2010) examines profitability of the investment strategy of yen carry
trade over the period 2001–09. Chan, de Peretti, Qiao, and Wong (2012) show
the efficiency of the UK covered warrants market by comparing the returns of
covered warrants and their underlying shares.

Post (2003) develops a statistical test of stochastic dominance efficiency
(see Section 5.3.2) to test superior profitability of a given portfolio over
other possible combinations of assets. He shows the inefficiency of the
Fama and French market portfolio relative to the benchmark portfolios
formed on market capitalization and book-to-market equity ratio; see also
Post and van Vliet (2006) for related results. Li and Linton (2010) propose
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a method to construct a portfolio based on SD and demonstrate that the
hedge fund portfolios constructed by stochastic dominance criteria outperform
other randomly selected hedge fund portfolios and a mean-variance efficient
hedge fund portfolio. Using the concept of stochastic dominance efficiency,
Agliardi et al. (2012) construct a sovereign risk index in emerging markets
by aggregating various risk factors such as economic, political, and financial
risks; see also Agliardi, Pinar, and Stengos (2014) and Pinar, Stengos, and
Yazgan (2012) for related applications.

1.2.3 Industrial Organization

Guerre, Perrigne, and Vuong (2009, GPV) investigate nonparametric
identification of the first-price auction model with risk-averse bidders. They
show that quantiles of the observed equilibrium bid distributions with different
numbers of bidders should satisfy a set of inequality restrictions, which in turn
implies a stochastic dominance relationship between the distributions.

Specifically, let I2 > I1 ≥ 2 denote the two different numbers of bidders.
For each τ such that 0 < τ < 1, let Qk(τ ) denote the τ quantile of the observed
equilibrium bid distribution Gk when the number of bidders is Ik for k ∈ {1, 2}.
If the auctions are homogeneous and the private values are independent of the
number of bidders, then GPV (equation 5, p. 1201) show that, under some
additional assumptions, the quantiles should satisfy:

I1 − 1

I2 − 1
Q2(τ )+ I2 − I1

I2 − 1
b < Q1(τ ) < Q2(τ ) (1.2.1)

<
I2 − 1

I1 − 1
Q1(τ )+ I1 − I2

I1 − 1
b

for any τ ∈ (0, 1], where b is the left endpoint of the support of the
observed bid distributions. The inequality (1.2.1) offers a testable implication:
the observed bid distribution with I2 bidders first-order stochastically domi-
nates the distribution with I1 bidders, i.e., G2 �1 G1. On the other hand, if the
auctions are heterogeneous so that the private values are affected by (observed)
characteristics, then one may consider conditionally exogenous participation
with the conditional version of the restrictions:

I1 − 1

I2 − 1
Q2(τ |x)+ I2 − I1

I2 − 1
b < Q1(τ |x) < Q2(τ |x)

<
I2 − 1

I1 − 1
Q1(τ |x)+ I1 − I2

I1 − 1
b (1.2.2)

for any τ ∈ (0, 1] and x ∈ X , where X is the support of X , Qk(τ |x) is
the τ th conditional quantile (given X = x) of the observed equilibrium bid
distribution when the number of bidders is Ik, and X denotes the observed
auction characteristics such as appraisal values (see section 3.2 of GPV). In this
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case, the testable implication is stochastic dominance between the conditional
distributions, i.e., G2(·|·) �1 G1(·|·). Using a timber auction data, Lee, Song,
and Whang (2017) test the latter hypothesis and find no empirical evidence
against (1.2.2); see Section 6.2 for details.

De Silva, Dunne, and Kosmopoulou (2003) compare the bidding patterns
of entrants and incumbents in road construction auctions, using data from
the Oklahoma Department of Transportation. They find that entrants bid more
aggressively (in the sense of lower bids relative to engineering costs) and win
auctions with much lower bids than incumbents. They also find that the differ-
ence is more prominent in the lower tail of the bid distribution. They justify
this phenomenon theoretically by using an auction model with information
asymmetries due to varying levels of experience and efficiency of the auction
participants. In particular, they show that if the distribution of cost estimates
of entrants first-order stochastically dominates that of incumbents, then the
entrants will bid more aggressively relative to their cost estimates than the
incumbents will. Based on quantile regressions controlling for auction het-
erogeneity, they find no evidence against the implication of their asymmetric
auction model (see Section 2.2.4 for the relationship between SD tests and
quantile regressions).

Pesendorfer (2000) studies collusive behaviors in first-price auctions, focus-
ing on the Florida and Texas school milk cartels in the 1980s. He considers a
theoretical model of cartel behavior and shows that if cartel firms and non-
cartel firms are identical, and the cartel is efficient (in the sense that it selects
the lowest-cost cartel firm), then there will be an induced asymmetry between
selected cartel bidders and non-cartel firms. One of the testable implications of
the bidding equilibrium is that the ex ante bid distribution of the cartel is first-
order stochastically dominated by that of non-cartel bidders. Based on the data
of 4,077 contracts, he tests the equality of the distributions of the residuals from
the OLS regressions of cartel bids and non-cartel bids on covariates that repre-
sent auction heterogeneity. Figures 3 and 4 of the latter paper suggest that the
distribution of cartel residuals is first-order stochastically dominated by that
of non-cartel residuals. He does not perform a formal SD test, but employs
a Chow test and a rank test and concludes that there is empirical evidence
consistent with the implication of his theoretical model.

Aryal and Gabrielli (2013) provide a method to detect collusion in asym-
metric first-price auctions. The basic idea is that, if the same bid data are used
to recover the underlying latent cost, the cost under competition must stochasti-
cally dominate the cost under collusion, because collusion tends to increase the
markup. This suggests that detecting collusion can boil down to testing for the
first-order stochastic dominance. They implement the standard Kolmogorov–
Smirnov and Mann–Whitney–Wilcoxon tests to the highway procurement data
and find no evidence of collusion in the data.
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1.2.4 Labor Economics

Maasoumi, Millimet, and Rangaprasad (2005) analyze the effect of class
sizes on student achievements with a US data set using the SD approach.
In their study, the actual class sizes and the distributions of test scores of
the 8th and 10th grades are utilized as the indicators for school quality and
measures of student achievements, respectively. The dominance relation of the
test score distributions are tested by actual class sizes: small, medium, and
large. Eren and Henderson (2008) and Eren and Millimet (2008) also employ
SD methods to examine the factors that impact on student achievements (such
as homework) and organizational structures of schools, respectively.

Millimet and Wang (2006) examine the gender earnings gap in China based
on the generalized Kolmogorov–Smirnov test proposed by Linton, Maasoumi,
and Whang (2005) (see Section 2.2.2) and Maasoumi and Heshmati (2000).
The dominance relation for the distributions of annual earnings and hourly
wages for male and female workers is investigated for the years 1988 and 1995.
See also Maasoumi and Wang (2018) for a related study of the gender earnings
gap for the US labor market over the last several decades.

Maasoumi, Millimet, and Sarkar (2009) investigate the marriage premium,
which is a phenomenon that the average earnings of married men are higher
than those of unmarried men, by employing the SD approach to examine
whether the phenomenon appears for the whole wage distribution. They find
that the marriage premium is confined primarily to the lower tails of the wage
distribution and the majority of the premium can be explained by self-selection.

1.2.5 International Economics

Delgado, Farinas, and Ruano (2002) adopt the SD approach to examine the
total factor productivity difference between exporting and non-exporting firms
based on a sample of Spanish manufacturing firms from 1991 to 1996. The
productivity of four groups (exporters, non-exporters, entering exporters, and
exiting exporters) is compared in the paper. They find that the productivity
distribution of small exporting firms stochastically dominates that of small
non-exporting firms, but, in the case of large firms, no dominance rela-
tion seems to exist. A related research is conducted by Girma, Görg, and
Strobl (2004) and Elliott and Zhou (2013).

Helpman, Melitz, and Yeaple (2004) provide a theoretical framework for
the Market Selection Hypothesis that firms determine the types of markets in
which they run their business depending on their own profitability (that is,
high profitability = foreign direct investment, medium profitability = foreign
markets through exporting, and low profitability = domestic markets). Girma,
Kneller, and Pisu (2005) test the hypothesis using the SD approach. They
find that the productivity distribution of multinational firms dominates that of
export firms, which in turn dominates that of non-exporters. Wagner (2006)

https://doi.org/10.1017/9781108602204.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108602204.002


1.2 Applications of Stochastic Dominance 21

also compares the productivity distributions using a German data set and finds
that the productivity distribution of foreign direct investors dominates that of
exporters, which in turn dominates that of national market suppliers; see also
Arnold and Hussinger (2010) for a related result.

1.2.6 Health Economics

Bishop, Formby, and Zeager (2000) examine the impact of food stamp
cashout on undernutrition using a household data from cashout experiments
in Alabama and San Diego. They compare the CDFs of nutrients for two
population subgroups (cash recipients and food coupon recipients), truncated
in the neighborhood of the RDA (Recommended Dietary Allowances). They
apply the FSD test of Bishop, Formby, and Thistle (1989) to the data and
find that a substantial proportion of household participants falls short of the
recommended levels of food energy and a variety of nutrients. Furthermore, in
Alabama, the cash recipients show higher deficiency of Vitamin E and B than
the coupon recipients.

Pak, Ferreira, and Colson (2016) investigate the obesity inequality among
US adults over time using an SD test. Because people care about their weights
relative to their peers, obesity inequality plays an important role in subjective
well-being. Using the National Health and Nutritional Examination Survey
(NHANES) data, they find that the BMI (Body Mass Index) distribution of
each NHANES study first-order stochastically dominates that of the previous
wave from 1971–74 to 2003–06, while more recent comparisons fail to reject
the null hypothesis of nondominance. Madden (2012) and Sahn (2009) also
investigate the obesity issue using SD methods.

1.2.7 Agricultural Economics

Langyintuo et al. (2005) use the SD approach to assess risk efficiency of yields
and returns to farmers’ household resources in rice production across different
production systems. An improved (short-duration cover crop) fallow system is
compared with two alternative fallow systems (the traditional natural bush fal-
low and continuous rice-cropping systems). The analysis assumes that farmers
try to maximize both food self-sufficiency (rice grain yield) and cash income
(monetary returns to farm household resources). Using agronomic data from
Northern Ghana and employing the two-sample Kolmogorov–Smirnov test,
they conclude that the yield and income distributions of the improved fallow
system stochastically dominate those of the alternative systems. See Mahoney
et al. (2004), Smith, Clapperton, and Blackshaw (2004), Ribera, Hons, and
Richardson (2004), and Lien et al. (2006) for related studies.

It is important to prevent land degradation in the form of soil erosion
and nutrient depletion in order to ensure food security and sustainability of
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agricultural production in many developing countries. Kassie et al. (2008)
examine the impact of stone bunds on the value of crop production in the
areas of the Ethiopian highlands using cross-sectional data. They find that,
in the regions with low rainfall, the yield distributions with conservation first-
order stochastically dominate those without conservation, while the relation
is reversed and is not significant in the regions with heavy precipitation. For
related studies, see Kassie et al. (2009) and Bekele (2005).

1.3 Outline of Subsequent Chapters

Chapter 2 introduces the basic ideas of standard tests of stochastic dominance,
frequently used in the literature. The tests are classified into different categories
depending on hypotheses of interest and types of test statistics. Various types
of test statistics are discussed and compared. Two empirical examples are also
given to illustrate how the tests can be used in practical applications.

Chapter 3 introduces methods to improve power performance of some
SD tests. Many of the existing tests of stochastic dominance consider the
least favorable case (LFC) of the null hypothesis to compute critical values.
However, they may be too conservative in practice, because their asymptotic
distributions depend only on the binding part (or so-called “contact set”) of the
inequality restrictions. This chapter discusses various approaches to improve
power performance by utilizing information about the binding restrictions.
This chapter also introduces applications of stochastic dominance to program
evaluations. In particular, inference methods for distributional treatment effects
and counterfactual policy effects are discussed. Some other issues of stochas-
tic dominance tests, such as the problem of unbounded supports, classification
rules for SD relations, and large deviation approximation of the distribution
of the SD test statistics, are also discussed. This chapter provides empirical
examples to evaluate distributional treatment effects and returns to schooling.

Chapter 4 provides the main ideas of how to test stochastic dominance when
there are covariates. Consideration of the covariates is important in many eco-
nomic applications because stochastic dominance relations might hold only
for subpopulations defined by observed covariates. In particular, this chapter
introduces the notions of stochastic monotonicity and conditional stochastic
dominance. It also illustrates empirical applications to evaluate distributional
conditional treatment effects using a real data set on academic achievements
and to test a strong leverage hypothesis in financial markets.

Chapter 5 introduces nonparametric testing procedures for various exten-
sions of stochastic dominance, including multivariate stochastic domi-
nance, Lorenz dominance, poverty dominance, initial dominance, marginal
conditional stochastic dominance, stochastic dominance efficiency, convex
stochastic dominance, almost stochastic dominance, approximate stochastic
dominance, and infinite-order stochastic dominance, as well as some related
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concepts such as density ratio ordering, uniform stochastic ordering, positive
quadrant dependence, expectation dependence dominance, central dominance,
and spatial dominance.

Chapter 6 discusses some further topics recently studied in the literature.
They include inference on a distributional overlap measure, testing for
generalized functional inequalities, SD tests under measurement errors, con-
ditional SD tests with many covariates, and robust forecasting comparisons.

Chapter 7 concludes the book and suggests some future directions for
econometric research on stochastic dominance.

Finally, the appendices provide the basic technical tools and the MATLAB

code for some of the SD tests discussed in the main text.
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