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Abstract

A classical construction of Katz gives a purely algebraic construction of Eisenstein–Kronecker
series using the Gauß–Manin connection on the universal elliptic curve. This approach gives a
systematic way to study algebraic and p-adic properties of real-analytic Eisenstein series. In the
first part of this paper we provide an alternative algebraic construction of Eisenstein–Kronecker
series via the Poincaré bundle. Building on this, we give in the second part a new conceptional
construction of Katz’ two-variable p-adic Eisenstein measure through p-adic theta functions of the
Poincaré bundle.

2010 Mathematics Subject Classification: 11F33 (primary); 11G40 (secondary)

1. Introduction

The classical Eisenstein–Kronecker series are defined for a lattice Γ = ω1Z +
ω2Z ⊆ C, s, t ∈ (1/N )Γ and integers r−2 > k > 0 by the absolutely convergent
series

e∗k,r (s, t;Γ ) :=
∑

γ∈Γ \ {−s}

(s̄ + γ̄ )k

(s + γ )r
〈γ, t〉

with 〈z, w〉 := exp((zw̄ − wz̄)/A(Γ )) and A(Γ ) = im(ω1ω̄2)/π . For arbitrary
integers k, r they can be defined by analytic continuation, see [BK10b,
Section 1.1]. For our purposes, it is more convenient to normalize the Eisenstein–
Kronecker series for integers k, r > 0, as follows:

ẽk,r+1(s, t;Γ ) :=
(−1)k+rr !

A(Γ )k
e∗k,r+1(s, t;Γ ).
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By varying the lattice the Eisenstein–Kronecker series define C∞-modular forms
ẽk,r+1(s, t) of level N and weight k+r+1. Although Eisenstein–Kronecker series
are in general nonholomorphic, it turns out that they belong to the well-behaved
class of nearly holomorphic modular forms.

A classical result of Katz gives a purely algebraic approach towards Eisenstein–
Kronecker series by giving an algebraic interpretation of the Maaß–Shimura
operator on the modular curve in terms of the Gauß–Manin connection. His
construction has been one of the main sources for studying systematically the
algebraic and p-adic properties of real-analytic Eisenstein series. Even today it
has still influence, for example, it plays a key role in the proof of one of the most
general known explicit reciprocity laws for Tate modules of formal p-divisible
groups by Tsuji [Tsu04]. Unfortunately, the construction of the Maaß–Shimura
operator only works in the universal situation and does not have good functoriality
properties.

The study of Eisenstein–Kronecker series through the Poincaré bundle has been
initiated by Bannai and Kobayashi [BK10b]. Bannai and Kobayashi have proven
that Eisenstein–Kronecker series appear as expansion coefficients of certain
translates of the Kronecker theta function:

Θs,t(z, w) =
∑

a,b>0

ẽa,b+1(s, t)
a!b!

zbwa, s, t /∈ Γ. (1)

The Kronecker theta function is a reduced theta function associated to the
Poincaré bundle of an elliptic curve. For elliptic curves with complex
multiplication, Bannai and Kobayashi have used this observation to study many
interesting p-adic and algebraic properties of Eisenstein–Kronecker series at CM
points [BK10b]. These results have been fruitfully applied by Bannai, Kobayashi
and Tsuji for studying the algebraic de Rham and the syntomic realization of the
elliptic polylogarithm for elliptic curves with complex multiplication [BKT10].
This approach does not immediately generalize to more general elliptic curves
over arbitrary base schemes. The assumption of complex multiplication is
essential to deduce the algebraicity of the involved theta function.

Building on the work of Bannai–Kobayashi, we provide in the first part of
the paper a purely algebraic construction of Eisenstein–Kronecker series via
the Poincaré bundle on the universal vectorial biextension. This construction
works over arbitrary base schemes and has good functoriality properties. In the
second part of the paper, we provide a new approach to the p-adic interpolation
of Eisenstein–Kronecker series. We will show that Katz’ two-variable p-adic
Eisenstein measure is the Amice transform of a certain p-adic theta function of
the Poincaré bundle. This does not only give a conceptional approach towards the
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p-adic Eisenstein measure, it also provides a direct bridge between p-adic theta
functions and p-adic modular forms.

Let us briefly outline the content of this paper in more detail: theta functions
provide a convenient way to describe sections of line bundles over complex
abelian varieties analytically. In the first part of this paper, we will define a certain
section of the Poincaré bundle, called the Kronecker section. While the Kronecker
section is defined for arbitrary families of elliptic curves, it can be expressed in
terms of the Kronecker theta function for elliptic curves over C. The universal
vectorial extension of the dual elliptic curve classifies line bundles of degree zero
with an integrable connection. This gives us two integrable connections ∇] and ∇†

on the Poincaré bundle over the universal vectorial biextension. By applying both
connections iteratively to the Kronecker section and evaluating at torsion sections
s and t , we obtain a new algebraic construction of Eisenstein–Kronecker series:

THEOREM. Let H1
dR denote the first relative de Rham cohomology of the

universal elliptic curve E →M. The image of the sections

(s × t)∗
(
∇
◦k
] ◦ ∇

◦r
] (scan)

)
∈ Γ

(
M,Symk+r+1 H1

dR

)
under the Hodge decomposition gives the classical Eisenstein–Kronecker series
ẽk,r+1(Ds, Nt).

Let us refer to Theorem 4.2 for more details. Although the algebraic
construction of Eisenstein–Kronecker series goes back to Katz, this new point of
view has several advantages. Let us remark that the construction of the sections
in Γ (S,Symk+r+1 H1

dR) applies, contrary to Katz’ approach, to elliptic curves
E → S over arbitrary base schemes S and has good functoriality properties.
Furthermore, the geometric setup is much more symmetric than the construction
involving the Gauß–Manin connection. Indeed, the functional equation of
the Eisenstein–Kronecker series is reflected by the symmetry obtained by
interchanging the role of the elliptic curve and its dual. Finally, let us note that the
Kronecker section provides a new construction of the logarithmic derivatives of
the Kato–Siegel functions associated to a positive integer D. It might be worth to
mention that, contrary to the classical construction of the Kato–Siegel functions,
our construction even works if D is not coprime to 6.

In the second part of the paper, we apply the methods of the first part to
obtain a new approach to Katz’ p-adic Eisenstein measure. In [Kat76], Katz
constructed a two-variable p-adic measure with values in the ring of generalized
p-adic modular forms having certain real-analytic Eisenstein series as moments.
Katz’ p-adic Eisenstein measure is the key for studying p-adic congruences
between real-analytic Eisenstein series. But the proof of existence of the p-adic
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Eisenstein measure uses all the predicted congruences between Eisenstein series.
These congruences in turn have to be checked by hand on the q-expansion. We
will give a more intrinsic construction of the p-adic Eisenstein measure via the
Poincaré bundle. Norman’s theory of p-adic theta functions allows us to associate
a p-adic theta function to the Kronecker section for any elliptic curve with
ordinary reduction over a p-adic base. Applying this to the universal trivialized
elliptic curve gives us a two-variable power series Dϑ (a,b)(S, T ) over the ring
of generalized p-adic modular forms. A classical result of Amice allows us to
associate a two-variable p-adic measure µEis

D,(a,b) to this p-adic theta function. It
turns out that the resulting measure interpolates the Eisenstein–Kronecker series
p-adically:

THEOREM. The p-adic Eisenstein–Kronecker series DE
k,r+1
(a,b) appear as moments

DE
k,r+1
(a,b) =

∫
Zp×Zp

x k yr dµEis
D,(a,b)(x, y)

of the measure µEis
D,(a,b) associated to the p-adic theta function Dϑ (a,b)(S, T ).

Let us refer to Theorem 8.1 and Corollary 8.2 for details. This construction
does not only give a more conceptional approach towards the p-adic Eisenstein
measure, it also provides a direct bridge between p-adic theta functions and p-
adic modular forms.

Last but not least, one of our main leading goals was to obtain a better
understanding of polylogarithmic cohomology classes. The specialization of
polylogarithmic cohomology classes along torsion sections gives Eisenstein
classes which play a key role in proving particular cases of deep conjectures
like the Tamagawa number conjecture (TNC) of Bloch and Kato and its p-adic
analogue. In particular, the syntomic Eisenstein classes play an important role
for proving particular cases of the p-adic Beilinson conjecture [BK10a, BK11].
We have already mentioned, that Bannai, Kobayashi and Tsuji have used the
Kronecker theta function to give an explicit description of the algebraic de
Rham realization and the syntomic realization of the elliptic polylogarithm for
CM elliptic curves. Our aim is the generalization of these results to families of
elliptic curves. In the case of the de Rham realization this goal has already been
archived by Scheider in his PhD thesis by analytic methods [Sch14]. Scheider’s
PhD thesis has been a great source of inspiration for us. He gave an analytic
description of the de Rham realization for the universal elliptic curve in terms
of certain theta functions. But for all arithmetic applications it is indispensable
to also have an explicit algebraic description of the de Rham polylogarithm. The
techniques developed in this paper allow to get rid of the analytically defined theta
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functions, to give a purely algebraic reinterpretation of the results of Scheider and
to streamline some of his proofs [Spr18]. An explicit algebraic description of the
de Rham realization of the elliptic polylogarithm is the cornerstone towards an
explicit description of the syntomic realization which is treated in [Spr19].

A naturally arising question is the question about higher dimensional
generalizations. This question will be the content of future investigations.

Part I

Real-analytic Eisenstein series via the
Poincaré bundle
During this work E usually denotes an elliptic curve over an arbitrary base scheme
S. The structure morphism G → S of an S-group scheme will be denoted by
π = πG while its identity morphism will be denoted by e = eG . For a commutative
S-group scheme G and some section t ∈ G(S) let us write Tt : G → G for the
translation morphism. Let us write ωG/S := e∗Ω1

G/S for the relative co-Lie algebra
of a commutative group scheme over S.

2. Nearly holomorphic modular forms

In this section we will briefly recall the theory of nearly holomorphic
modular forms with an emphasize on their geometric interpretation following
Urban [Urb14]. The group of 2× 2 matrices with positive determinant GL2(R)+
acts on the upper half plane

H := {τ = x + iy ∈ C : y > 0}

by fractional linear transformations

γ.τ :=
aτ + b
cτ + d

for γ =
(

a b
c d

)
and τ ∈ H.

For a complex valued function f on H, a nonnegative integer k and γ ∈ GL2(R)+
let us write

( f |kγ )(τ ) :=
det(γ )k/2

(cτ + d)k
f (γ.τ ).

Recall that holomorphic modular forms of weight k and level Γ ⊆ SL2(Z) are
defined as functions on H satisfying the following conditions:

(a) f is a holomorphic on H;
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(b) f |kγ = f for all γ ∈ Γ ;

(c) f has a finite limit at the cusps.

Weakening the condition (a) to f ∈ C∞(H) leads to the definition of C∞ modular
forms. We have already seen in the introduction a class of C∞ modular forms of
great number theoretic interest, namely the Eisenstein–Kronecker series ẽa,b(s,
t;Z + τZ). Although the Eisenstein–Kronecker series are not holomorphic in
general, they are not so far from being holomorphic. They are nearly holomorphic
in the following precise sense:

DEFINITION 2.1. A nearly holomorphic modular form of weight k and order6 r
for Γ ⊆ SL2(R) is a function on H satisfying:

(a) f ∈ C∞(H);

(b) f |kγ = f for all γ ∈ Γ ;

(c) there are holomorphic functions f0, f1, . . . , fr on H such that

f (τ ) = f0(τ )+
f1(τ )

y
+ · · · +

fr (τ )

yr
;

(d) f has a finite limit at the cusps.

Let us write N r
k (Γ,C) for the space of nearly holomorphic modular forms of

weight k, order r and level Γ .

Holomorphic modular forms of weight k and level Γ can be seen as sections
of the kth tensor power of the cotangent sheaf ω⊗k of the generalized universal
elliptic curve Ē of level Γ over the compactification M̄ of the modular curve
of level Γ . This leads in a natural way to the definition of geometric modular
forms and allows to study modular forms from an algebraic perspective. For
sure, C∞ modular forms allow a similar geometric description as C∞ sections
of ω⊗k , but by passing to C∞ sections, we loose all algebraic information. For
nearly holomorphic modular forms, things become much better. They allow an
algebraic interpretation which we will recall in the following: The algebraic de
Rham cohomology H1

dR := R1π̄∗Ω
1
Ē/M̄(log(Ē \ E)) sits in a short exact sequence

0 ω H1
dR ω∨ 0

induced by the Hodge filtration

F0H1
dR = H1

dR ⊇ F1H1
dR = ω ⊇ F2H1

dR = 0.
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This filtration does not split algebraically. But after passing to C∞(M̄) sections
there is a canonical splitting called the Hodge decomposition.

H1
dR(C∞)

∼

→ ω(C∞)⊕ ω∨(C∞).

The Hodge filtration induces a descending filtration on Symk
OM

H1
dR and by the

Hodge decomposition we obtain an epimorphism

Symk
C∞(M)

H1
dR(C∞)� ω⊗k(C∞).

It is the Hodge decomposition which allows to pass from algebraic sections to
C∞-modular forms and thereby gives us the following algebraic interpretation of
nearly holomorphic modular forms:

PROPOSITION 2.2 [Urb14, Proposition 2.2.3]. The Hodge decomposition
induces an isomorphism

H 0
(
M̄C, F k−r Symk H1

dR

)
∼

→ N r
k (Γ,C).

Instead of working with the compactification of the modular curve one can also
work with the open modular curve with a finiteness condition at the cusps. For
simplicity let us restrict to the case Γ1(N ). The modular curve of level Γ1(N ) is
the universal elliptic curve with a fixed N -torsion section. The finiteness condition
at the cusp can be stated in terms of the Tate curve as follows. Let A be an Z[1/N ]-
algebra and let Tate(q N ) be the Tate curve over A((q))with its canonical invariant
differential ωcan and its canonical Γ1(N ) level structure given by the N -torsion
section q . Applying the Gauß–Manin connection

∇ : H 1
dR

(
Tate(q N )/A((q))

)
→ H 1

dR

(
Tate(q N )/A((q))

)
⊗Ω1

A((q))/A

to ωcan gives us a basis (ωcan, ucan) with

ucan := ∇

(
q

d
dq

)
(ωcan).

This leads to the notion of geometric nearly holomorphic modular forms:

DEFINITION 2.3. Let A be a Z[1/N ]-algebra. A geometric nearly holomorphic
modular form F of level Γ1(N ), weight k and order 6 r defined over A is a
functorial assignment

(E/S, t) 7→ FE,t ∈ Γ
(
S, F k−r Symk H 1

dR

(
E/S

))
,
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defined for all test objects (E/S, t) consisting of an elliptic curve E/S with S an
Spec A-scheme and t ∈ E[N ](S) an N -torsion section, satisfying the following
finiteness condition at the Tate curve over A:

F(Tate(q N ),q) =
∑

r+s=k

ar,s(q) · ω⊗r
can ⊗ u⊗s

can

with ar,s(q) ∈ AJqK ⊆ A((q)).

Finally let us remark that the two algebraic definitions of nearly holomorphic
modular forms coincide: To give a geometric nearly holomorphic modular form
of level Γ1(N ) defined over A is equivalent to the datum of a section

H 0
(
M̄A, F k−r Symk H1

dR

)
.

If A ⊆ C we can further pass to the analytification and apply the Hodge
decomposition to relate geometric nearly holomorphic modular forms back to
the C∞-definition of nearly holomorphic modular forms.

3. The Kronecker section

Motivated by the work of Bannai and Kobayashi [BK10b], we would like
to give an algebraic approach to Eisenstein–Kronecker series via the Poincaré
bundle. In particular, we have to find an algebraic substitute for the Kronecker
theta function appearing in [BK10b]. One way to do this is to study algebraic
theta functions as done by Bannai and Kobayashi. But unfortunately the success
of this approach is limited to elliptic curves with complex multiplication. Another
natural approach is to study the underlying section of the Poincaré bundle instead
of the analytically defined Kronecker theta function. In the following, we will give
a precise definition of this underlying section. It will be called Kronecker section.

3.1. The Poincaré bundle. In the following E/S will be an elliptic curve. Let
us write e : S→ E for the unit section and πE : E→ S for the structure morphism.
Let us recall the definition of the Poincaré bundle and thereby fix some notation.
A rigidification of a line bundle L on E is an isomorphism r : e∗L ∼

→ OS . A
morphism of rigidified line bundles is a morphism of line bundles respecting
the rigidification. The dual elliptic curve E∨ is the S-scheme representing the
connected component of the functor

T 7→ Pic(ET /T ) := {iso. classes of rigidified line bundles on ET /T }
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on the category of S-schemes. The S-scheme E∨ is again an elliptic curve. Since
a rigidified line bundle has no nontrivial automorphisms, an isomorphism class
of a rigidified line bundle determines the line bundle up to unique isomorphism.
This implies the existence of a universal rigidified line bundle (P, r0) on E×S E∨

with the following universal property: For any rigidified line bundle of degree
zero (L, r) on ET /T there is a unique morphism

f : T → E∨

such that (idE × f )∗(P, r0)
∼

→ (L, r). In particular, we obtain for any isogeny

ϕ : E → E ′

the dual isogeny as the morphism ϕ∨ : (E ′)∨→ E∨ classifying the rigidified line
bundle (ϕ × id)∗P ′ obtained as pullback of the Poincaré bundle P ′ of E ′. Let
λ : E

∼

→ E∨ be the polarization associated with the ample line bundle OE([e]).
More explicitly, λ is given by the morphism

λ : E Pic0
E/S =: E∨

P (OE([−P] − [e])⊗OE π
∗e∗OE([−P] − [e])−1, can).

(2)

Here, can is the canonical rigidification given by the canonical isomorphism

e∗OE([−P] − [e])⊗OS e∗OE([−P] − [e])−1 ∼

→ OS.

We fix the identification E
∼

→ E∨ once and for all and write again P for the
pullback of the Poincaré bundle along id× λ, that is

(P, r0) :=
(
OE×E(−[e × E] − [E × e] +∆)⊗OE×E π

∗

E×Eω
⊗−1
E/S , r0

)
=
(
pr∗1OE([e])⊗−1

⊗ pr∗2OE([e])⊗−1
⊗ µ∗OE([e])⊗ π∗E×Eω

⊗−1
E/S , r0

)
.

(3)

Here, ∆ = ker(µ : E × E → E) is the antidiagonal and r0 is the rigidification
induced by the canonical isomorphism

e∗OE(−[e])
∼

→ ωE/S

that is

r0 : (e × id)∗P ∼= π∗E e∗OE([e])⊗−1
⊗OE([e])⊗−1

⊗OE([e])⊗ π∗Eω
⊗−1
E/S
∼= OE .

Let us remark that the Poincaré bundle is also rigidified along (id × e) by
symmetry, that is, there is also a canonical isomorphism

s0 : (id× e)∗P ∼= OE .
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3.2. Definition of the Kronecker section. We can now define the Kronecker
section which will serve as a purely algebraic substitute of the Kronecker
theta function. The above explicit description of the Poincaré bundle gives the
following isomorphisms of locally free OE×E -modules, that is all tensor products
over OE×E :

P ⊗ P⊗−1
= P ⊗

(
OE×E(−[e × E] − [E × e] +∆)⊗ π∗E×Eω

⊗−1
E/S

)⊗−1

∼= P ⊗Ω1
E×E/E([e × E] + [E × e])⊗OE×E(−∆). (4)

The line bundle OE×E(−∆) can be identified canonically with the ideal sheaf J∆

of the antidiagonal ∆. If we combine the inclusion

OE×E(−∆) ∼= J∆ ↪→ OE×E

with (4), we get a morphism of OE×E -modules

P ⊗ P⊗−1 ↪→ P ⊗Ω1
E×E∨/E∨([e × E∨] + [E × e]). (5)

DEFINITION 3.1. Let

scan ∈ Γ
(
E ×S E∨,P ⊗OE×E∨

Ω1
E×E∨/E∨([e × E∨] + [E × e])

)
be the image of the identity element idP under (5). The section scan will be called
Kronecker section.

3.3. Translation operators. In the work of Bannai and Kobayashi, the
Eisenstein–Kronecker series appear as expansion coefficients of certain translates
of the Kronecker theta function. These translates are obtained by applying
translation operators for theta functions to the Kronecker theta function. In the
previous section we defined the Kronecker section, which serves as a substitute
for the Kronecker theta function. This motivates to find similar translation
operators for sections of the Poincaré bundle. In this section, we will define
these translation operators: Let ϕ : E → E ′ be an isogeny of elliptic curves. By
the universal property of the Poincaré bundle, we get a unique isomorphism of
rigidified line bundles

γid,ϕ∨ : (idE × ϕ
∨)∗P ∼

→ (ϕ × id(E ′)∨)∗P ′. (6)

Of particular interest for us is the case ϕ = [N ]. In this case the dual [N ]∨ is just
the N -multiplication [N ] on E∨. The inverse of γid,ϕ∨ will be denoted by

γϕ,id : (ϕ × id)∗P ′ ∼→ (id× ϕ∨)∗P .
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For integers N , D > 1 let us define

γ[N ],[D] : ([N ] × [D])∗P
∼

→ ([D] × [N ])∗P

as the composition in the following commutative diagram

([N ] × [D])∗P ([N D] × id)∗P

(id× [DN ])∗P ([D] × [N ])∗P .

([N ]×id)∗γid,[D]

(id×[D])∗γ[N ],id ([D]×id)∗γ[N ],id

(id×[N ])∗γid,[D]

(7)

Indeed, this diagram is commutative since all maps are isomorphisms of rigidified
line bundles and rigidified line bundles do not have any nontrivial automorphisms,
that is there can be at most one isomorphism between rigidified line bundles. By
the same argument we obtain the following identity for integers N , N ′, D, D′ > 1:

([D] × [N ])∗γ[N ′],[D′] ◦ ([N ′] × [D′])∗γ[N ],[D] = γ[N N ′],[DD′]. (8)

Let us define the following translation operators. Later we will compare these
algebraic translation operators for complex elliptic curves to the translation
operators for theta functions studied in [BK10b]. It will turn out that both
operators essentially agree.

DEFINITION 3.2. For integers N , D > 1 and torsion sections s ∈ E[N ](S), t ∈
E∨[D](S) we have the following OE×S E∨-linear isomorphism

U [N ],[D]s,t : (Ts × Tt)
∗([D] × [N ])∗P ([D] × [N ])∗P

with
U [N ],[D]s,t := γ[N ],[D] ◦ (Ts × Tt)

∗γ[D],[N ].

In the most important case N = 1 we will simply write U [D]t := U id,[D]
e,t .

If T is an S-scheme and t ∈ E[D](T ) is a T -valued torsion point of E , let us
write Nt instead of [N ](t). We have the following behaviour under composition.

COROLLARY 3.3. Let D, D′, N , N ′ > 1 be integers, s ∈ E[N ](S), s ′ ∈ E[N ′](S)
and t ∈ E∨[D](S), t ′ ∈ E∨[D′](S). Then:(

([D] × [N ])∗U [N ′],[D′]Ds′,Nt ′
)
◦ (Ts′ × Tt ′)

∗([D′] × [N ′])∗U [N ],[D]D′s,N ′t = U [N N ′],[DD′]
s+s′,t+t ′ .

Proof. This follows immediately from the definition of U [N ],[D]s,t and (8).
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Later, we would like to apply the translation operator to the Kronecker section
which is a section of the sheaf

P ⊗OE×E∨
Ω1

E×E∨/E∨([e × E∨] + [E × e]).

It is convenient to introduce the notation

U [N ],[D]s,t (s) :=
(
U [N ],[D]s,t ⊗ idΩ1

)
((Ts × Tt)

∗([D] × [N ])∗s)

for sections s ∈ Γ (U,P ⊗OE×E∨
Ω1

E×E∨/E∨([e× E∨] + [E × e])) of the Poincaré
bundle. The resulting section U [N ],[D]s,t (s) is then a section of the sheaf

([D] × [N ])∗
(
P ⊗Ω1

E×S E∨/E∨([(−Ds)× E∨] + [E × (−Ns)])
)

over the open subset (Ts × Tt)
−1([D] × [N ])−1U .

4. Real-analytic Eisenstein series via the Poincaré bundle

The following chapter is the heart of the first part of the paper. It provides
a functorial and purely algebraic construction of geometric nearly holomorphic
modular forms which are proven to correspond to the analytic Eisenstein–
Kronecker series under the Hodge decomposition on the universal elliptic curve.
More precisely, for coprime integers N , D > 1 and nonzero torsion sections
s ∈ E[N ](S), t ∈ E∨[D](S) we will provide a section

E k,r+1
s,t ∈ Γ

(
S,Symk+r+1

OS
H 1

dR

(
E/S

))
.

This construction is functorial in the test objects (E/S, s, t). We will construct
these sections by iteratively applying the universal connections of the Poincaré
bundle on the universal biextension E ]

×S E† and evaluating at the zero section.
Let us remark that the symmetric powers of the first relative de Rham cohomology
appear naturally, since the cotangent space ωE]/S of the universal vectorial
extension of E ] is canonically isomorphic to H 1

dR

(
E/S

)
.

4.1. The construction via the Poincaré bundle. Let E/S be an elliptic curve
over some base scheme S. We denote by

E ] E and E† E∨
q] q†

the universal vectorial extension of E and E∨. Let us write P] respectively P† for
the pullbacks of P to E ]

×S E∨ respectively E ×S E†. Then, P] respectively
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P† are equipped with canonical integrable E ]- respectively E†-connections
∇] respectively ∇†. Indeed, the universal vectorial extension E† classifies line
bundles of degree zero on E equipped with an integrable connection and (P†,

∇†) is the universal such line bundle on E ×S E†. The same construction for E
replaced by E∨ gives (P],∇]) on E ]

×S E∨, here note that we have a canonical
isomorphism E

∼

→ (E∨)∨. Let us write P],† for the pullback of P to the universal
biextension E ]

×S E†:

E ]
×M E†

E ]
×M E∨ E ×M E†

E ×M E∨

id×q† q]×id

q]×id id×q†

Then, P],† is in a natural way equipped with both an integrable E ]- and an
integrable E†-connection

P],† P],†
⊗OE]×E† Ω

1
E]×E†/E]

P],† P],†
⊗OE]×E† Ω

1
E]×E†/E† .

(id×q†)∗∇]

(q]×id)∗∇†

By abuse of notation we will write ∇] instead of (id × q†)∗∇] and ∇† instead of
(q] × id)∗∇†. The cotangent space ωE]/S of the universal vectorial extension of
E is canonically isomorphic to H 1

dR

(
E/S

)
, and similarly ωE†/S

∼= H 1
dR

(
E∨/S

)
.

It is convenient to use our chosen polarization to identify H1
dR := H 1

dR

(
E/S

)
∼=

H 1
dR

(
E∨/S

)
. With these identifications, we get

Ω1
E]×E†/E] pr∗E†Ω

1
E†/S (πE]×E†)∗H1

d R

Ω1
E]×E†/E† pr∗E]Ω

1
E]/S (πE]×E†)∗H1

d R.

∼ ∼

∼ ∼

(9)

Since both ∇] and ∇† are (πE]×E†)−1OS-linear, we can define the following
differential operators:

∇] : P],†
⊗OS Symn

OS
H 1

dR

(
E/S

)
P],†
⊗OS Symn+1

OS
H1

dR

∇† : P],†
⊗OS Symn

OS
H 1

dR

(
E/S

)
P],†
⊗OS Symn+1

OS
H1

dR.

∇]⊗id

∇†⊗id
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Applying ∇] and ∇† iteratively leads to

∇
k,r
],† : P],†

⊗OS Symn
OS

H1
dR P],†

⊗OS Symn+k+r
OS

H1
dR.

∇
◦k
] ◦∇

◦r
†

REMARK. Let us remark that ∇] and ∇† do not commute in general, but after
pullback along (e × e) the result is independent of the order of application. This
explains why choosing a different order in our construction will not give any new
geometric nearly holomorphic modular forms.

Next, let us consider the pullback of translates of the Kronecker section to the
Poincaré bundle on the universal biextension. For coprime integers N , D > 1
and nonzero torsion sections s ∈ E[N ](S), t ∈ E∨[D](S) let us consider (q] ×
q†)∗U [N ],[D]s,t (scan) which is contained in

Γ
(
(q] × q†)−1U, ([N ] × [D])∗

(
P],†
⊗Ω1

E]×E†/E†

))
,

where U := ([D] × [N ])−1(TDs × TNt)
−1(E × E∨ \ E × {e} q {e} × E∨). Via the

identification in (9) we obtain:

(q] × q†)∗U N ,D
s,t (scan) ∈ Γ ((q] × q†)−1U, ([N ] × [D])∗P],†

⊗OS H1
dR).

Since we have assumed that s and t are nonzero and N and D are coprime, the
morphism

(e × e) : S = S ×S S→ E ×S E∨

factors through the open subset U . By iteratively applying the universal
connections to the translates of the Kronecker section, we obtain the desired
geometric nearly holomorphic modular forms:

DEFINITION 4.1. For coprime integers N , D > 1, nonzero torsion sections s ∈
E[N ](S), t ∈ E∨[D](S) and integers k, r > 0 define

E k,r+1
s,t ∈ Γ

(
S,Symk+r+1

OS
H1

dR

)
via

E k,r+1
s,t := (e × e)∗

[(
([D] × [N ])∗∇k,r

],†

)(
(q] × q†)∗U [N ],[D]s,t (scan)

)]
.

We call E k,r+1
s,t algebraic Eisenstein–Kronecker series. This construction is

obviously functorial. For later reference, let us also define

D E k,r+1
s :=

∑
e 6=t∈E[D](S)

E k,r+1
s,t .
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4.2. The comparison result. Let N , D > 1 be coprime as above and let
E →M be the universal elliptic curve over SpecZ[1/N D] with Γ1(N D)-level
structure. Let s ∈ E[N ](M) and t ∈ E[D](M) be the points given by the level
structure of order N and D on E . Note that N , D > 1 coprime implies N D > 3
and thus the moduli problem is representable. We can give an explicit description
of the analytification of E/M as follows: the analytification E(C)/M(C) is given
by

E(C) = C×H/Z o Γ1(N D)�M(C) = H/Γ1(N D)

with coordinates (z, τ ) ∈ C × H. The torsion sections s and t are given by s =
(1/N , τ ) and t = (1/D, τ ). In particular, for each τ ∈ H we will view s and t as
elements of (1/N )Γτ respectively (1/D)Γτ with the varying lattice Γτ = Z+ τZ.
By slightly abusing notation, let us write s and t for both, the torsion sections, as
well as the associated elements in (1/N )Γτ respectively (1/D)Γτ . Let us recall
that the classical Eisenstein–Kronecker series are defined for r > k + 1 by the
convergent series

ẽ∗k,r+1(s, t; τ) :=
(−1)k+rr !

A(Γτ )k
∑

γ∈Γτ \ {−s}

(s̄ + γ̄ )k

(s + γ )r+1
〈γ, t〉

and for general integers k, r by analytic continuation. The following result relates
the algebraic Eisenstein–Kronecker series constructed in Definition 4.1 to the
classical Eisenstein–Kronecker series.

THEOREM 4.2. Assigning to every test object (E/S, s, t) the algebraic
Eisenstein–Kronecker series (defined in Definition 4.1)

E k,r+1
s,t ∈ Γ

(
S,Symk+r+1

OS
H 1

dR

(
E/S

))
,

gives a geometric nearly holomorphic modular form of weight k + r + 1, order
min(k, r) and level Γ1(N D). The classical nearly holomorphic modular forms
associated to E k,r+1

s,t via the Hodge decomposition on the universal elliptic curve
are the analytic Eisenstein–Kronecker series ẽk,r+1(Ds, Nt).

4.3. The proof of the comparison result. The construction of E k,r+1
s,t is

compatible with base change. Thus, E k,r+1
s,t is uniquely determined by its value

on the universal elliptic curve E/M with Γ1(N D)-level structure. Further, the
map(

Symk+r+1
OM

H 1
dR

(
E/M

)
⊗ C∞

)
(M(C))

(
ω
⊗(k+r+1)
E/M (C∞)

)
(M(C)).
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induced by the Hodge decomposition on the universal elliptic curve is injective.
It remains to identify the C∞-modular form associated with E k,r+1

s,t with the
Eisenstein–Kronecker series

ẽk,r+1(Ds, Nt) dz⊗(k+r+1).

We can check this identification fibre-wise and reduce the proof to the case of a
single elliptic curve E/C with Γ1(N D)-level structure. More precisely, we fix the
following setup: Let N , D > 1 be coprime integers. Let E/C be an elliptic curve
with complex uniformization

E(C) ∼→ C/Γ, Γ := Z+ τZ, τ ∈ H

and fixed points s ∈ E(C)[N ] and t ∈ E(C)[D] of order N respectively D. Again
by abuse of notation, let us write s and t for both s = 1/N and t = 1/D and the
associated C-valued points s, t ∈ E(C) = C/Γ .

4.3.1. Analytification of the Poincaré bundle. The complex uniformization and
our chosen autoduality isomorphism establish

C× C� E(C)× E∨(C)

as universal covering. Let us denote the coordinates on C × C by (z, w). The
explicit description of the Poincaré bundle in (3) allows us to trivialize its pullback
P̃ to this universal covering using the Kronecker theta function

Θ(z, w) :=
θ(z + w)
θ(z)θ(w)

, θ(z) := exp
(
−

e∗2
2

z2

)
σ(z)

as follows:

OC×C
∼

→ P̃, 1 7→ t̃ :=
1

Θ(z, w)
⊗ (dz)∨.

The canonical isomorphism γid,[D] induces an isomorphism

γ̃id,[D] : (id× [D])∗P̃
∼

→ ([D] × id)∗P̃

on the pullback P̃ to the universal covering.

LEMMA 4.3 [Sch14, Lemma 3.5.10]. The isomorphism γ̃id,[D] is given by

(id× [D])∗P̃ ∼

→ ([D] × id)∗P̃, (id× [D])∗t̃ 7→ ([D] × id)∗t̃.
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Proof. The proof is an adaptation of [Sch14, Lemma 3.5.10]. The map

(id× [D])∗t̃ 7→ ([D] × id)∗t̃

on the universal covering descents to an isomorphism

(id× [D])∗Pan ∼

→ ([D] × id)∗Pan

to the analytification of the Poincaré bundle. It is straightforward to check that
this map respects the rigidifications of the Poincaré bundle. Indeed, this boils
down to the fact that the theta function θ(z) used in the definition of Θ(z, w) is a
normalized theta function, that is, θ ′(z)|z=0 = 1. Now the claim follows from the
fact that γid,[D] is the unique isomorphism between (id×[D])∗P and ([D]× id)∗P
which is compatible with the rigidifications.

The pullback of the Kronecker section scan to the universal covering gives a
meromorphic section s̃can of P̃ ⊗ Ω1

C. By its very construction it can be written
explicitly as

s̃can = Θ(z, w)t̃⊗ dz.

The following result proves that the purely algebraic translation operators
are compatible with the analytic translation operators defined in [BK10b,
Section 1.3]:

PROPOSITION 4.4. The pullback of U N ,D
s,t (scan) to the universal covering is given

by the explicit formula

([D] × [N ])∗(ΘDs,Nt(z, w)t̃⊗ dz).

Here we denote by ΘDs,Nt(z, w) the translates of the Kronecker theta function as
defined in [BK10b, Section 1.3].

Proof. Let us write Ũ N ,D
s,t for the pullback of the analytification of the translation

operator. Recall that s and t denote the torsion points of E given by s = 1/N and
t = 1/D and that A := A(Γ ) := im τ/π denotes the volume of E(C) divided by
π . Before we give an explicit description of Ũ N ,D

s,t (s̃can), let us do the following
computation:

(Ts × Tt)
∗([N ] × [D])∗(t̃) =

1
Θ(N z + 1, Dw + 1)

⊗ ([N ] × [D])∗(dz)∨ (∗)
=

= exp
(
−

N z + Dw + 1
A

)
([N ] × [D])∗(t̃). (10)
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Here (∗) follows from the transformation law of the classical theta function
[BK10b, Equation (8)]:

θ(z + γ ) = α(γ ) · exp
(

zγ̄
A
+
γ γ̄

2A

)
θ(z).

By the definition of ΘDs,Nt(z, w) we have

ΘDs,Nt(Dz, Nw) := exp
(
−

N z + Dw + 1
A

)
Θ(Dz + Ds, Nw + Nt, τ ).

The definition

U N ,D
s,t (scan) := (γN ,D ⊗ idΩ)((Ts × Tt)

∗
[(γD,N ⊗ idΩ)(([D] × [N ])∗scan)])

gives us the following explicit description of Ũ N ,D
s,t (s̃can):

Ũ N ,D
s,t (s̃can) = (γ̃N ,D ⊗ idΩ)((Ts × Tt)

∗
[(γ̃D,N ⊗ idΩ)(([D] × [N ])∗s̃can)]) =

Lemma 4.3
= (γ̃N ,D ⊗ idΩ)((Ts × Tt)

∗
[Θ(Dz, Nw)([N ] × [D])∗(t̃⊗ dz)])

= (γ̃N ,D ⊗ idΩ)(Θ(Dz + Ds, Nw + Nt)(Ts × Tt)
∗([N ] × [D])∗(t̃⊗ dz)) (10)

=

= (γ̃N ,D ⊗ idΩ)(ΘDs,Nt(Dz, Nw)([N ] × [D])∗(t̃⊗ dz))

= ΘDs,Nt(Dz, Nw)([D] × [N ])∗(t̃⊗ dz)

= ([D] × [N ])∗(ΘDs,Nt(z, w)t̃⊗ dz).

The analytification of the universal vectorial extension E† of E∨ sits in a short
exact sequence (see [MM74, Ch. I, 4.4])

0 R1(π an
E )∗(2π iZ) H 1

dR(E) E†,an 0.

In particular, the two dimensional complex vector space H 1
dR(E) serves as a

universal covering of E†(C). Choosing coordinates on this universal covering is
tantamount to choosing a basis of

H 1
dR(E)

∨ ∼

→ H 1
dR(E

∨).

Here, this isomorphism is canonically induced by Deligne’s pairing. Let us choose
[dw] and [dw̄] in H 1

dR(E
∨) as a basis and denote the resulting coordinates by (w,

v). We can summarize the resulting covering spaces in the following commutative
diagram:

C2 C

E†(C) E∨(C).

pr1
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The pullback of the Poincaré bundle P† to E × E† is equipped with a canonical
integrable E†-connection

∇† : P†
→ P†

⊗OE×E† Ω
1
E×E†/E† .

Let us write P̃† for the pullback of the analytification of P̃† to the universal
covering. The trivializing section t̃ of P̃ induces a trivializing section t̃† of P̃†.

LEMMA 4.5.
∇†(t̃

†) = −
v

A
t̃†
⊗ dz.

Proof. We use the description of the connection given by Katz [Kat77, Theorem
C.6(1)]. Katz uses different coordinates: The basis ([η]∨, [ω]∨) of H 1

dR(E)
∨ gives

coordinates (wKatz, vKatz) on the universal covering of E†(C). Comparing both
bases it is straightforward to check that these coordinates are related to our
coordinates via

wKatz = −w

vKatz = −
v

A
+ w ·

(
1
A
+ η(1, τ )

)
.

The explicit description of the connection in [Kat77, Theorem C.6(1)]
immediately implies the following formula:

∇†(t̃
†) =

[
−
∂zΘ(z,−wKatz)

Θ(z,−wKatz)
+ (ζ(z − wKatz)− ζ(z)+ vKatz))

]
t̃†
⊗ dz.

Using

∂zΘ(z,−wKatz)

Θ(z,−wKatz)
= ∂z logΘ(z,−wKatz)

= −wKatz ·

(
1
A
+ η(1, τ )

)
+ ζ(z − wKatz)− ζ(z)

we get

∇†(t̃
†) =

[
vKatz + wKatz ·

(
1
A
+ η(1, τ )

)]
t̃†
⊗ dz

and the result follows by expressing this in our coordinates.

Now, let E ] be the universal vectorial extension of E∨. Our chosen autoduality
isomorphism E

∼

→ E∨ induces an isomorphism

E ] ∼
→ E†.
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The explicit description of the universal covering of E†(C) gives us a universal
covering

C2 � E ](C)

of E ](C). Let us write (z, u) for the corresponding coordinates. Let us write
P̃† for the pullback of the analytification of P̃† to the universal covering. The
trivializing section t̃ of P̃ induces a trivializing section t̃] of P̃]. By transport of
structure we deduce

∇](t̃
]) = −

u
A
t̃] ⊗ dw. (11)

PROPOSITION 4.6. Let E = C/Z + τZ and s, t ∈ E[N D](C) as above. The
algebraic Eisenstein–Kronecker series E k,r+1

s,t ∈ Symk+r+1 H 1
dR(E) are given by

the explicit formula

E k,r+1
s,t =

min(k,r)∑
i=0

(
r
i

)(
k
i

)
(−1)i

Ai
ẽk−i,r−i+1(Ds, Nt; τ) · [dz̄]⊗i

⊗ [dz]⊗k+r+1−i .

Proof. In the following we identify the cotangent spaces of E ] and E† with
H 1

dR(E). More concretely, this means that we identify:

dz = dw = [dz]
du = dv = [dz̄].

Let us write

dE† : Ohol
E]×E† → Ohol

E]×E† ⊗C H 1
dR(E), f 7→ ∂w f [dz] + ∂v f [dz̄]

dE] : Ohol
E]×E† → Ohol

E]×E† ⊗C H 1
dR(E), f 7→ ∂z f [dz] + ∂u f [dz̄].

Our aim is to compute

E k,r+1
s,t = (e × e)∗

[
([D] × [N ])∗∇k,r

],†

(
(q] × q†)∗U N ,D

s,t (scan)
)]
.

Proposition 4.4 gives an explicit description of the translation operators:

(q] × q†)∗U N ,D
s,t (scan) = ([D] × [N ])∗(ΘDs,Nt(z, w)t̃],† ⊗ [dz]).

Using this, the Leibniz rule and Lemma 4.5, we compute:

E k,r+1
s,t = (e × e)∗

[
([D] × [N ])∗

(
∇

k,r
],†

(
ΘDs,Nt(z, w)t̃

))]
⊗ [dz]

= (e × e)∗
[
∇
◦k
] ∇

◦r
† (ΘDs,Nt(z, w)t̃)

]
⊗ [dz]
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= (e × e)∗
[
∇
◦k
]

( r∑
i=0

(
r
i

)(
−

u
A

)i

∂◦(r−i)
z ΘDs,Nt(z, w)t̃

)]
⊗ [dz]⊗(r+1)

=

k∑
j=0

(
k
j

) r∑
i=0

(
r
i

)
d◦(k− j)

E]

[(
−

u
A

)i

∂◦(r−i)
z ΘDs,Nt(z, w)

]∣∣∣∣
z=v=0
w=u=0

·

·

(
−
v

A

) j ∣∣∣∣
v=0

⊗ [dz]⊗(r+ j+1)

at this point let us observe, that (−v/A) j
|v=0 = 0 for j > 0. Using this we

continue:

=

r∑
i=0

(
r
i

)
d◦kE]

[(
−

u
A

)i

∂◦(r−i)
z ΘDs,Nt(z, w)

]∣∣∣∣
z=v=0
w=u=0

⊗ [dz]⊗(r+1)

=

r∑
i=0

(
r
i

) k∑
j=0

(
k
j

)
d◦kE]

[(
−

u
A

)i]∣∣∣∣
w=u=0

× ∂◦(r−i)
z ∂◦(k− j)

w ΘDs,Nt(z, w)|z=w=0 ⊗ [dz]⊗(r+k− j+1)

again observe that d◦kE][(−u/A)i ]|w=u=0 = 0 for i 6= j

=

min(r,k)∑
i=0

(
r
i

)(
k
i

)
∂◦(r−i)

z ∂◦(k−i)
w ΘDs,Nt(z, w)

∣∣∣∣
z=w=0

×

(
−
[dz̄]

A

)⊗i

⊗ [dz]⊗(r+k−i+1).

Now the result follows from the result of Bannai–Kobayashi, that is, [BK10b,
Theorem 1.17]:

Θs,t(z, w) =
∑

a,b>0

ẽa,b+1(s, t)
a!b!

zbwa, s, t /∈ Γ.

Proof of Theorem 4.2. The construction of E k,r+1
s,t is obviously functorial on test

object (E/S, t). The explicit formula in Proposition 4.6 proves that E k,r+1
s,t is

contained in the k + r + 1 − min(k, r)th filtration step of the Hodge filtration.
This can also be seen without using the transcendental description as follows: by
the symmetry of the situation, we may assume k 6 r . Keeping in mind that we
agreed to denote the pullback of the connection ∇† : P†

→ P†
⊗Ω1

E×E†/E† again
by ∇†, we get the formula
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([D] × [N ])∗∇◦r†

)
(q] × q†)∗U [N ],[D]s,t (scan)

= (q] × idE†)∗
[(
([D] × [N ])∗∇◦r†

)
(idE × q†)∗U [N ],[D]s,t (scan)

]
.

Since P†
⊗Ω1

E×E†/E† = P†
⊗OSωE/S = P†

⊗OS F1H1
dR we deduce that the section

σ := (([D]× [N ])∗∇◦r† )(idE × q†)∗U [N ],[D]s,t (scan) is contained in the filtration step

([D] × [N ])∗
(
P†
⊗OS F r+1 Symr+1 H1

dR

)
.

We deduce

E k,r+1
s,t = (e × e)∗(∇◦k] (q

]
× id)∗σ) ∈ Γ

(
S, F r+1 Symr+1 H1

dR

)
as desired.

It remains to identify the image of E k,r
s,t under the Hodge decomposition with

the Eisenstein–Kronecker series for a single elliptic curve E/C as above. By
Proposition 4.6 the algebraic Eisenstein–Kronecker series E k,r

s,t for E/C is given
by

E k,r+1
s,t =

min(k,r)∑
i=0

(
r
i

)(
k
i

)
(−1)i

Ai
ẽk−i,r−i+1(Ds, Nt) · [dz̄]⊗i

⊗ [dz]⊗k+r+1−i .

The Hodge decomposition is the projection to the [dz]⊗k+r+1-part which is the C∞
modular form

ẽk,r+1(Ds, Nt) dz⊗k+r+1.

Since the analytic Eisenstein–Kronecker series are finite at the cusps, we deduce
the finiteness at the Tate curve from the analytic comparison.

5. The Kronecker section and Kato–Siegel functions

Kato–Siegel functions Dθ ∈ Γ (E \ E[D],O×E ) as introduced by Kato
in [Kat04] play an important role in modern number theory. While the values
of Dθ at torsion points are closely related to elliptic units, the values of iterated
derivatives of

d log Dθ ∈ Γ (E,Ω
1
E/S(E[D]))

at torsion points give classical algebraic Eisenstein series. The aim of this section
is to construct the logarithmic derivatives of the Kato–Siegel functions via the
Kronecker section of the Poincaré bundle. Let us emphasize that it is not necessary
that 6 is coprime to D for the construction of the Kronecker section. This gives a
new construction of the logarithmic derivatives of the Kato–Siegel functions even
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if the Kato–Siegel functions are not defined. This section might be skipped on the
first reading. The comparison to the Kato–Siegel functions builds on some tedious
computations involving the translation operators. Some results of this section are
needed to prove the distribution relation of the Kronecker section which is stated
in the Appendix.

5.1. Kato–Siegel functions via the Poincaré bundle. Let us slightly
generalize the definition of the translation operators of Section 3.

DEFINITION 5.1. Let ψ : E → E ′ be an isogeny of elliptic curves over S. Let us
write P ′ for the Poincaré bundle of E ′. For t ∈ kerψ∨(S) define

Uψ∨

t : (ψ × Tt)
∗P ′ ∼→ (ψ × id)∗P ′

by
Uψ∨

t := γid,ψ∨ ◦ (id× Tt)
∗γψ,id.

REMARK 5.2. In the case ψ = [D] this coincides with our previous definition of
U D

t .

For f ∈ Γ (E ′ × E ′∨,P ′ ⊗Ω1
E ′×E ′∨/E ′∨([E

′
× e] + [e × E ′∨])) set

Uψ∨

t ( f ) := Uψ∨

t ((ψ × Tt)
∗ f )

thus Uψ∨

t ( f ) is a section of

(ψ × id)∗[P ′ ⊗Ω1
E ′×E ′∨/E ′∨([E

′
× (−t)] + [e × E ′∨])].

For e 6= t the identification

(id× e)∗(ψ × id)∗[P ′ ⊗Ω1
E ′×E ′∨/E ′∨([E

′
× (−t)] + [e × E ′∨])] =

∼= ψ
∗(Ω1

E ′/S([e])) ∼= Ω
1
E/S(kerψ) (12)

allows us to view (id× e)∗(Uψ∨

t ( f )) as a global section of Ω1
E/S(kerψ). We will

implicitly use this identification in the following. Let us assume that the degree
degψ of the isogeny ψ is invertible on S. For t̃ ∈ (kerψ)(S) ⊆ E(S) let us write

Rest̃ : Γ (E,Ω1
E/S(kerψ))→ Γ (S,OS)

for the residue map along t̃ . We keep our notation λ : E
∼

→ E∨ for the autoduality
associated to the ample line bundle of the zero section.
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PROPOSITION 5.3. Let ψ : E → E ′ be an isogeny of elliptic curves over S.
Let us assume that degψ is not a zero divisor on S. For a nonzero section t ∈
kerψ∨(S) ⊆ E ′∨(S) the section

ωψt := (id× e)∗Uψ∨

t (scan,E ′) ∈ Γ (E,Ω1
E/S(kerψ))

satisfies the following properties:

(a) For each finite étale S-scheme T with |(kerψ)(T )| = degψ we have

Rest̃ ω
ψ
t = 〈t̃, t〉

for all t̃ ∈ kerψ(T ). Here,

〈·, ·〉 : kerψ ×S kerψ∨→ Gm

denotes Oda’s pairing; see [Oda69].

(b) The section ωψt ∈ Γ (E,Ω1
E/S(kerψ)) is contained in the OE -submodule

Ω1
E/S(ψ

∗([e] − [t]))

of Ω1
E/S(kerψ). Here, we have used our chosen autoduality isomorphism

E ′ ∼= E ′∨ to view t as a section of E ′.

Further, ωψt is the unique section of Ω1
E/S(kerψ) satisfying (a) and (b).

Proof. For uniqueness let ω̃1 and ω̃2 both satisfy (a) and (b). By (a) the difference
satisfies:

ω̃1 − ω̃2 ∈ Γ

(
E, ker

(⊕
t̃

Rest̃

))
= Γ (E,Ω1

E/S).

On the other hand, (b) shows that ω̃1 − ω̃2 vanishes along the divisor ψ∗[t] and
we conclude ω̃1 − ω̃2 = 0.

Let us now prove that ωψt satisfies (b). By its definition scan,E ′ is contained in
the submodule

P ′ ⊗Ω1
E ′×E ′/E ′([e × E ′] + [E ′ × e])⊗OE ′×E ′(−∆)

of P ′⊗Ω1
E ′×E ′/E ′([e×E ′]+[E ′×e]). By the definition of the translation operator

the global section (id × e)∗Uψ∨

t (scan,E ′) of Ω1
E/S(kerψ) is a global section of the

OE -submodule
Ω1

E/S(ψ
∗([e] − [t])).

This proves (b).
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The residue map is compatible with base change. Combining this with the
isomorphism

f ∗Ω1
E/S(kerψ)

∼

→ Ω1
ET /T (kerψT )

for f : T → S finite étale, allows us to check (a) after finite étale base
change. Thus, we may assume that |kerψ(S)| = degψ . Before we do the residue
computation, let us recall the definition of Oda’s pairing

〈·, ·〉 : kerψ ×S kerψ∨→ Gm,S.

Let t ∈ (kerψ)(S) and [L] ∈ (kerψ∨)(S). Since we have assumed [L] ∈
(kerψ∨)(S), the line bundle ψ∗L is trivial and we can choose an isomorphism

α : ψ∗L ∼

→ OE .

The chosen isomorphism α gives rise to a chain of isomorphisms

OE ψ∗L = T ∗t ψ
∗L T ∗t OE = OE

α−1

∼

T ∗t α
∼

and 〈t, [L]〉ψ is defined as the image of 1 under this isomorphism. Our first aim is
to prove

T ∗t̃ ω
ψ
t = 〈t̃, t〉ψ · ωψt

for every t̃ ∈ kerψ(S). The section t ∈ E ′∨(S) corresponds to the isomorphism
class [(id × t)∗P ′] of line bundles. We apply Oda’s pairing to t̃ and [L] with
L := (id× t)∗P ′. We have the following canonical choice for α:

ψ∗L = (ψ × t)∗P ′ (id× t)∗(id× ψ∨)∗P = (id× e)∗P ∼= OE .
(id×t)∗γψ,id

Note that

ωψt := (id× e)∗Uψ∨

t (scan)
def
=

= (id× e)∗([(γid,ψ∨ ◦ (id× Tt)
∗γψ,id)⊗ idΩ1]((ψ × Tt)

∗(scan)))

= ((id× t)∗γψ,id ⊗ idΩ1)((ψ × t)∗scan) = (α ⊗ idΩ1)((ψ × t)∗scan). (13)

After tensoring

OE ψ∗L = T ∗t̃ ψ
∗L OE

·〈t̃,t〉ψ

α−1 T ∗t̃ α
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with ⊗OEΩ
1
E/S(kerψ), we obtain

Ω1
E/S(kerψ) ψ∗L⊗Ω1

E/S(kerψ) Ω1
E/S(kerψ)

·〈t̃,t〉

α⊗idΩ T ∗t̃ α⊗idΩ

This diagram together with (13) proves

T ∗t̃ ω
ψ
t = T ∗t̃ [(α ⊗ idΩ1)((ψ × t)∗scan)] = (T ∗t̃ α ⊗ idΩ1)((ψ × t)∗scan)

= 〈t̃,t〉 · (α ⊗ idΩ1)((ψ × t)∗scan) = 〈t̃,t〉 · ωψt

as desired.
The equation

T ∗t̃ ω
ψ
t = 〈t̃, t〉ψ · ωψt

reduces the proof of (a) to the claim

Rese ω
ψ
t = 1

which can be checked by an explicit and straightforward computation locally in a
neighbourhood of the zero section.

The following result was obtained during the proof of the above proposition.

COROLLARY 5.4. Let ψ : E → E ′ be an isogeny of elliptic curves and assume
that degψ is not a zero divisor on S. Then we have the following equality for all
t̃ ∈ kerψ(S) and t ∈ kerψ∨(S):

T ∗t̃ ω
ψ
t = 〈t̃, t〉ψ · ωψt .

The most important case is the case ψ = [D], in this case we have produced
for each t ∈ E∨[D](S) sections

ω[D]t ∈ Γ (E,Ω
1
E/S(E[D]))

via the Poincaré bundle. Before we can relate ω[D]t to logarithmic derivatives of
Kato–Siegel functions, let us study certain compatibility relations among the ωψt :

LEMMA 5.5. Let ψ : E → E ′ and ϕ : E ′ → E ′′ be isogenies of elliptic curves
over S. Let us further assume that degϕ ◦ ψ is not a zero divisor on S.

(a) For e 6= s ∈ kerϕ∨:
ωϕ◦ψs = ψ∗ωϕs .

https://doi.org/10.1017/fms.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.29


Eisenstein–Kronecker series via the Poincaré bundle 27

(b) Assume that |kerϕ∨(S)| = degϕ∨. For t ∈ ker(ϕ ◦ ψ)∨(S) with ϕ∨(t) 6= e
we have ∑

s∈kerϕ∨(S)

ω
ϕ◦ψ
t+s = degϕ · ωψϕ∨(t).

Proof. (b): both sides of the claimed equality are elements in

Γ (E,Ω1
E/S(kerϕ ◦ ψ)).

Since degφ◦ψ is not a zero divisor on S, we may check the equality after inverting
degφ ◦ ψ . We may further assume that there is a finite étale map f : T → S s.t.
|kerϕ ◦ ψ(T )| = degϕ ◦ ψ . The canonical map

f ∗Ω1
E/S(kerϕ ◦ ψ)→ Ω1

ET /T (kerϕT ◦ ψT )

is an isomorphism. Since all constructions are compatible with base change, we
may assume during the proof that |kerϕ ◦ ψ(T )| = degφ ◦ ψ . In a first step we
show that the difference of both sides has no residue, that is

ω0 :=

( ∑
s∈kerϕ∨(S)

ω
ϕ◦ψ
t+s − degϕ · ωψϕ∨(t)

)
∈ Γ

(
E, ker

⊕
t̃∈kerϕ◦ψ(S)

Rest̃

)
.

For t̃ ∈ kerϕ ◦ ψ(S) we compute

Rest̃

∑
s∈kerϕ∨(S)

ω
ϕ◦ψ
t+s =

∑
s∈kerϕ∨(S)

〈t̃, t + s〉ϕ◦ψ

= 〈t̃, t〉ϕ◦ψ ·
∑

s∈kerϕ∨(S)

〈ψ(t̃), s〉ϕ

=

{
degϕ · 〈t̃, ϕ∨(t)〉ψ t̃ ∈ kerψ
0 t̃ /∈ kerψ.

But this coincides with the residue of degϕ · ωψϕ∨(t):

degϕ Rest̃ ω
ψ

ϕ∨(t) =

{
degϕ · 〈t̃, ϕ∨(t)〉ψ t̃ ∈ kerψ
0 t̃ /∈ kerψ.

This shows ω0 ∈ Γ (E,Ω1
E/S). In particular, ω0 is translation-invariant. On the

other hand, we can use the behaviour of ωD
t under translation (see Corollary 5.4)

to compute:
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degψ · ω0 =
∑

s̃∈kerψ

T ∗s̃ ω0

=

∑
s̃∈kerψ

( ∑
s∈kerϕ∨

T ∗s̃ ω
ϕ◦ψ
t+s − degϕ · T ∗s̃ ω

ψ

ϕ∨(t)

)

=

∑
s̃∈kerψ

( ∑
s∈kerϕ∨

〈s̃, t + s〉ϕ◦ψ · ω
ϕ◦ψ
t+s − degϕ · 〈s̃, ϕ∨(t)〉ψ · ω

ψ

ϕ∨(t)

)

=

( ∑
s̃∈kerψ

〈s̃, ϕ∨(t)〉ψ

)
︸ ︷︷ ︸

=0

·

( ∑
s∈kerϕ∨

ω
ϕ◦ψ
t+s − degϕ · ωψϕ∨(t)

)
= 0.

Since degψ is not a zero divisor on S, we conclude ω0 = 0 as desired.
(a) can be proven along the same lines.

LEMMA 5.6. Let
E E ′

E ′ E

ϕ

ψ ψ ′

ϕ′

be a commutative diagram of isogenies of elliptic curves over S. Let us further
assume that degϕ′ ◦ ψ is not a zero divisor on S. Let t ∈ ker(ϕ′)∨(S) with
(ψ ′)∨(t) 6= e.

(a) For s ∈ (kerψ ′∨)(S) we have

ω
ϕ′◦ψ
s+t =

∑
s̃∈kerψ(S)

〈s̃, ϕ′∨(s)〉ψ · (T−s̃)
∗ω

ϕ

ψ ′∨(t).

(b) We have ∑
s̃∈kerψ(S)

(Ts̃)
∗ω

ϕ

ψ ′∨(t) = ψ
∗ωϕ

′

t .

Proof. (a): both sides of the claimed equality are elements in

Γ (E,Ω1
E/S(kerϕ′ ◦ ψ)).

After inverting degφ′◦ψ there is a finite étale map f : T → S s.t. |kerϕ′◦ψ(T )| =
degϕ′ ◦ ψ . The canonical map

f ∗Ω1
E/S(kerϕ′ ◦ ψ)→ Ω1

ET /T (kerϕ′T ◦ ψT )
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is an isomorphism and since all constructions are compatible with base change,
we may assume during the proof that |kerϕ′ ◦ ψ(T )| = degφ ◦ ψ . In a first step
we show that the difference of both sides has no residue, that is

ω0 :=

(
ω
ϕ′◦ψ
s+t −

∑
s̃∈kerψ(S)

〈s̃, ϕ′∨(s)〉ψ · (T−s̃)
∗ω

ϕ

ψ ′∨(t)

)
∈ Γ (E,Ω1

E/S).

For t̃ ∈ (kerϕ′ ◦ ψ)(S) we compute

Rest̃

∑
s̃∈kerψ(S)

〈s̃, ϕ′∨(s)〉ψ · (T−s̃)
∗ω

ϕ

ψ ′∨(t)

=

{
〈s̃, ϕ′∨(s)〉ψ · 〈t̃ − s̃, ψ ′∨(t)〉ϕ t̃ − s̃ ∈ kerϕ
0 t̃ − s̃ /∈ kerϕ

=

{
〈ϕ(s̃), s〉ψ ′ · 〈ψ(t̃), t〉ϕ′ ϕ(t̃) = ϕ(s̃)
0 ϕ(t̃) 6= ϕ(s̃)

= 〈ϕ(t̃), s〉ψ ′ · 〈ψ(t̃), t〉ϕ′ = 〈t̃, s + t〉ϕ′◦ψ .

But this coincides with the residue of ωϕ
′
◦ψ

s+t . This shows ω0 ∈ Γ (E,Ω1
E/S). In

particular, ω0 is translation-invariant.

degϕ · ω0 =
∑

t̃∈kerϕ(S)

T ∗t̃ ω0

=

∑
t̃∈kerϕ(S)

(
T ∗t̃ ω

ϕ′◦ψ
s+t −

∑
s̃∈kerψ(S)

〈s̃, ϕ′∨(s)〉ψT ∗
−s̃ T ∗t̃ ω

ϕ

ψ ′∨(t)

)

=

( ∑
t̃∈kerϕ(S)

〈t̃, ψ ′∨(t)〉ϕ

)
︸ ︷︷ ︸

=0

·ω0.

Since degϕ is not a zero divisor on S, we conclude ω0 = 0 as desired.
(b): follows by setting s = e in (a) and using Lemma 5.5(b).

The classical Kato–Siegel functions are only defined if D is coprime to 6, while
the definition of ωD (defined below) makes sense without this hypothesis:

COROLLARY 5.7. For D > 1 invertible on S, let T → S be finite étale with
|E[D](T )| = D2. Let us define

ωD
:=

∑
e 6=t∈E∨T [D](T )

ω[D]t ∈ Γ (E,ΩE/S(E[D])).
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If D is furthermore coprime to 6, then ωD coincides with the logarithmic
derivative of the Kato–Siegel function Dθ , that is,

ωD
= dlog Dθ.

Proof. The logarithmic derivative dlog Dθ ∈ Γ (E,Ω1
E/S(E[D])) is uniquely

determined by the following two properties:

(a) Its residue is
Res(dlog Dθ) = D21e − 1E[D]

where
Res : Ω1

E/S(log E[D])→ (iE[D])∗OE[D]

is the residue map and 1e respectively 1E[D] are the functions in
(iE[D])∗OE[D] which have the constant value one along e respectively
E[D].

(b) It is trace compatible, that is for each N coprime to D we have

Tr[N ] dlog Dθ = dlog Dθ.

The residue condition for ωD follows from Proposition 5.3. The trace
compatibility follows by applying Lemma 5.6(b) with ψ and ψ ′ equal to
[N ] and ϕ and ϕ′ equal to [D].

Part II

p-adic interpolation of real-analytic
Eisenstein series

6. p-adic theta functions for sections of the Poincaré bundle

In [Nor86] Norman discussed constructions of p-adic theta functions
associated to sections of line bundles on Abelian varieties over algebraically
closed p-adic fields. A similar method can be used to construct p-adic theta
functions for sections of the Poincaré bundle for Abelian schemes with
ordinary reduction over more general p-adic base schemes. We will discuss
the construction of p-adic theta functions for elliptic curves but it immediately
generalizes to the higher dimensional case.
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Let p be a fixed prime. Let R be a p-adic ring, that is R is complete and
separated in its p-adic topology, and set S := Spec R. An elliptic curve E/S
will be said to have ordinary reduction if E ×S Spec R/pR is fibre-wise an
ordinary elliptic curve. For the moment let n > 1 be a fixed integer. Let C := Cn

respectively D := Dn be the connected components of E[pn
] respectively E∨[pn

].
Let us write i : C ↪→ E and j : D ↪→ E∨ for the inclusions. We define

ϕ : E � E/C =: E ′

and note that its dual ϕ∨ : (E ′)∨ → E∨ is étale since we assumed E/S to have
ordinary reduction. Let us further write j ′ : D′ ↪→ (E ′)∨ for the inclusion of the
connected component of (E ′)∨[pn

]. Since ϕ∨ is étale it induces an isomorphism
on connected components of pn-torsion groups, that is:

D′ (E ′)∨

D E∨

j ′

∼= ϕ∨

j

Let us write Φ : OD
∼

→ OD′ for the induced isomorphism of structure sheaves. In
particular by pulling back the Poincaré bundle along this diagram we obtain an
id×Φ-linear isomorphism

(id× j)∗P ∼

→ (id× j ′)∗(id× ϕ∨)∗P .

Let us write P ′ for the Poincaré bundle on E ′×S (E ′∨). Restricting along (i × id)
and composing with (i × id)∗γid,ϕ∨ gives an id×Φ-linear isomorphism

(i × j)∗P ∼

→ (i × j ′)∗(id× ϕ∨)∗P ∼

→ (i × j ′)∗(ϕ × id)∗P ′. (14)

Since ϕ ◦ i factors through the zero section, we have the identity

ϕ ◦ i = ϕ ◦ e ◦ πC .

Using this, we obtain an id×Φ−1-linear isomorphism

(i × j ′)∗(ϕ × idE ′∨)
∗P ′ = (πC × idD′)

∗(e × idD′)
∗(ϕ × j ′)∗P

(a)
∼=

= π∗COD′
(b)
∼= OC ⊗OS OD. (15)

Here, we have used the rigidification of the Poincaré bundle in (a) and Φ−1

in (b). Finally, the composition of (14) and (15) gives an OCn ⊗OS ODn -linear
isomorphism

trivn : P|Cn×Dn = (i × j)∗P ∼

→ OCn ⊗OS ODn .
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It is straightforward to check that this isomorphism is compatible with restriction
along Cn ↪→ Cm for n 6 m. Let us write Ê and Ê∨ for the formal groups obtained
by completion of E and E∨ along the zero section. By passing to the limit over n
we obtain

triv : P|Ê×S Ê∨
∼

→ OÊ⊗̂OSOÊ∨ . (16)

Let us introduce the notation P̂ := P|Ê×S Ê∨ for the restriction of the Poincaré
bundle to Ê ×S Ê∨.

DEFINITION 6.1. For a section s ∈ Γ (U,P) with U ⊆ E ×S E∨ an open
subset containing the zero section e ×S e, let us define the p-adic theta function
associated to s by

ϑs := triv(s) ∈ Γ (Ê ×S Ê∨,OÊ⊗̂OSOÊ∨).

7. p-adic Eisenstein–Kronecker series

In the first part of this paper we have given a construction of real-analytic
Eisenstein series via the Poincaré bundle. More precisely we constructed
geometric nearly holomorphic modular forms

E k,r
s,t ∈ Γ

(
S,Symk+r H 1

dR

(
E/S

))
which give rise to the classical Eisenstein–Kronecker series after applying the
Hodge decomposition on the modular curve. It was first observed by Katz
in [Kat76] that one can get p-adic modular forms associated to geometric nearly
holomorphic modular forms by applying the unit root decomposition on the
universal trivialized elliptic curve instead of the Hodge decomposition. Let us
recall this construction. For more details we refer to Katz’ paper [Kat76].

Let R be a p-adic ring and let us write S = Spec R. A trivialization of an elliptic
curve E/S is an isomorphism

β : Ê
∼

→ Ĝm,S

of formal groups over S. For a natural number N > 1 coprime to p, a trivialized
elliptic curve with Γ (N )-level structure is a triple (E, β, αN ) consisting of an
elliptic curve E/S, a trivialization β and a level structure αN : (Z/NZ)2S

∼

→ E[N ].
Let (E, β, αN ) be the universal trivialized elliptic curve over the moduli scheme M
of trivialized elliptic curves of level Γ (N ). The scheme M is affine. Let us write
Vp(Γ (N )) or sometimes just Vp for the ring of global sections of M. Following
Katz, the ring Vp will be called ring of generalized p-adic modular forms.
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For more details we refer to [Kat76, Ch. V]. Let us recall the definition of the
unit root decomposition. Dividing E by its canonical subgroup C , again gives a
trivialized elliptic curve

(E′ = E/C, β ′, α′N )

with Γ (N )-level structure over Spec Vp. The corresponding morphism

Frob : Vp → Vp

classifying this quotient will be called Frobenius morphism of M = Spec Vp. In
particular, the quotient map E→ E′ = E/C induces a Frob-linear map

F : Frob∗H 1
dR

(
E/M

)
= H 1

dR

(
E′/M

)
→ H 1

dR

(
E/M

)
which is easily seen to respect the Hodge filtration

0 ωE/M H 1
dR

(
E/M

)
ω∨E∨/M 0.

Further, the induced Frob-linear endomorphism of ω∨E∨/M is bijective while the
induced Frob-linear map on ωE/M is divisible by p. This induces a decomposition

H 1
dR

(
E/M

)
= ωE/M ⊕ U (17)

where U ⊆ H 1
dR

(
E/M

)
is the unique F-invariant OM-submodule on which F is

invertible. U is called the unit root space and (17) is called unit root decomposition.
Let us write

u : H 1
dR

(
E/M

)
→ ωE/M

for the projection induced by the unit root decomposition. Let us further observe,
that the isomorphism

β : Ê
∼

→ Ĝm,S

gives a canonical generator ω := β−1(dT/(1+ T )) of ωE/M. This generator gives
an isomorphism

ωE/M
∼

→ OM, ω 7→ 1.

Let us consider the following variant of the Eisenstein–Kronecker series E k,r+1
s,t :

For a positive integer D let us define

D E k,r+1
s :=

∑
e 6=t∈E[D]

E k,r+1
s,t .

One could equally well work with the Eisenstein–Kronecker series E k,r+1
s,t . The

main reason to concentrate on D E k,r+1
s is, that we want to compare the Eisenstein–

Kronecker series with the real-analytic Eisenstein series studied by Katz. For this
comparison it is convenient to work with the variant D E k,r+1

s .
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DEFINITION 7.1. Let E/M be the universal trivialized elliptic curve with Γ (N )-
level structure. Let D > 0, (0, 0) 6= (a, b) ∈ Z/NZ and s ∈ E[N ] the associated
N -torsion section. The p-adic Eisenstein–Kronecker series

DE
k,r+1
(a,b) ∈ Vp

are defined as the image of D E k,r+1
s under the unit root decomposition

Symk+r+1 H 1
dR

(
E/M

)
� ωk+r+1

E/M
∼

→ OM.

Katz defines generalized p-adic modular forms 2Φk,r, f ∈ Vp for k, r > 1 and
f : (Z/NZ)2 → Zp. For the precise definition we refer to [Kat76, Section 5.11].
Essentially, he applies the differential operator

Symk H 1
dR

(
E/M

)
→ Symk H 1

dR

(
E/M

)
⊗Ω1

M/Zp
↪→ Symk+2 H 1

dR

(
E/M

)
obtained by Gauß–Manin connection and Kodaira–Spencer isomorphism to
classical Eisenstein series and finally uses the unit root decomposition in order
to obtain p-adic modular forms. We have the following comparison result.

PROPOSITION 7.2. We have the following equality of p-adic modular forms:

DE
k,r+1
(a,b) = 2N−k

[
Dk−r+1Φr,k,δ(a,b) −Φr,k,δ(Da,Db)

]
where δ(a,b) is the function on (Z/NZ)2 with δ(a,b)(a, b) = 1 and zero else.

Proof. Since both sides of the equation are given by applying the unit root
decomposition to classes in Symk+r+1 H 1

dR

(
E/M

)
it suffices to compare these

classes. This can be done on the universal elliptic curve of level Γ (N ). It is further
enough to compare the associated C∞-modular forms obtained by applying the
Hodge decomposition on the universal elliptic curve. The C∞-modular form
associated with 2φk,r, f is according to Katz [Kat76, 3.6.5, 3.0.5] given by

(2φk,r, f )
an
= (2Gk+r+1,−r, f )

an

= (−1)k+r+1k!
((

N
A(τ )

)r

ζk+r+1

(
k − r + 1

2
, 1, τ, f

))
where ζk+r+1 is the Epstein zeta function obtained by analytic continuation of

ζk(s, 1, τ, f ) = N 2s
∑

(0,0)6=(n,m)

f (n,m)
(mτ + n)k |mτ + n|2s−k

, Re(s) > 1. (18)
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On the other hand, the C∞-modular form corresponding to D E k,r+1
s is according

to Theorem 4.2 given by∑
(0,0)6=(c,d)∈(Z/DZ)2

ẽk,r+1

(
Da
N
τ +

Db
N
,

Nc
D
τ +

Nd
D

)

=
(−1)k+rr !

Ak

×

∑
0 6=(c,d)∈(Z/DZ)2

∑
(m,n)∈Z2

((Da/N )τ̄ + Db/N + mτ̄ + n)k

((Da/N )τ + Db/N + mτ + n)r+1

×

〈
mτ + n,

Nc
D
τ +

Nd
D

〉
=
(−1)k+rr !

Ak

×

∑
(m,n)∈Z2

((Da/N )τ̄ + Db/N + mτ̄ + n)k

((Da/N )τ + Db/N + mτ + n)r+1

×

∑
(c,d)∈(Z/DZ)2

exp
(

2π i
D

N (dm − cn)
)

︸ ︷︷ ︸
=0 if (m,n)/∈(DZ)2

− ẽk,r+1

(
Da
N
τ +

Db
N
, 0
)

=
(−1)k+rr !

Ak

(∑
γ∈Γ

((Da/N )τ̄ + Db/N + Dmτ̄ + Dn)k

((Da/N )τ + Db/N + Dmτ + Dn)r+1
· D2

)
− ẽk,r+1

(
Da
N
τ +

Db
N
, 0
)

= Dk−r+1ẽk,r+1

(
a
N
τ +

b
N
, 0
)
− ẽk,r+1

(
Da
N
τ +

Db
N
, 0
)
.

The analytic Eisenstein–Kronecker series ẽk,r+1((a/N )τ + b/N , 0) appearing in
the description of the C∞-modular form D E k,r+1

s are defined by

ẽk,r+1

(
a
N
τ +

b
N
, 0
)

:= (−1)k+r+1r !
K ∗k+r+1((a/N )τ + b/N , 0, r + 1, τ )

A(τ )k
[BK10b, Proposition 1.3]

=

= (−1)k+r+1k!
K ∗k+r+1(0, (a/N )τ + b/N , k + 1, τ )

A(τ )r
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with the Eisenstein–Kronecker–Lerch K ∗k (0, (a/N )τ +b/N , s, τ ) series which is
given by analytic continuation of

K ∗k

(
0,

a
N
τ +

b
N
, s, τ

)
:=

∑
(0,0)6=(m,n)

(mτ̄ + n)k

|mτ + n|2s
exp

(
2π i

ma − nb
N

)
. (19)

Comparing (18) and (19) shows

K ∗k

(
0,

a
N
τ +

b
N
, s +

k
2
, τ

)
= N 1−2sζk(s, 1, τ, δ̂(a,b)). (20)

Using this, we compute

N−k(2φk,r,δ̂a,b
)an

= N−k(−1)k+r+1k!
(

N
A(τ )

)r

ζk+r+1

(
k − r + 1

2
, 1, τ, δ̂a,b

)
= N−k(−1)k+r+1k!

(
N

A(τ )

)r

N k−r K ∗k+r+1(0, s, k + 1; τ)

= ẽk,r+1

(
a
N
τ +

b
N
, 0
)
.

Finally, let us recall from [Kat76] the identity φk,r, f = φr,k, f̂ . Now, the analytic
identity

N−k
[Dk−r+1(2φr,k,δa,b)

an
− (2φr,k,δDa,Db)

an
]

= Dk−r+1ẽk,r+1

(
a
N
τ +

b
N
, 0
)
− ẽk,r+1

(
D

a
N
τ + D

b
N
, 0
)

proves the desired algebraic identity on the universal elliptic curve and thereby
the proposition.

8. p-adic Eisenstein–Kronecker series and p-adic theta functions

Let N , D be positive integers coprime to p. Let us again write E/M for the
universal trivialized elliptic curve of level Γ (N ). Let s be the N -torsion section
given by (0, 0) 6= (a, b) ∈ (Z/NZ)2. Let us write Dϑ (a,b) ∈ Γ (Ê×M Ê∨,OÊ×Ê∨)

for the p-adic theta function associated to the section∑
e 6=t∈Ê[D]

U N ,D
s,t (scan). (21)
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More precisely: the trivialization β : Ê
∼

→ Ĝm,M gives us a canonical invariant
differential ω := β∗(d S/(1+ S)) ∈ Γ (M, ωE/M). Since Γ (E,Ω1

E/M) = Γ (M,
ωE/M) we obtain an isomorphism

Ω1
E/M

∼

→ OM.

Using this isomorphism allows us to view∑
e 6=t∈Ê[D]

U N ,D
s,t (scan)

∣∣∣∣
Ê×Ê∨

as a section of

Γ (Ê× Ê∨, ([D] × [N ])∗P̂) ∼= Γ (Ê× Ê∨, P̂).

The last isomorphism is induced by N respectively D multiplication on the formal
groups. Finally, we define Dϑ (a,b) ∈ Γ (Ê ×M Ê∨,OÊ×Ê∨) as the image of (21)
under the trivialization map

Γ (Ê×M Ê∨, P̂) ∼→ Γ (Ê×M Ê∨,OÊ×Ê∨).

Let us write
∂Ê : OÊ → OÊ, ∂Ê∨ : OÊ∨ → OÊ∨

for the invariant derivations associated to the invariant differential ω. The
following result relates invariant derivatives of our p-adic theta function Dϑ (a,b)
to the p-adic Eisenstein–Kronecker series; thus it can be seen as a p-adic version
of the Laurent expansion

Θs,t(z, w) =
∑

k,r>0

ẽk,r+1(s, t)
k!r !

zrwk, s, t /∈ Γ

of the Kronecker theta function due to Bannai and Kobayashi.

THEOREM 8.1. Let E/M be the universal trivialized elliptic curve of level Γ (N ).
We have the following equality of generalized p-adic modular forms

DE
k,r+1
(a,b) = (e × e)∗

(
∂◦k

Ê∨
∂◦r

Ê Dϑ (a,b)
)
.

We will present the proof in Section 10. As an immediate consequence of this
result we get a new construction of Katz’ two-variable p-adic Eisenstein measure:
Let R be a p-adic ring. An R-valued p-adic measure on a pro-finite Abelian group
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G is an R-linear map C(G, R) → R, where C(G, R) denotes the R-module of
R-valued continuous functions on G. Let us write Meas(Z2

p, R) for the set of
all R-valued measures on Z2

p. According to a theorem of Y. Amice there is an
isomorphism of R-algebras:

RJS, T K ∼

→ Meas(Z2
p, R), f 7→ µ f

which is uniquely characterized by∫
Z2

p

x k yldµ f (x, y) = ∂◦kS ∂
◦l
T f
∣∣∣∣

S=T=0

where ∂T = (1+ T )(∂/∂T ) and ∂S = (1+ S)(∂/∂S) are the invariant derivations
on the two copies of Ĝm,R . Let us call µ f the Amice transform associated to f .

The trivialization β : Ê
∼

→ Ĝm,M together with the autoduality Ê
∼

→ Ê∨ allows
us to view Dϑ (a,b) as a two-variable power series with coefficients in the ring
R := Vp of generalized p-adic modular forms:

Dϑ (a,b)(S, T ) ∈ RJS, T K.

Here, S is the variable of Ĝm,M corresponding to E and the variable T corresponds
to the dual elliptic curve. The Amice transform of the p-adic theta function Dϑ (a,b)
gives us a p-adic measure on Zp × Zp which will be called µEis

D,(a,b). As an
immediate corollary of the above result we get the p-adic Eisenstein–Kronecker
series as moments of the p-adic measure µEis

D,(a,b):

COROLLARY 8.2. The p-adic Eisenstein–Kronecker series DE
k,r+1
(a,b) appear as

moments

DE
k,r+1
(a,b) =

∫
Zp×Zp

x k yr dµEis
D,(a,b)(x, y)

of the measure µEis
D,(a,b) associated to the p-adic theta function Dϑ (a,b)(S, T ).

This corollary gives a more concise construction of the p-adic Eisenstein
measure than the original one in [Kat76]: in [Kat76] the existence of the
p-adic Eisenstein measure has been proven by checking all predicted p-adic
congruences between the corresponding p-adic modular on the q-expansion. In
our construction, the p-adic Eisenstein measure appears more naturally as the
Amice transform of a p-adic theta function. We obtain the p-adic congruences
for free as a by product without checking them in the first instance.
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9. The geometric logarithm sheaves

For the proof of Theorem 8.1 it is necessary to study the structure of the
restrictions of the Poincaré bundle to Ê ×S Ê∨ more carefully. In his PhD
thesis [Sch14] Scheider has proven that the de Rham logarithm sheaves appear
naturally by restricting the Poincaré bundle P† to infinitesimal thickenings of the
elliptic curve. At this place it is not necessary to develop the theory of the de
Rham logarithm sheaves, but keeping this relation in mind motivates many of the
properties of P̂ := P|Ê×Ê∨ .

9.1. Basic properties. Let E/S be an elliptic curve over a p-adic ring S =
Spec R with fibre-wise ordinary reduction. As before, let us write E† for the
universal vectorial extension of the dual of the elliptic curve E . The pullback
of the Poincaré bundle P to E ×S E† is denoted by P† and carries the universal
integrable connection ∇†. Motivated by Scheider’s results, let us define

L̂n := (prÊ)∗
(
P|Ê×S Infn

e E∨
)

and
L̂†

n := (prÊ)∗
(
P†
|Ê×S Infn

e E†

)
.

The connection on P† induces an OS-linear connection ∇(n)† on the OÊ -module
L̂†

n . Let us write HÊ := H 1
dR

(
E∨/S

)
⊗OÊ and ω Ê := ωE∨/S ⊗OÊ . Since L̂n is

obtained by restriction of P to Ê ×S Infn
e E∨, we obtain transition maps

L̂n � L̂n−1

by further restriction along Ê×S Infn−1
e E∨ ↪→ Ê×S Infn

E E∨. Similarly, we obtain

L̂†
n � L̂†

n−1.

The fact that P† is the pullback of P along E ×S E∨ � E ×S E† gives inclusions

L̂n ↪→ L̂†
n.

The decompositions OInf1
e E∨ = OS ⊕ ωE∨/S and OInf1

e E† = OS ⊕H induce short
exact sequences

0 ω Ê L̂1 OÊ 0

and
0 HÊ L̂†

1 OÊ 0. (22)
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The maps in the last exact sequence are horizontal if we equip OÊ and HÊ with
the trivial pullback connections relative S, that is,

HÊ = OÊ ⊗OS H→ Ω1
Ê/S
⊗OS H, ( f ⊗ h) 7→ d f ⊗ h

and similarly for OÊ . In (16) we have defined a trivialization isomorphism

triv : P̂ ∼

→ OÊ ⊗̂OÊ∨ .

This isomorphism induces a OÊ -linear trivialization map

triv(n) : L̂n
∼

→ OÊ ⊗OS OInfn
e E∨ .

Since P† is the pullback of P we also obtain

triv(n) : L̂†
n
∼

→ OÊ ⊗OS OInfn
e E† .

Let us observe that in the special case n = 1 the trivialization map splits the above
short exact sequences, that is, we get

triv(1) : L̂1
∼

→ OÊ ⊕ ω Ê

and
triv(1) : L̂†

1
∼

→ OÊ ⊕HÊ .

The last map is not horizontal if we equip the right hand side with the trivial
S-connections.

9.2. Comultiplication maps. In this subsection let us introduce certain
canonical comultiplication maps on the infinitesimal geometric logarithm sheaves.
Using the Gm,S-biextension structure of the Poincaré bundle let us construct
certain natural comultiplication maps on L̂n and L̂†

n . Such a construction already
appeared in the PhD thesis of René Scheider [Sch14, Section 2.4.2]. As before,
let E/S be an elliptic curve over a p-adic ring S = Spec R with fibre-wise
ordinary reduction and let us write E† for the universal vectorial extension of E∨.
Let

ι†n : E†
n := Infn

e E† ↪→ E†

denote the inclusion of the nth infinitesimal neighbourhood E†
n of e in E†. For

the time being we will use the convention to denote by × and ⊗ the product
and tensor product over S. Recall that the Poincaré bundle P† is equipped with a
natural Gm,S-biextension structure, that is isomorphisms

(µE × idE†)∗P† ∼

→ pr∗1,3P†
⊗ pr∗2,3P† on E × E × E†

(idE × µE†)∗P† ∼

→ pr∗1,2P†
⊗ pr∗1,3P† on E × E†

× E†
(23)
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satisfying certain compatibilities; see [GRR72, exp. VII]. Here, µ denotes the
multiplication and pri, j the projection on the i th and j th component of the product.
Now, fix some integers n,m > 1 and define P†

n := (id× ι
†
n)
∗P†. Restricting

µE† : E†
× E†

→ E†

to E†
n × E†

m gives
µn,m : E†

n × E†
m → E†

n+m .

Restricting (23) along

E × E†
n × E†

m ↪→ E × E†
× E†

results in
P†

n+m → (pr12)
∗P†

n ⊗O
E×E†

n×E†
m
(pr13)

∗P†
m .

Using the unit of the adjunction between (id×µn,m)∗ and (id×µn,m)
∗, we obtain

P†
n+m → (id× µn,m)∗

[
(pr12)

∗P†
n ⊗ (pr13)

∗P†
m

]
.

Taking the pushforward along prE gives:

ξn,m : L̂†
n+m → L̂†

n ⊗OE L̂†
m .

Since the Gm,S-biextension structure is compatible with the connection, we get
that ξn,m is horizontal. Using the compatibilities of the Gm,S-biextension structure,
one deduces the following commutative diagrams:

L̂†
n+m L̂†

n ⊗OE L̂†
m

L̂†
m ⊗OE L̂†

n

ξn,m

ξm,n
can (24)

and
L̂†

n+m+l L̂†
n+m ⊗OE L̂†

l

L̂†
n ⊗OE L̂†

l+m L̂†
n ⊗OE L̂†

m ⊗OE L̂†
l .

ξn+m,l

ξn,m+l ξn,m⊗id

id⊗ξm,l

(25)

Thus, we obtain well-defined maps

L̂†
n → L̂†

1 ⊗OE ...⊗OE L̂†
1︸ ︷︷ ︸

n times

.
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The diagram (24) shows that this map is invariant under transposing any of the
n factors on the right hand side. Thus, letting the symmetric group Sn act by
permuting the factors we see that L̂†

n →
(
L̂†

1

)⊗n factors through the invariants of
the Sn action. We denote the resulting map by

L̂†
n ↪→ TSymn

OÊ
L̂†

1 :=
[(
L̂†

1

)⊗n]Sn
. (26)

This map is horizontal, if we equip the right hand side with the tensor product
connection induced by ∇(1)† . Similarly, we get OÊ -linear maps

L̂n ↪→ TSymn
OÊ

L̂1. (27)

A similar construction applies to the multiplication of the formal groups Ê∨:

OÊ∨ → OÊ∨⊗̂OÊ∨ .

This multiplication induces comultiplication maps

OInfn
e E∨ → TSymn

OS
OInf1

e E∨ (28)

which are compatible with the comultiplication maps on L̂n:

L̂n TSymn
OÊ

L̂1

OÊ ⊗OS OInfn
e E∨ TSymn

OÊ

(
OÊ ⊗OS OInf1

e E∨
)
.

∼= ∼=
(29)

In this diagram the lower horizontal map is induced by tensoring (28) with OÊ .
The comultiplication maps for Ê∨ can be identified with taking iterated invariant
derivatives. More precisely, the map

OInfn
e E∨ → TSymn

OS
OInf1

e E∨
∼=

n⊕
k=0

TSymk
OS
ωE∨/S

coincides with the map f 7→ (e∗(∂◦k f )nk=0 where ∂ is the map induced by the
invariant derivative ∂ : OÊ∨ → ωE∨/S ⊗OÊ∨ .

LEMMA 9.1. Let us assume that S = Spec R is flat over Zp. Under this
assumption, the comultiplication maps

L̂n ↪→ TSymn L̂1, L̂†
n ↪→ TSymn L̂†

1
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are injective and isomorphisms on the generic fibre EQp := E ×S SpecQp

L̂n,EQp

∼

→ TSymn L̂1,EQp
, L̂†

n,EQp

∼

→ TSymn L̂†
1,EQp

.

Proof. We give the proof for L̂n . The proof for L̂†
n is completely analogous. By

(29) it is enough to prove that the map

OInfn
e E∨ → TSymn

OS

(
OInf1

e E∨
)

is injective and an isomorphism after inverting p. The isomorphism OInf1
e E∨
∼=

OS ⊕ ωE∨/S gives

OInfn
e E∨ → TSymn

OS

(
OInf1

e E∨
)
=

n⊕
k=0

TSymk
OS
ωE∨/S.

But this map is just the map sending f ∈ OInfn
e E∨ to (e∗(∂◦k f ))nk=0 which is

injective if R is flat over Zp and an isomorphism if p is invertible.

By combining the comultiplication with the trivialization triv(1) : L̂1
∼

→OÊ⊕ωÊ
we obtain

L̂n → TSymn
OÊ

L̂1 = TSymn
OÊ
(OÊ ⊕ ω Ê)

∼

→

n⊕
k=0

TSymk
OÊ
ω Ê (30)

and

L̂†
n → TSymn

OÊ
L̂†

1 = TSymn
OÊ
(OÊ ⊕HÊ)

∼

→

n⊕
k=0

TSymk
OÊ

HÊ . (31)

In particular, whenever we are in a situation where H and ωE∨/S can be generated
by global sections, such generators and Lemma 9.1 give us an explicit OÊ -basis
of L̂n and L̂†

n on the generic fibre.

9.3. The Frobenius structure. Let E/M be the universal trivialized elliptic
curve with Γ (N )-level structure. Our next aim is to define a Frobenius structure
on L̂n , that is, an isomorphism

L̂n
∼

→ φ∗
Ê
L̂n,

where φÊ is a Frobenius lift. Let ϕ : E→ E′ = E/C be the quotient of the universal
trivialized elliptic curve by its canonical subgroup. Since E′ is again a trivialized
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elliptic curve with Γ (N )-level structure, it is the pullback of E/M along a unique
map Frob : M → M . This gives us a diagram

E E′ E

M M

ϕ

π

F̃rob

πE′ π

Frob

(32)

with the square being Cartesian. Let us define

φÊ :=
(
F̃rob ◦ ϕ

)∣∣
Ê : Ê→ Ê

as the restriction of the upper horizontal composition in the above diagram to the
formal group Ê. The map φÊ gives us a Frobenius lift on the formal group Ê. We
want to construct an OÊ-linear isomorphism

(prÊ)∗P̂
∼

→ (prÊ)∗(φÊ × idÊ∨)
∗P̂ .

We will do this in two steps: Let us write P̂ ′ for the Poincaré bundle of E′ restricted
to the formal scheme Ê′ ×M Ê′

∨

. Restricting the map γid,ϕ∨ to Ê′ ×M Ê′
∨

gives the
isomorphism

(id× ϕ∨|Ê′∨)
∗P̂ ∼

→ (ϕ|Ê × id)∗P̂ ′.
The dual isogeny ϕ∨ is étale; hence it induces an isomorphism of formal groups
over M:

ϕ∨|(Ê′)∨ : (Ê′)
∨ ∼

→ Ê∨.

We get
(prÊ)∗P|Ê×Ê∨

∼

→ (prÊ)∗(ϕ|Ê × id)∗(P ′|Ê′×Ê′∨). (33)

On the other hand, by the compatibility of the Poincaré bundle with base change
along the Cartesian diagram

E′ E

M′ = M M,

F̃rob

πE′ π

Frob

and using the identification E′ ×M′ E′∨ = E′ ×M E∨ we get an isomorphism

(F̃rob×M idE∨)
∗P ∼

→ P ′. (34)

Composing (33) with (34) gives the desired isomorphism of OÊ-modules:

(prÊ)∗P̂
∼

→ (prÊ)∗(φÊ × idÊ∨)
∗P̂ .
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Replacing (prÊ)∗P̂ by L̂n = (prÊ)∗(P̂|Ê×Infn
e E∨) in the above construction gives an

OÊ-linear isomorphism

Ψ : L̂n
∼

→ φ∗
Ê
L̂n.

Let us write P† for the pullback of P along E×M E†
→ E×M E∨, where E† is the

universal vectorial extension of E∨. Let us write P̂† for the restriction along the
formal completion Ê×M Ê†. Along the same lines as above, we obtain OÊ-linear
morphisms

(prÊ)∗P̂†
→ (prÊ)∗(φÊ × idÊ†)

∗P̂† (35)

and
Ψ : L̂†

n → φ∗
Ê
L̂†

n. (36)

This map is horizontal if both sides are equipped with the canonical M-
connections.

9.4. A basis for the geometric logarithm sheaves. Let E/M be the universal
trivialized elliptic curve with Γ (N )-level structure. Now let us construct a
canonical basis for the infinitesimal geometric logarithm sheaves on the universal
trivialized elliptic curve. In (30) and (31) we have defined maps

L̂n →

n⊕
k=0

TSymk
OÊ
ωÊ

and

L̂†
n →

n⊕
k=0

TSymk
OÊ

HÊ.

The rigidification Ê∨
∼

→ Ê
∼

→ Ĝm,M gives a canonical generator ω ∈ Γ (M, ωE∨/M).
Now ω generates ωÊ as OÊ-module. The tensor symmetric algebra TSym• ωÊ is a
graded ring with divided powers given by

(·)[k] : ωÊ → TSymk ωÊ, x 7→ x [k] := x ⊗ ...⊗ x︸ ︷︷ ︸
k-times

for any positive integer k. Using the isomorphism L̂1
∼= OÊ ⊕ ωÊ, we may view

ω as a section of L̂1. The divided power structure gives a canonical OÊ-basis
(ω̂[k])nk=0 of TSymn L̂1 defined by

ω̂[k] := ω[k] ∈ Γ (Ê,TSymn L̂1).
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Similarly, let us write [ω] for the image of ω under the inclusion of the Hodge
filtration:

ωE∨/M ↪→ H.
There is a unique section [u] ∈ Γ (M,U) in the unit root part of H with 〈[u],
[ω]〉 = 1. This gives a basis ([ω], [u]) of H. Let us write

ω̂[k,l] := [ω][k] · [u][l] ∈ Γ (Ê,TSymn L̂†
1)

for the basis induced by ([ω], [u]) using the divided power structure on the tensor
symmetric algebra TSym• L̂†

1.

LEMMA 9.2. We have canonical OÊ-linear decompositions:

L̂n,EQp

∼

→

n⊕
k=0

ω̂[k] ·OÊQp
, L̂†

n,EQp

∼

→

⊕
k+l6n

ω̂[k,l] ·OÊQp
.

These decompositions are compatible with the transition maps

L̂n,EQp
� L̂n−1,EQp

, L̂†
n,EQp

� L̂†
n−1,EQp

and the inclusion L̂n,EQp
↪→ L̂†

n,EQp
.

Proof. The decomposition is an immediate consequence of the bases (ω̂[k,l])k+l6n

and (ω̂[k])nk=0 of TSymn L̂†
1 and TSymn L̂1 together with Lemma 9.1. The

compatibility with transition maps and the canonical inclusion follow by tracing
back the definitions.

LEMMA 9.3. The Frobenius structure

Ψ : L̂†
n → φ∗

Ê
L̂†

n

is explicitly given by the formula

Ψ (ω̂[k,l]) = pl
· φ∗

Ê
ω̂[k,l].

Proof. By the commutativity of the diagram

L̂†
n TSymn L̂†

1

φ∗
Ê
L̂†

n TSymn φ∗
Ê
L̂†

1

Ψ TSymn Ψ
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we are reduced to prove the formulae in the case n = 1, that is,

Ψ (ω̂[0,0]) = φ∗
Ê
ω̂[0,0]

Ψ (ω̂[1,0]) = φ∗
Ê
ω̂[1,0]

Ψ (ω̂[0,1]) = p · φ∗
Ê
ω̂[0,1].

Since Ψ is compatible with the decomposition L̂†
1 = OÊ ⊕ HÊ, the Frobenius

structure on OÊ is the canonical isomorphism OÊ
∼= φ∗ÊOÊ induced by φÊ : Ê→ Ê.

Since ω̂[0,0] corresponds to 1 ∈ OÊ, we get Ψ (ω̂[0,0]) = φ∗
Ê
ω̂[0,0]. The restriction of

Ψ to HÊ is by the construction of the OÊ-linear extension of the map

H = H 1
dR

(
E∨/M

)
→ H 1

dR

(
(E′)∨/M

)
∼= Frob∗H 1

dR

(
E∨/M

)
induced by the diagram

E E′ E

M M.

ϕ

π

F̃rob

πE′ π

Frob

Since ω̂[0,1] corresponds to [u] and ω̂[1,0] corresponds to [ω], we have to prove that
[u] maps to p · Frob∗[u] and [ω] maps to Frob∗[ω]. But this is known to be true;
see, for example [BK10a, page 23].

LEMMA 9.4. The M-connection on L̂†
1 induces an M-connection ∇(n) on

TSymn L̂†
1 which is explicitly given by the formula

∇(n)(ω̂
[k,l]) = c · (l + 1)ω̂[k,l+1]

⊗ ω

for some c ∈ Zp.

Proof. The connection on TSymn L̂†
1 is the tensor product connection induced

from L̂†
1. Thus, it is enough to prove the formula in the case n = 1. Here,

TSym1 L̂†
1 = L̂†

1 and ∇(1) = ∇
(1)
† . By the horizontality of (22), the M-connection

is trivial on HÊ, that is, ∇(1)† (ω̂[1,0]) = ∇
(1)
† (ω̂[0,1]) = 0. It remains to determine

∇
(1)
† (ω̂[0,0]). We will use the horizontality of

Ψ : L̂†
1 → φ∗

Ê
L̂†

1

to determine ∇(1)† (ω̂[0,0]): In terms of the basis ω̂[∗,∗] we have

Ψ (ω̂[0,0]) = φ∗
Ê
ω̂[0,0]
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Ψ (ω̂[1,0]) = φ∗
Ê
ω̂[1,0]

Ψ (ω̂[0,1]) = p · φ∗
Ê
ω̂[0,1].

We already know that

∇
(1)
† (ω̂[0,0]) = f1,0 · ω̂

[1,0]
+ f0,1 · ω̂

[0,1]

for suitable f0,1, f1,0 ∈ Γ (Ê,OÊ). Now, the horizontality of (35) expresses as the
explicit formula

f1,0 · φ
∗

Ê
ω̂[1,0] + p · f0,1 · φ

∗

Ê
ω̂[0,1] = p · φ∗

Ê

(
f1,0ω̂

[1,0])
+ p · φ∗

Ê

(
f0,1ω̂

[0,1]),
that is, f1,0 = p · φ∗

Ê
f1,0 and f0,1 = φ∗

Ê
f0,1. In particular, we get f1,0 = 0 and

f0,1 ∈ Zp which proves the claim.

REMARK 9.5. With a little bit more effort, one can indeed prove that c = 1 in
the above lemma. Since the proof needs a more careful study of the (formal)
logarithm sheaves, we will not present it here. The full proof will be given in the
upcoming work [Spr19].

By restricting sections of the Poincaré bundle P to Ê×S Ê∨ we obtain sections
of L̂n := pr

∗
(P|Ê×S Ê∨). We would like to give an explicit description of such

elements in terms of the basis (ω̂[k])nk=0 of TSymn L̂n .

LEMMA 9.6. Let s ∈ Γ (Ê × Ê∨, P̂) and write ϑ ∈ Γ (Ê × Ê∨,OÊ×Ê∨) for the
associated section obtained by the trivialization. Then

s|Ê×Infn
e E∨ 7→

(
(id× e)∗

(
∂◦k

Ê∨
ϑ
)
· ω[k]

)n

k=0

under

Γ (Ê× Infn
e E∨, P̂) = Γ (Ê, L̂†

n)→

n⊕
k=0

Γ (Ê,TSymk ωÊ).

Here, ∂Ê∨ : OÊ∨ → OÊ∨ denotes the canonical invariant derivation.

Proof. This follows from (29) and the fact that

OInfn
e E∨ → TSymn

OM

(
OInf1

e E∨
)
=

n⊕
k=0

TSymk ωE∨/E

maps f ∈ OInfn
e E∨ to (e∗∂◦k

Ê∨
f · ω[k])nk=0.
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10. Proof of the theorem

Proof of Theorem 8.1. The Poincaré bundle P],† is equipped with two integrable
connections ∇] and ∇†. Let us write P̂],† for the restriction of P],† to the formal
completion of E] ×M E† along the zero section. The unit root decomposition and
the canonical generator of ωE∨/M induce a projection:

H 1
dR

(
E∨/M

)
� ωE∨/M

∼

→ OM.

With this identification we obtain differential operators

∇] : P̂],†
→ P̂],†

⊗OM H 1
dR

(
E∨/M

)
� P̂],†

and similarly
∇† : P̂],†

→ P̂],†
⊗OM H 1

dR

(
E/M

)
� P̂],†.

Tensoring the trivialization P̂ ∼

→OÊ×Ê∨ with OÊ]×Ê† gives a trivialization P̂],† ∼
→

OÊ]×Ê† . Further, the unit root decomposition induces canonical projections OÊ] �
OÊ and OÊ† � OÊ∨ . By the definition of the geometric nearly holomorphic
modular forms E k,r+1

s,t it suffices to prove the commutativity of the following
diagrams

P̂],† P̂],†

OÊ]⊗̂OMOÊ† OÊ]⊗̂OMOÊ†

OÊ⊗̂OMOÊ∨ OÊ⊗̂OMOÊ∨

∼=

∇]

∼=

id⊗∂Ê∨

P̂],† P̂],†

OÊ]⊗̂OMOÊ† OÊ]⊗̂OMOÊ†

OÊ⊗̂OMOÊ∨ OÊ⊗̂OMOÊ∨

∼=

∇†

∼=

∂Ê⊗id

We prove the commutativity of the right diagram, the other case is completely
symmetric. Recall that P],† with the connection ∇† is obtained by pullback of
the universal connection ∇P† on the Poincaré bundle P† along the projection
E]×M E†

→ E×M E†. Thus we can deduce the commutativity of the right diagram
from the commutativity of

P̂† P̂†

OÊ⊗̂OMOÊ† OÊ⊗̂OMOÊ†

OÊ⊗̂OMOÊ∨ OÊ⊗̂OMOÊ∨ .

∼=

∇†

∼=

∂Ê⊗id
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It is enough to prove the commutativity of this diagram restricted to Ê×M Infn
e Ê†

for all n > 1, that is, we have to prove for all n > 1 the commutativity of

L̂†
n L̂†

n

OÊ⊗̂OMOInfn
e E† OÊ⊗̂OMOInfn

e E†

OÊ⊗̂OMOInfn
e E∨ OÊ⊗̂OMOInfn

e E∨ .

∼=

∇
(n)
†

∼=

∂Ê⊗id

(37)

For the commutativity of the diagram (37) let us consider the following
diagram:

L̂†
n L̂†

n

TSymn
OÊ

L̂†
1 TSymn

OÊ
L̂†

1

OÊ ⊗OM OInfn
e E† OÊ ⊗OM OInfn

e E†

TSymn
OÊ

(
OÊ ⊗OM OInf1

e E†

)
TSymn

OÊ

(
OÊ ⊗OM OInf1

e E†

)
OÊ ⊗OM OInfn

e E∨ OÊ ⊗OM OInfn
e E∨

TSymn
OÊ

(
OÊ ⊗OM OInf1

e E∨
)

TSymn
OÊ

(
OÊ ⊗OM OInf1

e E∨
)

∇
(n)
†

triv(n)
∇(n)

triv(1)

In this diagram, the commutativity of the left and the right face is just the
compatibility of the comultiplication maps. The commutativity of the lower face
is obvious. The upper face commutes by the horizontality of the comultiplication
maps. The commutativity of the front face follows from the explicit formula of
∇(n). Now, the commutativity of the back face is deduced from the commutativity
of the other faces and the injectivity of the comultiplication maps.

11. p-adic interpolation of p-adic Eisenstein–Kronecker series

As always when one has a p-adic measure µ on Zp it is only possible to define
the moment function

Zp 3 s 7→
∫
Z×p
〈x〉sdµ(x)

with 〈·〉 : Z×p � (1 + pZp) after restriction to Z×p . Let us consider again the
universal trivialized elliptic curve (E/M, β, αN ) with Γ (N )-level structure. For
e 6= s ∈ E[N ](M) corresponding to (a, b) via the level structure we have
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defined the p-adic measure µEis
D,(a,b). Let us write µEis,(p)

D,(a,b) := µ
Eis
D,(a,b)|Z×p×Zp

for the
restriction of the measure µEis,(p)

D,(a,b) to Z×p×Zp. It will be convenient to view µEis,(p)
D,(a,b)

as a measure on Zp×Zp by extending by zero. We can easily deduce the following
statement from Katz [Kat76, Section 6.3] and Proposition 7.2. Katz deduces this
result by comparing the q-expansions of the moments. In this section we sketch a
different proof using the geometry of the Poincaré bundle.

THEOREM 11.1.∫
Z×p×Zp

f (x, y) dµEis
D,(a,b)

=

∫
Zp×Zp

f (x, y) dµEis
D,(a,b) − Frob

∫
Zp×Zp

f (p · x, y) dµEis
D,(a,b).

Sketch of the proof: In the Appendix A we prove a distribution relation for the
Kronecker section. The distribution relation for the isogeny ϕ : E → E ′ implies
the formula

p · Frob(Dϑ([p](S), T )) =
∑

ζ∈Ĝm,S [p]

Dϑ(S +Ĝm,S
ζ, T ).

Thus we get

Dϑ(S, T )−
1
p

∑
ζ∈Ĝm,S [p]

Dϑ(S +Ĝm,S
ζ, T ) = Dϑ(S, T )− Frob(Dϑ([p](S), T )).

(38)
It is well known that the Amice transform of f (S)− (1/p)

∑
ζ∈Ĝm [p] f (S +Ĝm

ζ )

is the measure µ f |Z×p . In particular, the left hand side is the Amice transform of
µ

Eis,(p)
D,(a,b). Now the statement follows from (38), since the inverse of the Amice

transform can be computed by

f (T ) =
∫
Zp

(1+ T )x dµ f (x).
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Appendix A. The distribution relation

The Kronecker theta function is known to satisfy a distribution
relation [BK10b]. The aim of this appendix is to prove a similar distribution
relation for the underlying Kronecker section. In order to state the general
distribution relation we need a further generalization of the translation operators.
Let us consider the following commutative diagram

E E

E ′ E ′

[D′]

ψ ψ

[D′]

(A.1)

of isogenies of elliptic curves. The most important case is the case E = E ′. Let
us write γ[D′],ψ∨ for the diagonal of the commutative diagram

([D′] × ψ∨)∗P (ψ ◦ [D′] × id)∗P ′

(id× (ψ ◦ [D′])∨)∗P ′ (ψ × [D′])∗P ′

γ[D′ ],ψ∨

([D′]×id)∗γid,ψ∨

(id×ψ∨)∗γ[D′ ],id (ψ×id)∗γ[D′ ],id

(id×[D′])∗γid,ψ∨

and γψ,[D′] for its inverse.

DEFINITION A.1. Let s ∈ (kerψ)(S) and t ∈ (E ′,∨[D′])(S). The translation
operator

Uψ,[D′]
s,t : (Ts × Tt)

∗([D′] × ψ∨)∗P → ([D′] × ψ∨)∗P

is defined as the composition Uψ,[D′]
s,t := γψ,[D′] ◦ (Ts × Tt)

∗γ[D′],ψ∨ .

As before let us write

Uψ,[D′]
s,t ( f ) := (Uψ,[D′]

s,t ⊗ id)((Ts × Tt)
∗([D′] × ψ∨)∗ f )

for sections f ∈ Γ (E×E∨,P⊗Ω1
E×E∨/E∨([E×e]+[e×E∨])). Now, we can state

the distribution relation which is motivated from the theta function distribution
relation given in [BK10b, Proposition 1.16].
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THEOREM A.2. Let E and E ′ be elliptic curves fitting into a commutative
diagram as (A.1). Let N , D and D′ be integers and let us assume that N , D,
D′ and kerψ are non-zero-divisor on S. Let us further assume that all torsion
sections of the finite group schemes kerψ and E ′∨[D′] are already defined over
S, that is,

|(kerψ)(S)| = degψ, |(E ′∨[D′])(S)| = (D′)2.

Then, for t ∈ E ′∨[D](S), s ∈ E[N ](S):∑
α∈(kerψ)(S),
β∈(E ′∨[D′])(S)

U [N ]◦ψ, [D]◦[D
′
]

s+α, t+β (scan)

= ((D′)2) · (([D] × [N ])∗γψ,[D′])
(
(ψ × [D′])∗U N ,D

ψ(s),[D′](t)(scan,E ′)
)
.

In its simplest but still interesting form the distribution relation specializes to
the following equality:

COROLLARY A.3. For an elliptic curve E/S with D̃ invertible on S and
|E[D̃](S)| = D̃2 we have the formula:∑

e 6=t∈E∨[D̃](S)

U D̃
t (scan) = D̃2

· γ1,D̃((id× [D̃])
∗(scan))− ([D̃] × id)∗(scan).

Proof. This is the special case D = N = 1, ψ = ψ = id and [D′] = [D′] = [D̃]
of Theorem A.2.

Let us define

s D
can := D2

· γ1,D((id× [D])∗(scan))− ([D] × id)∗(scan).

The above corollary states that∑
e 6=t∈E∨[D](S)

U D
t (scan) = s D

can.

If ϕ : E → E ′ is an isogeny with degϕ being a non-zero-divisor on S, we obtain
by summing over all t ∈ E∨ and all s ∈ kerϕ the following special case of the
distribution relation:

COROLLARY A.4. Let ϕ : E → E ′ be an isogeny of elliptic curves over S with
degϕ a non-zero-divisor on S. For D a non-zero-divisor on S we have∑
τ∈kerϕ(S)

([D] × id)∗Uϕ,id
τ,e

(
(Tτ × ϕ∨)∗s D

can

)
= ([D] × id)∗γϕ,id

(
(ϕ × id)∗(s D

can,E ′)
)
.
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Proof. After inverting D and making a finite étale base change, we may assume
that |E[D](S)| = D2. The general distribution relation gives us the identity∑

τ∈(kerϕ)(S),
t∈(E ′∨[D])(S)

U ϕ,D
τ,t (scan) = (D2) · γϕ,[D]((ϕ × [D])∗scan,E ′). (A.2)

On the other hand, again by the general distribution relation we have∑
τ∈(kerϕ)(S)

U ϕ,D
τ,e (scan) = ([D] × id)∗γϕ,id

(
(ϕ × id)∗U id,[D]

e,e (scan,E ′)
)

= ([D] × id)∗
[
γϕ,id

(
(ϕ × id)∗scan,E ′)

)]
. (A.3)

By Corollary A.3 and a straightforward computation, we can identify the
following two sums∑

τ∈(kerϕ)(S),
e 6=t∈(E ′∨[D])(S)

U ϕ,D
τ,t (scan) =

∑
τ∈kerϕ(S)

([D] × id)∗Uϕ,id
τ,e

(
(Tτ × ϕ∨)∗s D

can

)
.

Subtracting (A.3) from (A.2) and using the last identification proves the corollary.

REMARK A.5. For a CM elliptic curve E over C, one can use the methods
from Section 4.3.1 to describe the analytification of translations of the Kronecker
section in terms of translations of the Kronecker theta function. In this case, the
distribution relation specializes to the analytic distribution relation in [BK10b].

A.1. Density of torsion sections. Before we prove the distribution relation let
us recall the density of torsion sections for elliptic curves:

LEMMA A.6. Let N > 1 and E/S be an elliptic curve with N invertible on S.
For F a locally free OE -module of finite rank, U ⊆ E open and s ∈ Γ (U,F) we
have: The section s is zero, if and only if t∗s = 0 for all T → S finite étale, n > 0
and t ∈ E[N n

](T ).

Proof. By the sheaf property we may prove this locally and reduce to the case
F = Or

E , r > 0. By [Gro66, Theorem 11.10.9] we are further reduced to prove
the result in the case S = Spec k for a field k. In this case the result is well known;
see [EvdGM12, (5.30) Thm, and the remark (2) afterwards].

REMARK A.7. If we take all torsion points different from zero, we still get a
universally schematically dense family. Indeed, a priori the family is then only
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universally schematically dense in the open subscheme U = E \ {e(S)}, but
the inclusion U ↪→ E is also universally schematically dense, since it is the
complement of a divisor [GW10, see the remark after Lemma 11.33].

A.2. Proof of the distribution relation. For the proof of the distribution
relation we will need the following lemma:

LEMMA A.8. Let ψ : E → E ′ be an isogeny of elliptic curves and D, D̃ be
positive integers.

(a) For t̃ ∈ E ′∨[D̃](S) we have:

([D̃] × id)∗γψ,[D′] ◦ (ψ × [D′])∗U [D̃]D′ t̃

= ([D′] × ψ∨)∗U [D̃]
ψ∨(t̃) ◦ ([D̃] × Tt̃)

∗γψ,[D′].

(b) For α ∈ (kerψ)(S) and β ∈ (E ′∨[D′])(S) with ψ∨(β) 6= e we have

(id× e)∗Uψ,[D′]
α,β (scan) = T ∗α ω

[D′]
ψ∨(β).

(c) For t̃ ∈ E ′∨[D̃](S) we have:

([D′] × ψ∨)∗U [D̃]
ψ∨(t̃) ◦ ([D̃] × Tt̃)

∗Uψ,[D′]
D̃s,t

= Uψ,[D′·D̃]
s,t+t̃ .

Proof. (a): we have the following commutative diagrams:

(id× Tt̃)
∗(ψ ◦ [D̃] × [D′])∗P ′ (id× Tt̃)

∗(ψ × [D′ · D̃])∗P ′

(id× Tt̃)
∗(ψ ◦ [D̃] × [D′])∗P ′ (id× Tt̃)

∗([D′ · D̃] × ψ∨)∗P

(...)∗γ
[D̃],id

(id×Tt̃ )
∗γ
ψ,[D′ ·D̃]

(...)∗γψ,[D′ ]

(ψ × [D′ · D̃])∗P ′ (ψ ◦ [D̃] × [D′])∗P ′

(id× Tt̃)
∗([D′ · D̃] × ψ∨)∗P ([D′] × ψ∨ ◦ [D̃])∗P

(...)∗γid,[D̃]

(id×Tt̃ )
∗γ
ψ,[D′ ·D̃]

γ
ψ◦[D̃],[D′ ]

(...)∗γ
[D̃],id

(ψ ◦ [D̃] × [D′])∗P ′ ([D′ · D̃] × ψ∨)∗P

([D′] × ψ∨ ◦ [D̃])∗P ([D′ · D̃] × ψ∨)∗P

(...)∗γψ,[D′ ]

γ
[D̃]◦ψ,[D′ ]

(...)∗γid,[D̃]
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The composition of the upper horizontal arrows in the three diagrams is

([D̃] × id)∗γψ,[D′] ◦ (ψ × [D′])∗γid,[D̃] ◦ (id× Tt̃)
∗(ψ × [D′])∗γ

[D̃],id

while the composition of the lower horizontal arrows is:

([D′] × ψ∨)∗γid,[D̃] ◦ (id× Tt̃)
∗([D′] × ψ∨)∗γ

[D̃],id ◦ ([D̃] × Tt̃)
∗γψ,[D′].

The commutativity shows that both compositions are equal, that is, it gives the
middle equality in

([D̃] × id)∗γψ,[D′] ◦ (ψ × [D′])∗U [D̃]D′ t̃

= ([D̃] × id)∗γψ,[D′] ◦ (ψ × [D′])∗γid,[D̃] ◦ (id× Tt̃)
∗(ψ × [D′])∗γ

[D̃],id

= ([D′] × ψ∨)∗γid,[D̃] ◦ (id× Tt̃)
∗([D′] × ψ∨)∗γ

[D̃],id ◦ ([D̃] × Tt̃)
∗γψ,[D′]

= ([D′] × ψ∨)∗U [D̃]
ψ∨(t̃) ◦ ([D̃] × Tt̃)

∗γψ,[D′].

(b): let us first prove the following equality

Uψ,[D′]
α,β = ([D′] × id)∗

[
γψ,id ◦ (TD′α × id)∗γid,ψ∨

]
◦ (Tα × ψ∨)∗U [D

′
]

ψ∨(β). (A.4)

The proof of this equality follows the same lines as the proof of (a). So let us only
write the equations instead of all commutative diagrams:

(ψ × id)∗γid,[D′] = ([D′] × id)∗γid,ψ∨ ◦ γψ,[D′] (I)
(Tα × ψ∨)∗γid,[D′] ◦ (Tα × Tβ)∗γ[D′]◦ψ,id (II)
=(Tα × id)∗γψ,[D′] ◦ (ψ × Tβ)∗γ[D′],id
(id× ψ∨)∗γ[D′],id = γ[D′]◦ψ,id ◦ ([D′] × id)∗γid,ψ∨ . (III)

These identities follow easily from the fact that γ[D′],id is induced from the
universal property of the Poincaré bundle. Using these identities we compute

(ψ × id)∗γid,[D′] ◦ (Tα × Tβ)∗
[
(ψ × id)∗γ[D′],id ◦ ([D′] × id)∗γid,ψ∨

]
= (Tα × id)∗(ψ × id)∗γid,[D′] ◦

◦ (ψ × Tβ)∗γ[D′],id ◦ (Tα × Tβ)∗([D′] × id)∗γid,ψ∨ =

(I)
= ([D′] ◦ Tα × id)∗γid,ψ∨ ◦

◦ (Tα × id)∗γψ,[D′] ◦ (ψ × Tβ)∗γ[D′],id ◦ ([D′] ◦ Tα × Tβ)∗γid,ψ∨ =

(II)
= ([D′] ◦ Tα × id)∗γid,ψ∨ ◦ (Tα × ψ∨)∗γid,[D′] ◦

◦ (Tα × Tβ)∗γ[D′]◦ψ,id ◦ ([D′] ◦ Tα × Tβ)∗γid,ψ∨ =
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(III)
= ([D′] × id)∗(T[D′](α) × id)∗γid,ψ∨ ◦

◦ (Tα × ψ∨)∗γid,[D′] ◦ (Tα × Tβ)∗(id× ψ∨)∗γ[D′],id.

Now equation (A.4) follows by precomposing this computation with ([D′] ×
id)∗γψ,id◦. Observing that

(id× e)∗
[
γψ,id ◦ (TD′α × id)∗γid,ψ∨

]
is just the canonical isomorphism T ∗D′αOE

∼

→ OE , we deduce (a) from (A.4) by
applying (id× e)∗.

(c): follows along the same lines as (b) and (a).

Proof of the distribution relation. Since M := N · D · D′ · degψ is a non-zero-
divisor, we may prove the equality after inverting M . Thus, let us assume that M
is invertible on S. Let us write

A :=
∑

α∈(kerψ)(S),
β∈(E ′∨[D′])(S)

U [N ]◦ψ, [D·D
′
]

s+α, t+β (scan)

B := (D′)2 ·
(
([D] × [N ])∗γψ,[D′]

)(
(ψ × [D′])∗U [N ],[D]ψ(s),[D′](t)(scan,E ′)

)
.

Our aim is to prove A = B. Using the Zariski covering (S[1/D̃])D̃>1,(D̃,M)=1
together with a density of torsion section argument we reduce the proof of the
equality (id × t̃)∗A = (id × t̃)∗B for all D̃ torsion points t̃ ∈ E ′∨[D̃](T ) with
D̃ invertible on T . Further, since ([D · D′] × e)∗U [D̃]

([N ]◦ψ∨)(t̃) is an isomorphism,
we are reduced to prove the following: For all D̃ > 1 coprime to M we have the
following equality:

(∗)D̃ For all pairs (T, t̃) with T an S-scheme, D̃ invertible on T and e 6= t̃ ∈
E ′∨[D̃](T ) we have(

([D · D′] × e)∗U [D̃]
([N ]◦ψ∨)(t̃)

)
[([D̃] × t̃)∗A]

=
(
([D · D′] × e)∗U [D̃]

([N ]◦ψ∨)(t̃)

)
[([D̃] × t̃)∗B]. (A.5)

We compute the left hand side for arbitrary (T, t̃):(
([D · D′] × e)∗U [D̃]

([N ]◦ψ∨)(t̃)

)
(([D̃] × t̃)∗A) Lemma A.8(c)

=

= (id× e)∗
( ∑

α∈(kerψ)(S),
β∈(E ′∨[D′])(S)

U [N ]◦ψ, [DD̃D′]
(D̃)−1(s+α), t̃+t+β

(scan)

)
Lemma A.8(b)
=
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=

∑
α∈(kerψ)(S),
β∈(E ′∨[D′])(S)

(T(D̃)−1(s+α))
∗ω
[DD̃D′]
([N ]◦ψ∨)(t̃+t+β) =

= (T(D̃)−1(s))
∗

∑
α∈(kerψ)(S),
β∈(E ′∨[D′])(S)

T ∗α ω
[DD̃D′]
([N ]◦ψ∨)(t̃+t+β)

Lemma 5.6(b)
=

= (T(D̃)−1(s))
∗

∑
β∈(E ′∨[D′])(S)

ψ∗ω
[DD̃D′]
N (t̃+t+β)

Lemma 5.5(b)
=

= (D′)2 · (T(D̃)−1(s))
∗ψ∗ω

[DD̃]
(D′·N )(t̃+t). (A.6)

Before we simplify the right hand side of the above equation, we use Lemma A.8
to simplify the following expression:

([D · D′] × [N ] ◦ ψ∨)∗U [D̃]
([N ]◦ψ∨)(t̃) ◦ ([D̃] × Tt̃)

∗([D] × [N ])∗γψ,[D′] ◦

◦ ([D̃] × Tt̃)
∗(ψ × [D′])∗U [N ],[D]ψ(s),D′t

= ([D] × [N ])∗
[
([D′] × ψ∨)∗U [D̃]

([N ]◦ψ∨)(t̃) ◦ ([D̃] × TÑ t)
∗γψ,[D′]

]
◦

◦ ([D̃] × Tt̃)
∗(ψ × [D′])∗U [N ],[D]ψ(s),D′t

Lemma A.8(a)
=

= ([DD̃] × [N ])∗γψ,[D′] ◦ (ψ × [D′])∗
[
([D] × [N ])∗U [D̃]N D′ t̃ ◦

◦ ([D̃] × TD′ t̃)
∗U [N ],[D]ψ(s),D′t

] Corollary 3.3
=

= ([DD̃] × [N ])∗γψ,[D′] ◦ (ψ × [D′])∗U [N ],[DD̃]
D̃−1(ψ(s)),D′(t+t̃)

.

Using this and again Lemma A.8, the right hand side of (A.5) is:(
([D · D′] × e)∗U D̃

([N ]◦ψ∨)(t̃)

)
[([D̃] × t̃)∗B]

= (D′)2 · (id× e)∗
(
(ψ × [D′])∗U [N ],[DD̃]

D̃−1ψ(s),[D′](t+t̃)
(scan,E ′)

) Lemma A.8(a)
=

= (D′)2 · ψ∗T ∗D̃−1ψ(s)ω
[DD̃]
N D′(t+t̃) = (D

′)2 · T ∗D̃−1sψ
∗ω
[DD̃]
N D′(t+t̃).

Comparing this last equation to (A.6) shows that the equation in (∗)D̃ holds for
all pairs (T, t̃).
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