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Abstract

For an odd prime p, a p-transposition group is a group generated by a set of involutions such that the
product of any two has order 2 or p. We first classify a family of (G, 2)-geodesic transitive Cayley graphs
Γ := Cay(T, S ) where S is a set of involutions and T : Inn(T ) ≤ G ≤ T : Aut(T, S ). In this case, T is
either an elementary abelian 2-group or a p-transposition group. Then under the further assumption that
G acts quasiprimitively on the vertex set of Γ, we prove that: (1) if Γ is not (G, 2)-arc transitive, then this
quasiprimitive action is the holomorph affine type; (2) if T is a p-transposition group and S is a conjugacy
class, then p = 3 and Γ is (G, 2)-arc transitive.
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1. Introduction
In this paper, graphs are finite, simple, connected and undirected. In a noncomplete
graph Γ, a vertex triple (u, v,w) with v adjacent to both u and w is called a 2-arc if
u , w, and a 2-geodesic if in addition u,w are not adjacent. An arc is an ordered pair
of adjacent vertices. The graph Γ is said to be (G, 2)-arc transitive or (G, 2)-geodesic
transitive if its automorphism subgroup G is transitive on arcs, and also on 2-arcs or
2-geodesics, respectively. Clearly, every 2-geodesic is a 2-arc, but some 2-arcs may
not be 2-geodesics. If Γ has girth 3 (length of the shortest cycle is 3), then the 2-arcs
contained in 3-cycles are not 2-geodesics. The graph in Figure 1 is the octahedron
which is (G, 2)-geodesic transitive but not (G, 2)-arc transitive with valency 4. Thus
the family of noncomplete (G, 2)-arc transitive graphs is properly contained in the
family of (G, 2)-geodesic transitive graphs.

The first remarkable result about (G, 2)-arc transitive graphs comes from
Tutte [20, 21], and since then, this family of graphs has been studied extensively; see
[1, 12, 14, 16, 18, 22]. The study of finite(G,2)-geodesic transitive graphs was initiated
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Figure 1. Octahedron.

in [4], where Devillers et al. classified tetravalent connected (G, 2)-geodesic transitive
graphs. Later, in [7], they determined the family of prime valency (G, 2)-geodesic
transitive graphs. The possible local structures of (G, 2)-geodesic transitive graphs are
characterized in [5]. In [6], a general study of normal (G, 2)-geodesic transitive Cayley
graphs was given.

For a finite group T , and a subset S of T such that 1 < S and S = S −1, the Cayley
graph Γ := Cay(T, S ) of T with respect to S is the graph with vertex set T and edge set
{{g, sg} | g ∈ T, s ∈ S }. In particular, Γ is connected if and only if T = 〈S 〉. The group
R(T ) = {σt | t ∈ T } of right translations σt : x 7→ xt is a subgroup of the automorphism
group Aut(Γ) and acts regularly on the vertex set. We may identify T with R(T ).
Godsil [10, Lemma 2.1] observed that NAut(Γ)(T ) = T : Aut(T, S ) where Aut(T, S ) =

{σ ∈ Aut(T ) | S σ = S }. The family of Cayley graphs Γ such that NAut(Γ)(T ) = Aut(Γ)
has been studied under various additional conditions; see [8, 13, 15, 19, 23].

Definition 1.1. Let Γ = Cay(T,S ) for a finite group T and a subset S ( T\{1}, S = S −1.
Then Γ is said to be normal 2-geodesic transitive if it is (G, 2)-geodesic transitive for
a group G satisfying T : Inn(T ) ≤ G ≤ T : Aut(T, S ). We also say that Γ is normal
(G, 2)-geodesic transitive if we wish to specify the group G.

There are many normal (G, 2)-geodesic transitive Cayley graphs. One simple
example is Cay(T, S ) where T = 〈a〉 � Zr for some r ≥ 4, S = {a, a−1}, and G = T : H
where H = 〈α〉 with α : a 7→ a−1.

In [6], a reduction theorem for the family of normal (G, 2)-geodesic transitive
Cayley graphs was produced and those which are complete multipartite graphs were
also classified. It was pointed out that the study of normal (G, 2)-geodesic transitive
Cayley graphs Cay(T, S ) reduces to the following three problems: investigating the
case where T is a minimal normal subgroup of G, studying the 2-geodesic transitive
covers of these graphs, and investigating the 2-geodesic transitive covers of complete
graphs. This paper is a contribution to the first problem. In the case where T is
a minimal normal subgroup of G, many such groups satisfy T : Inn(T ) ≤ G. We
study normal (G, 2)-geodesic transitive Cayley graphs Cay(T, S ) with S being a set
of involutions.

Let T be a finite group. Then T ′ denotes the derived subgroup of T . For an odd
prime p, a p-transposition group is a group generated by a set of involutions such that
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the product of any two has order 2 or p. Such groups have been studied by Fisher [9]
and Aschbacher [2, 3]. For a vertex u of a graph Γ, Γ2(u) denotes the set of vertices
which are at distance 2 from u in Γ.

Theorem 1.2. Let Γ = Cay(T, S ) be a connected normal (G, 2)-geodesic transitive
graph with S being a set of involutions. Then all elements of Γ2(1) have the same prime
order, say p, and either p = 2 or T is a center-free p-transposition group. Further, one
of the following holds.

(1) If p = 2, then T � Zn
2 for some n ≥ 2.

(2) If S is a conjugacy class and p = 3, then Γ is (G,2)-arc transitive and |T : T ′| ≤ 2.
(3) If S is a conjugacy class and p > 3, then T is solvable but not characteristically

simple.
(4) If S = aT

1 ∪ aT
2 ∪ · · · ∪ aT

r and p ≥ 3 where ai ∈ S and r ≥ 2, then |aT
i | ≥ 2, each

〈aT
i 〉 is a proper nonabelian normal subgroup of T and the girth of Γ is 3.

Remark 1.3. (1) This theorem partially classifies the case where S is a set of
involutions. It is also interesting to investigate the case where S contains no
involutions.

(2) In Theorem 1.2(1), examples exist for each n. Let T = 〈b1〉 × · · · × 〈bn〉 � Z
n
2,

S = T\{1, b1 · · · bn} and let G = T : GL(n, 2)b1···bn . Then Cay(T, S ) � K2n−1[2] is normal
(G, 2)-geodesic transitive.

(3) In Theorem 1.2(2), Γ is (G, 2)-arc transitive, and this family of graphs has been
studied extensively.

(4) Let Γ be a graph in Theorem 1.2 which is not (G, 2)-arc transitive. Then Γ is
noncomplete, arc transitive of girth 3. Thus Γ has valency at least 4. Since Γ has girth
3, it follows that a, b are adjacent for some a, b ∈ S . Since S is a set of involutions, it
follows that (a, b, c, a) is a triangle of [S ] (the subgraph induced by the set S ) for some
c ∈ S . If Γ has valency 4, then by [5, Theorem 1.1], [S ] is isomorphic to C4 or 2K2

which has no triangles, a contradiction. If Γ has valency 5, then by [5, Theorem 1.1],
[S ] is isomorphic to C5 which has no triangles, again a contradiction. Thus Γ has
valency at least 6. One example graph of valency 6 is the graph in (2) with n = 3.

A transitive permutation group is said to be quasiprimitive if its every nontrivial
normal subgroup is transitive. The family of quasiprimitive permutation groups
has been classified into eight types by Praeger [17] analogous to the O’Nan–Scott
theorem in primitive permutation groups. These eight types are holomorph affine
(HA), holomorph simple (HS), holomorph compound (HC), almost simple (AS),
simple diagonal (SD), compound diagonal (CD), product action (PA) and twisted
wreath product (TW). Let Γ = Cay(T, S ) be a normal (G, 2)-geodesic transitive graph.
Suppose that G is quasiprimitive on V(Γ). If Γ is (G,2)-arc transitive, then [17] showed
that the possible quasiprimitive types are HA, AS, PA and TW. If Γ is not (G, 2)-arc
transitive, that is, it has girth 3, then as an application of Theorem 1.2, we have the
following observation.
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Corollary 1.4. Let Γ = Cay(T, S ) be a connected normal (G, 2)-geodesic transitive
graph with S being a set of involutions. Suppose that G acts quasiprimitively on V(Γ).

(1) If Γ is not (G, 2)-arc transitive, then the quasiprimitive action is of HA type.
(2) If T is a p-transposition group and S is a conjugacy class, then p = 3 and Γ is

(G, 2)-arc transitive.

2. Proof of Theorem 1.2

We prove Theorem 1.2 by a series of lemmas. In all lemmas of this section, we
assume that Γ = Cay(T, S ) is connected normal (G, 2)-geodesic transitive.

Remark 2.1. Suppose that Γ = Cay(T, S ) is a connected normal (G, 2)-geodesic
transitive graph. Then the stabilizer of the identity G1 ≤ Aut(T ) acts transitively on
both S and Γ2(1). Thus all elements of S have the same order and all elements of
Γ2(1) have the same order.

For two vertices u, v of Γ, we denote by dΓ(u, v) the distance between u and v in Γ.

Lemma 2.2. Let N be a normal subgroup of G such that N < T. Then dΓ(x, y) ≥ 3 for
distinct x, y ∈ N if and only if Γ2(1) ∩ N = ∅.

Further, if dΓ(x, y) ≥ 3 for some distinct x, y ∈ N, then ns ∈ S where s ∈ S and n ∈ N
implies that n = 1.

Proof. Assume first that dΓ(x, y) ≥ 3 for distinct x, y ∈ N. Then dΓ(1, z) ≥ 3 for all
z ∈ N\{1}, and hence Γ2(1) ∩ N = ∅. Conversely, assume that Γ2(1) ∩ N = ∅. Since N
is a normal subgroup of G, by [6, Lemma 3.1(1)], dΓ(u, v) ≥ 2 for distinct u, v ∈ N. If
dΓ(u, v) = 2 for some u, v ∈ N, then by [6, Lemma 3.1(2)], either ΓN � K2 or Γ � Kn[b]
and ΓN � Kn for some n ≥ 3,b ≥ 2. In either case, Γ2(1) ∩ N , ∅, a contradiction. Thus
dΓ(x, y) ≥ 3 for distinct x, y ∈ N.

Now suppose that dΓ(x, y) ≥ 3 for all distinct x, y ∈ N. Then N ∩ S = ∅ and
Γ2(1) ∩ N = ∅, so N ∩ (S ∪ Γ2(1)) = ∅. Assume that ns ∈ S where s ∈ S and n ∈ N.
If n , 1, then ns = s′ for some s′ (, s) ∈ S . Thus n = s′s−1 ∈ S or Γ2(1), which
contradicts the fact that N ∩ (S ∪ Γ2(1)) = ∅. Hence n = 1. �

Let a be an element of a group T . Then o(a) denotes the order of a.

Lemma 2.3. If a, b ∈ S such that o(a) = 2 and ab ∈ Γ2(1), then o(ab) ∈ {2, 4, i} where i
is an odd integer.

Proof. Suppose that a, b ∈ S such that o(a) = 2 and ab ∈ Γ2(1). Then by Remark 2.1,
all elements of S are involutions and all elements of Γ2(1) have the same order o(ab).
If (ab)2 = 1, then o(ab) = 2. Suppose that (ab)2 , 1. Then (ab)2 = abab = aab ∈ S or
Γ2(1), and hence o(ab) = 4 or an odd integer i, respectively. �

Lemma 2.4. Suppose that a, b ∈ S such that o(a) = p is a prime and ab ∈ Γ2(1) of order
i. Let N be a normal subgroup of G such that N < T, and let Γ = Cay(T , S ) where
T = T/N, S = S N/N. Then
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(1) o(Ns1) = p and o(Ns1Ns2) divides i whenever Ns1Ns2 ∈ Γ2(1T ) and s1, s2 ∈ S .
(2) Suppose that p = 2 and i ∈ {4, q} where q is an odd prime. If Γ is noncomplete

and Ns1Ns2 ∈ Γ2(1T ), then o(Ns1Ns2) = i where Ns1,Ns2 ∈ S .

Proof. (1) Since Γ = Cay(T, S ) is normal (G, 2)-geodesic transitive and N is a normal
subgroup of G such that N < T , it follows from [6, Lemma 3.1(1)] that S ∩ N = ∅ and
Ns1 = s1N. Thus Ns1 , N, and (Ns1)p = Nsp

1 = N. As p is a prime, o(Ns1) = p.
Now suppose that Ns1Ns2 ∈ Γ2(1T ). Then s1s2 < S ∪ {1}, and so s1s2 ∈ Γ2(1). Since

all elements of Γ2(1) have the same order, o(s1s2) = i, hence (Ns1s2)i = N(s1s2)i = N.
Thus o(Ns1Ns2) divides i.

(2) Suppose that Γ is noncomplete and Ns1Ns2 ∈ Γ2(1T ) where Ns1,Ns2 ∈ S . Then
by (1), o(Ns1Ns2) = t (, 1) divides i. If i = q, then t = q as q is a prime. Suppose
that t < i = 4. Then t = 2. Hence N(s1s2)2 = N. Since Ns1Ns2 ∈ Γ2(1T ), it follows
that s1s2 ∈ Γ2(1), and so o(s1s2) = 4. Thus o((s1s2)2) = 2, and so (s1s2)2 < {1} ∪ Γ2(1).
Since p = 2, all elements of S are involutions, and it follows that (s1s2)2 = s1ss2

1 ∈

N ∩ S , contradicting [6, Lemma 3.1(1)]. Thus t = 4 = i. �

Lemma 2.5. Suppose that a, b ∈ S such that o(a) = 2, ab ∈ Γ2(1) with o(ab) , 2. Let N
be a normal subgroup of G such that N < T and Γ = Cay(T , S ) where T = T/N, S =

S N/N. Then Γ is complete if and only if dΓ(n1, n2) = 2 for some n1, n2 ∈ N.

Proof. Since o(a) = 2 and all elements of S have the same order, it follows that S
is a set of involutions. Suppose first that dΓ(n1, n2) = 2 for some n1, n2 ∈ N. Then
by [6, Lemma 3.1(2)], Γ � Kr is complete for some r ≥ 2.

Conversely, suppose that Γ is complete. Since N is an orbit of G, it follows that
dΓ(u, v) ≥ 2 for distinct u, v ∈ N. Assume that dΓ(u, v) ≥ 3 for distinct u, v ∈ N. Then
by Lemma 2.2, Γ2(1) ∩ N = ∅. Since Γ is noncomplete, there exist x, y ∈ S such that
yx ∈ Γ2(1). Then yx < N, and hence Nx , Ny. Since Γ is complete, it follows that Nx
and Ny are adjacent in Γ, so Ny = NsNx for some Ns ∈ S . Thus Ny = Nsx, and hence
y = nsx for some n ∈ N. Since s, x ∈ S , it follows that either sx = 1 or sx ∈ S ∪ Γ2(1). If
sx = 1, then y = n, contradicting [6, Lemma 3.1(1)] that S ∩ N = ∅. If sx ∈ S , then by
Lemma 2.2, n = 1 and y = sx, and so yx = s ∈ S , contradicting the fact that yx ∈ Γ2(1).
Thus sx ∈ Γ2(1).

Since N is a normal subgroup of T , it follows that N s = N, and so nsns = nn′ for
some n′ ∈ N. Since ab ∈ Γ2(1), it follows from Lemma 2.3 that o(ab) ∈ {4, i} where i is
an odd integer. Since all elements of Γ2(1) have the same order, it follows that o(yx) =

o(ab) ∈ {4, i}. First, suppose that o(yx) = 4. Recall that y = nsx, so yx = ns. Hence
nn′ = (ns)2 = (yx)2 = yyx ∈ S , and so nn′ ∈ S ∩ N, contradicting [6, Lemma 3.1(1)].
Next suppose that o(yx) = i is an odd integer. Then nn′ = (ns)2 = (yx)2 = yyx ∈ Γ2(1),
which contradicts the fact that Γ2(1) ∩ N = ∅. Thus, Nx and Ny are not adjacent, and
hence Γ is noncomplete, which contradicts our assumption. Thus dΓ(n1, n2) = 2 for
some n1, n2 ∈ N. �

The center of a group T is denoted by Z(T ).
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Lemma 2.6. Let N be a normal subgroup of G such that N < T. Let Γ = Cay(T , S )
where T = T/N, S = S N/N. Let G be the group induced by G on V(Γ). Then
T : Inn(T ) ≤ G.

Proof. Since Γ is a normal (G,2)-geodesic transitive graph, it follows that T : Inn(T ) ≤
G. Hence Inn(T ) ≤ G1, the stabilizer of the identity in G. Let φ(g) be the induced
action on T by g ∈ G1. Then (Nt)φ(g) = Ntg for any Nt ∈ T . Let Nx1, Nx2 ∈ T .
Then (Nx1Nx2)φ(g) = N(x1x2)g = Nxg

1xg
2 = Nxg

1Nxg
2 = (Nx1)φ(g)(Nx2)φ(g). Thus φ(g) is a

homomorphism. Assume that (Nx1)φ(g) = (Nx2)φ(g). Then Nxg
1 = Nxg

2, so N(x1x−1
2 )g =

N, and hence (x1x−1
2 )g ∈ N, that is, x1x−1

2 ∈ Ng−1
= N. Thus Nx1 = Nx2, and hence φ(g)

is injective. Since T is finite, it follows that φ(g) is surjective. Thus φ(g) ∈ Aut(T ).
Define a map σ : φ(Inn(T )) 7→ Inn(T ) by φ( t̂ ) 7→ N̂t. Suppose that N̂x = N̂y.

Then for any Na ∈ T , we have (Na)φ( x̂ )) = Nax = Nx−1ax and (Na)φ( ŷ )) = Nay =

Ny−1ay. Since N̂x = N̂y, it follows that xy−1 ∈ N, and so axy−1a−1 ∈ N, x−1axy−1a−1x ∈
N. Hence Nx−1ax = Nx−1ay = Ny−1ay. Thus (Na)φ( x̂ ) = (Na)φ( ŷ )), and so φ( x̂ )) =

φ(ŷ )). Thusσ is well defined and also injective. Let N̂x (, 1) ∈ Inn(T ). Then x < Z(T ),
else Nx ∈ Z(T ), a contradiction. Thus σ(φ( x̂ ))) = N̂x, and hence σ is surjective. Thus
σ is a bijection. Finally, for any vertex Nt ∈ T , (Nt)φ( x̂ )) = Ntx = (Nt)N̂x, it follows
that φ(Inn(T )) and Inn(T ) are permutationally isomorphic. Thus Inn(T ) � φ(Inn(T )) ≤
φ(G1) �G1, and so T : Inn(T ) ≤ T : G1. Finally, by [6, Lemma 3.2(1)], G = T : G1, so
T : Inn(T ) ≤ G. �

Lemma 2.7. Let a, b ∈ S such that o(a) = 2 and ab ∈ Γ2(1). Then T is abelian if and
only if o(ab) = 2, which holds in turn if and only if Γ2(1) ∩ Z(T ) , ∅.

Proof. Since a ∈ S and o(a) = 2, it follows that all elements of S are involutions and
all elements of Γ2(1) have the same order o(ab). Since T = 〈S 〉, it follows that T is
abelian if and only if o(ab) = 2.

Now suppose that Γ2(1) ∩ Z(T ) , ∅ and t ∈ Γ2(1) ∩ Z(T ). Then t = xy for
some x, y ∈ S . Assume that o(ab) = i , 2. Then o(xy) = i. Since xy ∈ Z(T ), it
follows that (xy)x = x(xy) = y. Thus xy = yx, and hence o(xy) = 2, contradicting that
o(xy) = i , 2. Thus o(ab) = 2. Conversely, if o(ab) = 2, then T is abelian, and so
Γ2(1) ∩ Z(T ) , ∅. �

Lemma 2.8. Let a, b ∈ S such that o(a) = 2, ab ∈ Γ2(1) and o(ab) ∈ {4, p} where p is
odd prime. Suppose that Z := Z(T ) , 1. Let T = T/Z, S = S Z/Z, Γ = Cay(T , S ) and
G be the group induced by G on T. Then Γ is normal (G, 2)-geodesic transitive with
T : Inn(T ) ≤ G, o(Zs1) = 2 and o(Zs1Zs2) = o(ab) where Zs1, Zs2 ∈ S and Zs1Zs2 ∈

Γ2(1).

Proof. Since Z is a characteristic subgroup of T , it follows that Z is a normal subgroup
of G. Let G1 be the group induced by G1 on V(Γ). Since ab ∈ Γ2(1) is not an involution,
it follows from Lemma 2.7 that Γ2(1) ∩ Z = ∅. Hence by Lemma 2.2, dΓ(u, v) ≥ 3
for all distinct u, v ∈ Z. By Lemma 2.5 and [6, Lemma 3.1(1)], Γ is a cover of Γ
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and Γ is noncomplete connected (G, 2)-geodesic transitive where G = T ·G1. Hence
|S | = |S | and T = 〈S 〉. By Lemma 2.4(1), o(Zs) = 2 for every Zs ∈ S , and so S = S

−1
.

Therefore, Γ is a normal (G, 2)-geodesic transitive graph.
Let Zs1, Zs2 ∈ S such that Zs1Zs2 ∈ Γ2(1). Then by Lemma 2.4(2), o(Zs1Zs2) =

o(ab). Further, by Lemma 2.6, T : Inn(T ) ≤ G. �

For a prime p, Op(G) denotes the maximal normal p-subgroup of G.

Lemma 2.9. Let a, b ∈ S such that o(a) = 2 and ab ∈ Γ2(1). Then the following two
statements hold.

(1) o(ab) , 4.
(2) Suppose that o(ab) is an odd prime. Then Z(T ) = 1.

Proof. (1) Assume that o(ab) = 4. Then all elements of Γ2(1) have order 4. Let T be a
minimal group with these properties.

Since T : Inn(T ) ≤ G, it follows that Inn(T ) ≤ G1, and so S = aT
1 ∪ aT

2 ∪ · · · ∪ aT
r

where ai ∈ S . Let Ti = 〈aT
i 〉. Then Ti E T . If |aT

i | = 1, then since G1 is transitive
on S , it follows that |xT | = 1 for every x ∈ S , that is, S ⊂ Z(T ). Thus o(xy) = 2 for
any x , y ∈ S contradicting that all elements of Γ2(1) have order 4. Thus |aT

i | ≥ 2.
Let x, y ∈ aT

i be two distinct elements. Then either 〈x, y〉 � Z2 × Z2 or 〈x, y〉 � D8.
Hence by [11, page 117], aT

i ⊆ O2(Ti). Since O2(Ti) is a characteristic subgroup of
Ti, it follows that O2(Ti) E T . Since O2(T ) is the maximal normal 2-subgroup of T , it
follows that O2(Ti) ≤ O2(T ), and hence S ⊆ O2(T ). Thus T is a nonabelian 2-group,
as T = 〈S 〉, ab ∈ Γ2(1) and o(ab) = 4. Hence 1 < Z(T ) < T .

Let Z = Z(T ), T = T/Z, S = S Z/Z and Γ = Cay(T , S ). Let G be the group induced
by G on V(Γ). By Lemma 2.8, Γ is normal (G, 2)-geodesic transitive with T : Inn(T ) ≤
G, and o(Zs1) = 2, o(Zs1Zs2) = o(ab) = 4 where Zs1, Zs2 ∈ S and Zs1Zs2 ∈ Γ2(1).
However, T < T , contradicting that T is minimal. Thus, o(ab) , 4.

(2) Suppose that Z := Z(T ) , 1. Let T be a minimal such group. Let T = T/Z,
S = S Z/Z and Γ = Cay(T , S ). Let G be the group induced by G on V(Γ). Since
ab ∈ Γ2(1) with odd prime order, say p, T is nonabelian. Hence by Lemma 2.8, Γ is
normal (G, 2)-geodesic transitive with T : Inn(T ) ≤ G, o(Zs) = 2 for every Zs ∈ S ,
o(Zs1Zs2) = p where Zs1Zs2 ∈ Γ2(1). However, T < T , contradicting that T is a
minimal such group. Thus, Z(T ) = 1. �

The following lemma proves the key part of our main theorem.

Lemma 2.10. Let a, b ∈ S such that o(a) = 2 and ab ∈ Γ2(1) of odd prime order. Then
T is not nilpotent and one of the following holds.

(1) S = aT . If o(ab) = 3, then Γ is (G, 2)-arc transitive and |T : T ′| ≤ 2. If o(ab) > 3,
then T is solvable but not characteristically simple.

(2) S = aT
1 ∪ aT

2 ∪ · · · ∪ aT
r where ai ∈ S and r > 1. Then xy = yx for any x ∈ aT

i and
y ∈ aT

j whenever i , j, |aT
i | ≥ 2, each 〈aT

i 〉 is a proper normal subgroup of T and
Γ has girth 3.
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Proof. Suppose that T is nilpotent. Then its Sylow 2-subgroup H is a characteristic
subgroup of T . Since all elements of S are involutions, it follows that H = 〈S 〉 = T ,
and so T is a 2-group, and this contradicts that T has odd prime order elements. Thus
T is not nilpotent.

(1) Let S = aT . Suppose first that o(ab) = 3. Then all elements of Γ2(1) have order
3. Let K = {ab | ab = ba , 1, a, b ∈ S }. If Γ has girth 3, then there exists c ∈ S such
that a, c are adjacent, that is, c = da for some d ∈ S . Since o(da) = 2, da = ad , 1, and
hence da ∈ K. By [9, Lemma 4.1.1], S ∩ K = ∅, and hence da ∈ Γ2(1), contradicting
that all elements of Γ2(1) have order 3. Thus the girth of Γ is at least 4 and Γ is
(G, 2)-arc transitive. Further, by [9, page 235], |T : T ′| ≤ 2.

Now suppose that o(ab) = p > 3. Then for any two distinct elements x, y ∈ S ,
o(xy) = 2 or p. Thus S is a conjugacy class of p-transpositions. If T is nonsolvable,
then by [2, Lemma 5.2], p = 3, contradicts our assumption. Thus T is solvable.
Suppose that T is characteristically simple. Then T = M1 × M2 × · · · × Mr where
Mi � M j is simple. Since T is solvable, it follows that each Mi is solvable, and hence
Mi � Zp′ where p′ is a prime. If p′ = 2, then T has no elements of order p; if p′ = p,
then T has no involutions, a contradiction. Thus T is solvable but not characteristically
simple.

(2) Suppose that S = aT
1 ∪ aT

2 ∪ · · · ∪ aT
r where ai ∈ S and r > 1. Suppose that

o(ab) = p. Let Si = aT
i , S j = aT

j where i , j, and let x ∈ Si, y ∈ S j. Assume that
xy , yx. Then o(xy) , 2, that is, xy < S . So xy ∈ Γ2(1), and hence o(xy) = p, (xy)p = 1.
Thus (xy)p−1x = y ∈ S j, that is, x(y(xy)p−2)x ∈ S j, and hence y(xy)p−2 ∈ S x

j = S j. Since
y(xy)p−2 = y(xy)p−3xy, it follows that y(xy)p−3xy ∈ S j, (xy)p−3x ∈ S y

j = S j. Repeating
the above process, we finally obtain yxy ∈ S j, x ∈ S y

j = S j, a contradiction. Thus
xy = yx.

Let Ti = 〈Si〉. Then Ti E T . If |Si| = 1 for some i, then since G1 is transitive on S , it
follows that |xT | = 1 for every x ∈ S , that is, S ⊂ Z(T ). By Lemma 2.9(2), Z(T ) = 1,
and so T = 〈S 〉 = Z(T ) = 1, a contradiction. Thus |Si| ≥ 2, and so each Ti has at least
three elements.

Suppose that T = 〈Sk〉 for some k ∈ {1, . . . , r}. Since G1 ≤ Aut(T, S ) is transitive
on S , it follows that T = 〈Si〉 for each i. Since xy = yx for any x ∈ Si and y ∈ S j
whenever i , j, it follows that T = 〈S2〉 ≤CT (〈S1〉) = CT (T ) = Z(T ). By Lemma 2.9(2),
T = Z(T ) = 1, a contradiction. Thus 〈Sk〉 < T for each k, and so each 〈Sk〉 is a nontrivial
proper normal subgroup of T .

Finally, since a2a1 = a1a2, it follows that o(a1a2) = 2, that is, a1a2 ∈ S . Thus Γ has
girth 3. �

We are now ready to prove the main theorem.

Proof of Theorem 1.2. Suppose that a, b ∈ S such that o(a) = 2 and ab ∈ Γ2(1). Then
it follows from Lemma 2.3 that o(ab) = j ∈ {2, 4, i} where i is an odd integer. Further,
as T : Inn(T ) ≤ G, by Lemma 2.9(1), j , 4, and so j ∈ {2, i}.

Suppose that j = 2. Then by Lemma 2.7, T is abelian. Thus T � Zn
2 for some n ≥ 2,

and (1) holds.
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Now let j = i. Suppose that i = mn with m > 1, n > 1. Then both m, n are
odd integers, as i is odd. Let x = (ab)m. Then o(x) = n. Moreover, x = (ab)m =

a(bab . . . ab) = a(ba)kb(ab)k = ab(ab)k
where k = (m − 1)/2. Since Inn(T ) ≤ G1, it

follows that b(ab)k
∈ S , and hence x lies in S ∪ Γ2(1), contradicting the fact that

elements of S ∪ Γ2(1) have order 2 or mn. Thus i is an odd prime and T is a p-
transposition group. By Lemma 2.9(2), Z(T ) = 1. Since Γ is (G, 2)-geodesic transitive
and T : Inn(T ) ≤ G, it follows that S = aT

1 ∪ aT
2 ∪ · · · ∪ aT

r where ak ∈ S . Thus (2)–(4)
follow from Lemma 2.10. �

Proof of Corollary 1.4. (1) Suppose that Γ is not (G, 2)-arc transitive. Since Γ is
a normal (G, 2)-geodesic transitive graph, it follows that T is a normal subgroup of
G. Assume that G is quasiprimitive of type X on V(Γ). Then T is a minimal normal
subgroup of G, X ∈ {HA, HS, AS, HC, TW} and T : Inn(T ) ≤G ≤ T : Aut(T,S ). Since
Γ is not (G, 2)-arc transitive, the girth of Γ is 3, and it follows from Theorem 1.2 that
T is not simple. Hence X is not any of the types AS, HS, HC and TW, that is, X is of
type HA.

(2) Suppose that T is a p-transposition group and S is a conjugacy class. Assume
p > 3. Then by Theorem 1.2 (3), T is solvable but not characteristically simple. Hence
T has a proper normal subgroup N which is also a normal subgroup of G. However, N
is not transitive on V(Γ), contradicting that G is quasiprimitive on V(Γ). Thus p = 3.
By Theorem 1.2(2), T is a 3-transposition group and Γ is (G, 2)-arc transitive. �

We give another corollary of Theorem 1.2. Let Γ be a G-vertex transitive graph. If
N is an intransitive normal subgroup of G, then the set of N-orbits B = {B1, B2, . . . , Bn}

forms a G-invariant partition of V(Γ). The quotient graph ΓN of Γ is the graph with
vertex set B such that Bi, B j are adjacent in ΓN if and only if there exist x ∈ Bi, y ∈ B j

such that x, y are adjacent in Γ. Further, Γ is said to be a cover of ΓN if for each edge
{Bi, B j} of ΓN and v ∈ Bi, we have |Γ(v) ∩ B j| = 1. (Γ(v) denotes the set of vertices of Γ

at distance 1 from v.)

Corollary 2.11. Let T, S ,Γ,G be as in Theorem 1.2. Let T be a p-transposition group
with p > 3. If S is a conjugacy class and Γ is not (G, 2)-arc transitive, then one of the
following holds.

(1) Γ � Kn[b] for some n ≥ 3, b ≥ 2.
(2) There exists a normal subgroup N of G such that N < T and ΓN is complete and

either ΓN � K2 or Γ is a cover of ΓN .

Proof. Suppose that S is a conjugacy class and Γ is not (G, 2)-arc transitive. Since
p > 3, it follows from Theorem 1.2(3) that T is not characteristically simple, so T is
not a minimal normal subgroup of G. If Γ � Kn[b] for some n ≥ 3, b ≥ 2, then (1) holds.
Suppose not this case. Note that Γ is not (G, 2)-arc transitive. Then it follows from [6,
Theorem 1.3] that there exists a normal subgroup N of G such that N < T , and either
ΓN � K2 or Γ is a cover of ΓN , and ΓN � Cay(T , S ) where T = T/N and S = S N/N.
Further, by Lemma 2.4(1), o(Ns) = 2 for every Ns ∈ S . Suppose that Γ is a cover
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of ΓN . Assume that ΓN is not complete. Let T be a minimal such group. Then by
[6, Lemma 3.3], Cay(T , S ) is a normal (G, 2)-geodesic transitive Cayley graph where
G � G/N is the group induced by G on V(Γ), and S = (Ns)T , contradicting that T is
minimal. Thus ΓN is a complete graph. �

3. Examples

Example 3.1. Let T = 〈a1, . . . , ai, b1, . . . , bi〉 � Z
n
2 where n = 2i, i ≥ 1. Let S = S a ∪ S b

where S a = 〈a1, . . . , ai〉\{1} and S b = 〈b1, . . . , bi〉\{1}. Then Γ = Cay(T, S ) is a normal
(G, 2)-geodesic transitive Cayley graph where G = T : Aut(T, S ). In particular, Γ is a
graph in Theorem 1.2(1) of girth 3 and diameter 2.

Proof. Since T � Zn
2, it follows that for any x, y ∈ S , xy ∈ S if and only if x, y are

adjacent in Γ. Since S a = 〈a1, . . . , ai〉\{1}, S b = 〈b1, . . . , bi〉\{1}, and S = S a ∪ S b, it
follows that a jak, b jbk ∈ S and a jbk ∈ Γ2(1).

We identify T with the n-dimensional vector space over the finite field F2, and
identify the identity with the zero vector. Then {a1, . . . , ai, b1, . . . , bi} is a basis
of T . Let M be the subspace generated by {a1, . . . , ai} and N be the subspace
generated by {b1, . . . , bi}. Let A = Aut(T ), and let AM , AN be the stabilizers of the
subspaces M, N, respectively. Then AM � AN � GL(i, 2) ×GL(i, 2) ≤ G1 = Aut(T, S )
and GL(i, 2) o S2 ≤ G1. Further, GL(i, 2) o S2 is transitive on both S and Γ2(1).

Note that Γ2(1) ∩ Γ(a1) = {x + a1 | x ∈ S b}. Since Aut(N) is transitive on Γ2(1) ∩
Γ(a1) and Aut(N) ≤ G1,a1 , it follows that G1,a1 is transitive on Γ2(1) ∩ Γ(a1). Hence Γ

is (G, 2)-geodesic transitive. In particular, if i ≥ 2, then a1a2 ∈ S , so Γ has girth 3.
Let x ∈ S and b ∈ S b. If x ∈ S a, then xa1 ∈ S , and so xa1b ∈ Γ2(1). If x ∈ S b,

then xb ∈ S , and so xa1b = xba1 ∈ Γ2(1). Thus Γ3(1) ∩ Γ(a1b) = ∅. Since Γ is (G, 2)-
geodesic transitive, it follows that Γ has diameter 2. �

Example 3.2. (1) Let T = S 3 and S be the set of all transpositions of T . Then
Cay(T, S ) � K3,3. In particular, Γ is a graph in Theorem 1.2(2).

(2) Let T = Zn
3 : Z2 where Z2 is the involution exchanging the two nonidentity

elements of Z3. Then T is a Frobenius group. Let S be the set of all involutions
of T . Then Cay(T, S ) is a graph in Theorem 1.2(2).

(3) Let T = Zn
p : Z2 where p > 3 is odd prime and Z2 is the involution exchanging

the generator of Zp and its inverse. Then T is a Frobenius group. Let S be the
set of all involutions of T . Then Cay(T, S ) is a graph in Theorem 1.2(3).

We do not have examples for Theorem 1.2(4) at the time of writing.
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