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SUBRINGS OF k[X, Y] GENERATED BY MONOMIALS 

DAVID F. ANDERSON 

1. I n t r o d u c t i o n . In this paper we s tudy subrings A of B = k[X, Y] 
generated by monomials over k. If A is normal and A C B integral, we can 
completely characterize A. If dim A = 2, we show tha t A is isomorphic to a 
subring A' of B generated by monomials with A' C B integral. The author 
became interested in these rings while studying projective modules over sub-
rings of k[X, Y], For some applications, see [1]. 

In Section 4 we calculate Cl(A), the divisor class group of A. We also show 
tha t Go (A) is precisely Cl(^4). 

Rings generated by monomials may also be studied by considering the semi­
group of the exponents of their monomials. For example, see [4]. 

This paper constitutes par t of the author ' s dissertation at the University of 
Chicago, under the direction of Professor M. Pavaman Mur thy . The author 
would like to thank Professor Mur thy for his many helpful suggestions. 

2. S u b r i n g s of k[X, Y] g enera ted by m o n o m i a l s , k will always denote a 
field, but in most cases it is clear tha t k could be any normal domain. 

We first note tha t if A is a subring of k[X, Y] generated by monomials, then 
A is a homogeneous or graded ring with the natural grading it inherits from 
k[X, Y]. In fact, A is also bihomogeneous, tha t is, J^aijX

iYi is in A if and only 
if each aijX

tY:' is in A. We also note tha t if A is any bihomogeneous subring 
of k[X, Y] containing k, then necessarily A is generated by monomials over k. 

First we s tudy the case when A C k[X, Y] is integral. Later (Proposition 
2.8) we will see tha t we can always reduce to this case when (Krull) dim A = 2. 
The following lemma is obvious. 

LEMMA 2.1. Let A be an affine subring of B = k[X, Y] generated by monomials, 
then A C B is integral if and only if Xm and Yn are in A for some positive m 
and n. 

If some power of X and Y is in A, clearly A is affine and A C k\X, Y] is 
integral. Of course not all subrings of k[X, Y] generated by monomials are 
afiine; for example, consider A = k[{XnY}n=o]. 

LEMMA 2.2. Let A be an affine normal subring of B = k[X, Y] generated by 
monomials with A C B integral. Let Xm and Yn be the smallest positive powers of 
X and Yin A. Then 
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(1) if Xa and Ybare in A, thenm\a andn\b. 
Also assume that k[Xm

f Yn] £ A, and let XiYj be in A with ij ^ 0 and i as 

small as possible. Then 

(2) 0 < i < m and i\m; 
(3) if Xe Yd is in A, then i\c. 

Proof. We prove (1); the proofs of (2) and (3) are similar. Let Xa be in A, 

then a = mq + r with 0 ^ r < m. Clearly Xr = (Xa) (Xm)-q is in the quot ient 
field of A. But Xr is integral over A, and A is normal, so Xr is in A. m was 
chosen to be minimal, so r = 0, and thus m\a. 

Let A be as in Lemma 2.2 and Xi Yj in A with i as small as possible. As above, 
by dividing by powers of Yn, we can also assume tha t 0 < j < n. So there is 
c\XlYj in A with 

(1) 0 < i < m, 

(2) 0 < j < n, and 
(3) i as small as possible. 

I t is easy to see tha t j is uniquely determined. These three monomials Xm, Y'\ 
and XiYj completely determine A. 

PROPOSITION 2.3. Let A be as above. Then A = k(Xm, XlYj, Yn) C\ k[X, Y]. 

Proof. Let K be the quot ient field of A and 7? = k(Xm, X'Y*, Yn) C\ k\X, Y]. 
k(X'\ XlYf Yn) C K, so R = k(X'\ XlY\ Yn) C\ k[X, Y] C K C\ k[X, Y]. 
But A is normal and A C k[X, Y] integral, so K H k[X, Y] = A. T h u s R C A. 
Conversely, suppose t ha t XaYb is in A. By arguments similar to Lemma 2.2, 
clearly XaYb is in k(Xm, XlY\ Yn). But thus A C R since A is generated by 
monomials, so A = R. 

COROLLARY 2.4. Let A be an affine normal sub ring of B — k[X, Y] generated 
by monomials with A C B integral. Lei Xm and Yn be the least positive powers of 
X and Y in A. Suppose that k[Xm, Yn] £ A} then let XlYj be in A with 0 < i 
< m, 0 < j < n, and i as small as possible. Then 

A = k[Xm, XlYj, X2iY^, . . . , X^-vtY^-vt, Yn] 

where m = qi and over scoring denotes mod n. 

Remarks. (1). We could carry out the above a rguments with X'YJ m A with 
0 < i < m, 0 < j < n, and j as small as possible. Clearly we would obtain 
similar results. 

(2) If gcd (ra, n) = 1, then A = k[Xm, Yn]. For if not, then there exists an 
XiYi in A with 0 < i < m, 0 < j < n, and i as small as possible. i\m, say 
m = qi, so (X*F') f f = XmYjq is in A. T h u s Yjq is in ,4, so n\jq. But gcd (w, n) 
= 1, so n\j, which is a contradiction. 

(3) Assume tha t m = n and i = 1, so A = fe[Zw, 1 ^ , X 2 F ^ , . . . , X""1-
F ( n _ 1 ) : f , F n ] . By the usual arguments , gcd (j, n) = 1. Clearly any such j will 
work. So for fixed m = n and i = 1, j can take on precisely <f>{n) values, 
where <j> is the Euler phi function. Dist inct values of j may define isomorphic 
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subrings; bu t for distinct values of n, none of these rings are isomorphic 
(Theorem 4.4]. 

Our next result shows tha t we may actually assume, up to isomorphism, 
t ha t m = n and i = 1. 

T H E O R E M 2.5. Let A be an affine normal subring of B = k[X, F] generated by 
monomials with A C. B integral. Then A is isomorphic to either B = k[X, Y] or 
A' = k[Xn,XYj, X2727, . . . , x ^ Y ^ ^ 1 , Yn] where 0 < j < n and gcd (j, n) 
= 1. 

Proof. UA is not isomorphic to k\X, F ] , then A = k{Xm, X{Yj, X2iY^, . . . , 
X^-vW-vi, Yn] by Corollary 2.4. By Lemma 2.2, i divides all powers of X in 
any monomial of A. By replacing X by Xlli, we may assume i = 1; thus 
A = k[Xm, I P ' , X2 YT\ . . . , I ^ T ^ Yn]. Let b be the smallest power of 
F which appears in any monomial of A. Then b divides all powers of F in any 
monomial of A. By replacing F by Y1/b, we may thus assume tha t both XYJ 

and X a F a r e in A. Thus (XYj)n is in A, so m\n. Similarly n\m, so m = n. 

Remark. Let .4 be as above. Assume tha t Xm and F ' are the lowest powers of 
X and F in A Also let XlYj and X a F 6 be the monomials in A for which 
0 < i, a < m, 0 < 7, b < n, and i and & are as small as possible. Then in 
Theorem 2.5, w = m/i = //&. 

So far wre have characterized the affine normal subrings A of B = &[X, F] 
with A C B integral. We next consider the case when A is not normal. Let Â 
be the integral closure of A in its quotient field K. Since A is generated by 
monomials, K = k(Xm, XlYj, Yn) where m and w are the least positive powers 
of X and F in K respectively, and 0 ^ i < m and 0 ^ 7 < w with i as small as 
possible. Clearly A = k(Xm, XlY\ Yn) C\ k[X} Y], so Â is generated by 
monomials. 

Let A and Â be as above, and let / = {x G T|x^4 C ^4} be the conductor of 
^4/^4. A and À have the same quotient field, and i is a finitely generated 
A -module; so it is well-known tha t 1^0. In fact, using a similar proof, it is 
easy to see tha t / actually contains a nonzero monomial XaY*. However, this 
also follows from the next lemma which shows tha t I is actually a bihomo-
geneous ideal. 

LEMMA 2.6. Let ^ 4 = 0 A(mjl) and B = 0 B^m>n) be bihomogeneoits commuta­
tive rings with A C B and each A(itj) C Baj)- Then I = {x (z B\xB d A} is a 
bihomogeneoits ideal. 

Proof. Let X/; tj be in 7, we must show tha t each aZJ- is also in I. If xmn is in B, 
then (J2^ij)xmn is in A, and hence each a î7x„m is in A H B(i+mJ+n) = A(i+mtj+n). 
T h u s ciij is in 7, so 7 is bihomogeneous. 

Combining the previous remarks and the above lemma, we have proved the 
following proposition. 
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PROPOSITION 2.7. Lei A be an affine sabring of B = k[X, Y\ generated by 
monomials with A. C B integral. Then Â, the integral closure of A, is also an 
affine subring of B generated by monomials. The conductor ideal is bihomogeneous 
and ihns contains a nonzero monomial. 

Clearly not all affine subrings of B = k\X, Y) generated by monomials have 
A C B integral. By Lemma 2.1, this happens if and only if some power of X 
and Y is in A. If A is affine and contained in B, then dim A = tr degfc A S 2. 
If dim A = 0, then of course A = k. If dim A = 2, we show that we can change 
variables so that A is isomorphic to an affine subring A' of B generated by 
monomials with A' C B integral. Clearly this can happen only when dim A = 2 
because A C B integral implies dim A = dim B = 2. If dim A = 1, then we 
can change variables so that A is isomorphic to an affine subring A" of k[T] 
generated by monomials. 

Let A be an affine subring of B = k\X% Y] generated by monomials. Say 
A = k[Xa^Yb\ . . . , Xa»Yb»l and let 5 = {Xa*Yb\ . . . , Xa»Yb»}. Pick XaYb 

in S with a lb maximum and Xe Yd in 5 with d/c maximum. (We define a/0 > 
i/'j if j ^ 0 or j = 0 and a > i.) We note that for XiYi in A, aj _ bi and 
di = cj. 

Define a fc-homomorphism <f> : k\X, Y] —» k(X, Y) by 

<KX) = XV F* and 0(F) = Ya/Xc. 

Then 0(ATaFô) - Xad~bc, <j>(XcYd) = Yad~b\ and 0(X*F>') = X<**-^Fa>-&\ 
Thus 0(^4) C &[Ar, F] and </>Ç4) is generated by monomials. 

If ad - be = n > 0, then Xn and Yn are in 0 ( ^ ) , so ^(A) C k[X, Y] is 
integral. Thus dim <f>(A) = 2, so <f>\A is injective. 

Next we show that n = 0 if and only if dim 4̂ _ 1. If dim /1 _ 1, then 
dim <t>(A) ^ 1, so 4>{A) d B is not integral, and thus n = 0. Conversely sup­
pose that n = 0. For any XlYJ in ^4, a/ft ^ i/j and d/c ^ ; / i , so bi = aj. 
Thus (X*F>)6 = (XaYb)j. We define a JHiomomorphism ^ : A -> k[T] by 
\f/(XlYj) = T1. By the above remarks \j/ is injective, so dim A :g 1. 

PROPOSITION 2.8. Le/ A be an affine subring of B = k\X, Y] generated by 
monomials. If dim .4 = 1, then A is isomorphic to an affine subring of k[T] 
generated by monomials. If dim A = 2, then A is isomorphic to an affine subring 
A' of B generated by monomials with A' Ç_B integral. 

Examples. (1) Let A = k\X2Y2, X*Y*], dim A = 1, so define ^ : /l -> fefT] 
by f(X2Y2) = T2 and ^(Z 3 F 3 ) = 7 \ Thus 4 is isomorphic to fe[T2, L3] C 

k\n 
(2) Let ^ = k\XY} I P " 1 , X ^ F ] , dim A = 2, so define </> : .4 -+ fc[AT, F] 

by0(X) = A ^ - V F a n d 0 ( F ) = F " - 1 / * . Then 0(X Y) = Xn-2Y"-2, cj>(XYn~1) 
= Yn<n~2\ and 4>(Xn-1Y) = Xn(n~2\ So A is isomorphic to &[X"(*-2\ Xv-2Yn~2, 
7»(n-2)] w h i c h i s isomorphic to £[Xn, Z F , Fw] C k\X, F]. 
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3 . R i n g s of invar iants . Affine normal subrings A of B = k[X, Y] generated 
by monomials arise natural ly in two ways. First, let G be a finite subgroup of 
automorphisms of the form 

R(X-+aX 
\Y->bY, a,b £ k. 

Then A = BG = {f £. B\d(f) = / , for all 6 in G) is an affine normal subring of 
B generated by monomials with A C B integral. We give three examples. 

Examples. (1) Let co Ç k be a primitive nth root of uni ty with gcd (n, char k) 
= 1. Define 6 in Autk(B) by 0(X) = coX and 0 ( F ) = coF; then A = B<*> = 
k[Xn,XYn~\ . . . ,Xn^Y, Yn}. 

(2) Let co be as in (1), and define 6 by 0(X) = œX and 0 ( F ) = c o ^ F ; then 
^ = £<*> = k[Xn,XY, Yn]. 

(3) Let p be a prime not equal to char k and co £ & a primitive £ th root of 
unity. For fixed 1 ^ i ^ p - 1, define 0 by 6(X) = œX and (9(F) = co'F. 
Let j be the least positive integer such tha t p\l + i/\ Such a j exists, and 
0 < j < p because gcd (i, />) = 1. Then ^ = 5<»> = & [ ^ , I F , Z 2 F ^ , . . . , 
p - i y ( P - D i y>i 

Next, let & be a field with char k = p 9e 0 and D : B —» i? a ^-derivation of 
the form £>(X) = a X and £>(F) = b Y with a, b £ k. Then ^ = k e r D C ^ = 
&[X, F] is an affine normal subring of B generated by monomials with A C B 
integral. We note tha t D(X*Yj) = (ia + jb)XlYj and k\X, Y]p C A. We give 
three examples. 

Examples. (1) Let k be as above and D defined by D{X) = X and Z)(F) = 
F, then A = ker £> = i p , Z 7 ^ , . . . , X^- 1 F, F*]. 

(2) Let D be defined by D(X) = X and D( Y) = - Y = (£ - 1 ) 7 , then 
^ = ker J9 = k[Xp,XY, Y*]. 

(3) Let i be a fixed integer with 1 ^ i ^ p - 1. Define D by D(X)_= X 
and D ( F ) = i'F, then ^ = ker D = Jfe[Xp, X F ' , Z 2 F ^ , . . . , X ^ F ^ ^ 7 , F2'] 
where j is the least positive integer such tha t p\l + £/. 

These examples lead one to ask when an affine normal subring A of B = 
k[X, Y] generated by monomials is either the ring of invariants of a ^-auto­
morphism of finite order or the kernel of a ^-derivation of B. Of course, it is 
necessary to have A C B integral. But there are still many subrings A which 
are not of these two types. We give three examples. 

Examples. (1) k may not contain the necessary roots of unity. For example, 
A = R[X 4 , X F , F4] . 

(2) If char k = p ^ 0, then for any ^-derivation D of B, k[X, Y]p CA = 
ker D. For example A = Z / 2 Z [ X 4 , X Y, F4J cannot be obtained in this manner. 

(3) Let A = C[X4 , X 2 F 2 , F4] , then A is not B< «> for any 6 in A u t c ( £ ) . If 
such a 6 exists, then necessarily 6„(X) = coX, Bn(Y) = œnY where co G C is a 
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primitive 4th root of uni ty and n = 1 or n = 3. If n = 1, then 7 i^^ = 

C[X 4 , I P , X 2 F 2 , X 3 F , F 4 ] ; while for n = 3, 2J<«»> = C[X 4 , XY, F4] . Note 

t ha t .4 = 13 6' where G is generated by 0i and 03. 

However, these are essentially the only types of exceptions. In many cases, 
even though A is not a ring of invariants or the kernel of a derivation, we can 
show tha t A is isomorphic to a ring of the desired type. 

PROPOSITION 3.1. Let k be afield with char k = p ^ 0 and A an affine normal 

sabring of B = k[X, Y] generated by monomials. If k[Xp, Yp] C A and A is not 

isomorphic to B, then there exists a k-derivation D of B with A = ker D. 

Proof. If Xn is in A, then p\n since p is prime. Similarly for powers of Y, so 
by Corollary 2.4, A = k\Xp, X r F - \ X2iYTj, . . . , X^Y*11»*, Yp] where 0 < i, 
j < p and i\p. p is prime, so i — 1. Also gcd ( j , p) = 1, so there are integers 
c and d with d£ = 1 -\- cj. Define a ^-derivation D of B by D(X) = X and 
D ( 7 ) - cY. Then D ( I P ' ) - (1 + cj)XYj = 0 since £|1 + cj and char k = 
p. So X Yj Ç ker D, and thus A - ker D. 

The next proposition may be proved in a similar manner. 

PROPOSITION 3.2. Let k be afield with char k = p and g a prime distinct from p. 
Assume that k contains a primitive qt\\ root of unity. Let A be an affine normal 
subring of B = k\X, Y] generated by monomials with k[XQ

y Yq] C A and A not 
isomorphic to B. Then there exists a k-automorphism 6 of B of finite order with 
A = B<eK 

PROPOSITION 3.3. Let k be a field with char k = p and A = k[Xm, XlYJ, 
X2lY2j\ . . . , Yn). Let 1 = m/i and assume that gcd (/, p) = 1 and that k contains 
a primitive /th root of unity. Then there exists a k-automorphism 6 of B = 
k[X} Y] of finite order with A isomorphic to B^0). 

Prooj\_By Theorem 2.5 A is isomorphic to A' = k\X\ XY\ X2Y*°t . . . f 
XÏ~1Y(^I~1)Q

} Y1] where gcd (/, q) = 1. There exist integers c and d so thai 
cl = 1 + dq. Let co Ç k be a primitive /th root of uni ty . Define 6 by 6{X) = 
œX and 0(Y) = œdY. X1 and Yl are in B^e\ and these are the smallest such 
positive powers because gcd (/, d) = 1. 6{XYq) = ul+dQXYQ = X YQ because 
/|1 + dq, so X Y« (:: B<» . T h u s X1, Y\ and X F* are in B( e>, so B< e> = A'. 

4. T h e divisor c lass g r o u p of A. Let A be an affine normal subring of 
B = k[X, Y] generated by monomials. Then A is a Krull domain. In this 
section we calculate Cl (̂ 4 ), the divisor class group of A. 

Let A be a Krull domain with quot ient field K. Div (A) is the free abelian 
group on the height one prime ideals of A. Prin (A) is the subgroup of Div 
(A ) generated by J2P VP(X) (P) for 0 ^ x £ K. Cl (A ), the divisor class group of 
A, is defined to be Div ( 4 ) / P r i n (A). 

There is another description of Cl (^4) which we will use. A fractional ideal / 
is divisorial if it is an intersection of principal fractional ideals. Any prime ideal 
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of height one is divisorial. A fractional ideal / is contained in a minimal divi-
sorial ideal I = A : (A : I) where A : / = {x £ K\xl C A}. This defines an 
equivalence relation ^ on the set of fractional ideals of A with I ^ 7 if and 
only if I = J. Div 04) is just the abelian group of equivalence classes of frac­
tional ideals with the usual multiplication. Prin (^4) is then the subgroup of 
Div (A) generated by principal ideals. 

If A is isomorphic to k[X, F ] , then A is factorial, so CI (^4) = 0. Otherwise 
A = k[Xm, XlY\ X2iY^, . . . , X^^'Y^1^1, Yn] where m = qi. We show tha t 
CI (A) is isomorphic to Z/qZ. 

Special cases of A have been calculated in other ways, and they depend on 
the field k. Suppose first tha t A = BG where G is a finite subgroup of Autk(B). 
If no height one prime ideal of B is ramified over A, then A is isomorphic to 
Hl(G, B*) [3, p. 82]. In our case, B* = k*, so if G is a finite cyclic group of 
order n, then CI (A) is isomorphic to Z/nZ. For example, if k contains a 
primitive nth root of unity, then Cl (k[Xn, XY, Yn]) is isomorphic to Z/nZ. 

If char k = p 9e 0 and 4̂ = ker D, where D is a ^-derivation of 5 , then 
CI (A) is isomorphic to L/L'. Here L and L' are the logarithmic derivatives, 
U = {D(t)/t\t G £ * j a n d L = \D(t)/t G £|* G K*}. In our special case, B* = 
&*, so Z/ = 0. Thus CI (/4) is isomorphic to L, which is isomorphic to Z/pZ 
[5, p. 61]. 

Waterhouse [7] has combined these two theories using the cohomology theory 
of Hopf algebras. He has shown, for example, tha t if char k = p 9e 0, then 
C\(k[Xpn, XY, Ypn]) is isomorphic to Z/pnZ. Note tha t none of the above 
methods is applicable for calculating CI (Z/2Z|~X6 , XY, F6]) , for example. 

I f v 4 = v 4 o 0 ^ 4 i © . . . i s a homogeneous Krull domain, it is well-known 
[3, p. 42] tha t CI (A) is isomorphic to HDiv ( ^ ) / H P r i n (A) where H Div (A) 
is generated by the homogeneous prime divisorial ideals of A and H Prin (A) 
= H D i v (A) Pi Prin (A). H A = © A^itj) is a bihomogeneous Krull domain, 
we show tha t CI (.4) is isomorphic to BDiv (^4)/BPrin (^4) where BDiv (^4) 
is the subgroup generated by bihomogeneous prime divisorial ideals and 
BPrin (A) = BDiv (A) C\ Prin (A). 

LEMMA 4.1 . Let A = © A(ij) be a bihomogeneous ring and P a prime ideal of 
A. Let I be the ideal generated by the bihomogeneous elements of P. Then I is prime. 

Proof. Suppose tha t xy is in I, but neither x nor y is in I. Wri te x = Y.(Hj a n d 
y = Ubij, and assume tha t atj and blk are the first terms not in I. But then 
(tijbik is in / C P, so say a7 j is in P. Thus atj is also in I, a contradict ion; so 
I must be prime. 

LEMMA 4.2. Let A be a bihomogeneous Krull domain and S the multiplicatively 
closed set of bihomogeneous elements of A. Then S~lA is factorial. 

Proof. "Let A = © A(iJ), then S^A = ®ijez (S~lA)(iJ) where (S~1A)(iJ) 

= {x(m,n)/y(i,k)\m — I = i, n — k = j). Clearly F = (S-lA)(QtQ) is a field. We 
may assume tha t the bigrading of A is not trivial, so there exists a bihomo-
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geneous U in S~lA of degree (0, a) with a > 0 as small as possible. Le t V in 
5_1^4 be a bihomogeneous element of degree (/3, 7) with /3, 7 > 0 and (0, 7) as 
small as possible with respect to the lexicographic order on N X N. Clearly U 
and V are t ranscendental over F, so F[ U, U~\ V, V~l] C S~lA. Let t in S~lA be 
bihomogeneous of degree (i, j) ; we may assume i > 0. Wri te i = qfi + r with 
0 ^ r < /3, so F ~ ^ has degree (r,j — qy). T h u s r = 0, so the degree of V~H is 
(0, i — 97 )• But then for a suitable multiple of £/, namely £> = (j — qy)/a, 
U-*V-H£ F. Hence / G /?[£/, F, Î/"1, V~l], so S " 1 ^ = P[ [ / , V, U~\ P" 1 ] , 
which is factorial. 

T H E O R E M 4.3. Let A be a bihomogeneous Krull domain. Then CI (A) is iso­

morphic to BDiv ( T ) / B P r i n (.4). 

Proof. Let A = © 4̂ (*,;•) and 5 be the multiplicatively closed set generated 
by the bihomogeneous elements of A. By Naga ta ' s theorem [3, p. 36], there is 
a short exact sequence 

0 -> k e r / - > C\(A) X C\(S~lA) -> 0 

where ker / is generated by the prime divisorial ideals of A t ha t meet S. By 
Lemma 4.1 these are precisely the height one prime ideals which are bihomo­
geneous. By Lemma 4.2, S~lA is factorial, so CI (S~lA) = 0. T h u s CI (A) = 
kerf is isomorphic to BDiv ( .4 ) /BPr in (A). 

Remark. Theorem 4.3 clearly holds for more general gradings of A. 

Let A be an affine normal subring of B = k[X, Y] generated by monomials 
with A C B integral. We may assume tha t A = k[Xn, XY\ X2Y^, . . . , 

Xn-iy{n-i)^ yn] where 0 < j < n and gcd ( j , n) = 1. Let P be a prime bi­
homogeneous ideal of height one. Then some XaYb is in P. A C B is integral, 
so P can be lifted to a prime ideal P of B of height one. But XaYb G P, so P is 
either XB or YB. T h u s P = P C\ A is either 

I \ = (X7\ X Yj, ... , Xn~l F ^ ^ 7 ) or P 2 - (X Y\ . . . , Xn~l Y^^1, Yn). 

So BDiv (^4) is the free abelian group on (Pi ) and (P2). Let [ ] denote the 
image of an element in BDiv C4) /BPr in (A). 

T H E O R E M 4.4. Let k be afield and A = k\X\ I P , X2Y^, . . . , p - ^ ^ 7 , 
Yn] where 0 < j < n and gcd (j, n) — 1. Then CI (^4) is isomorphic to Z / n Z . 

Proof. I t is sufficient to show tha t 

(1) [PJ» = [p2r = 0, 
(2) [Pi][P2] ; ' = 0, and 
(3) for 0 < m < n, neither [P{\m nor [P 2 ] m is 0. 

Proof of (1). We show tha t [ P i f = 0. Let I = Px
w , we show tha t A : (A : I) 

= XnA. I t is sufficient to show t h a t any principal fractional ideal which con­
tains I also contains XnA. For I C XnA and A : (A : I) is the intersection of 
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all principal fractional ideals which contain / . Let (f/g)A be a fractional ideal 
containing I. Since / is bihomogeneous we may assume / = XaYa is in A. 
Xn2 is in J, so Xn% = (XaYb)(h/g) for some h in A. Thus g = xa~n2Ybhy so 
f/g = Xn*/h, and hence IQ (Xn2/h)A. Also XnYjn is in 4 , so XnYjn = 
Xn2 (hf/h) for some h'in A. Thus Yjn\h', soXn = (Xn2/h)(hf/Yjn) is in (Xn*/h)A 
= (f/g)A. So X M C (f/g)A and the proof is complete. 

Proof of (2). Let J = P x i Y , we show tha t ,4 : (4 : J) = I F M . I t is suffi­
cient to show tha t I C (XaYb/h)A with XaYb and h in ^ implies tha t XYj is 
also in ( X a F 6 A ) A XY'Y* is in J, so hXY^n = XaYbhf for some h' in A. 
T h u s Z G F & A = XYMn/h'. For some c, P F G P 2 (see the remark after 
Theorem 2.5), so Xn+jcYj is in I. Hence h'Xn+jcYj = XYj+jng for some g in A. 
But thus h'Xn+*c = XYjng, so Yjn\h'. Hence (XGF6A)^4 - (XYj/h")A for 
some A" in A, so X F> is in (Xa Yb/h)A. 

Proof of (3). Let i" = Pim with 0 < m < n, we show tha t A : (A : I) is not 
principal. Clearly A : (A : I) ^ A because I C Pi C (Xn/Xn~lY{n~l^)A and 
-4 (^ ( Z V ^ w _ 1 F ( n - 1 ) ; ' ) - 4 . So it is sufficient to show tha t A is the only principal 
ideal of A containing I. But if I C fA w i t h / = XaYb homogeneous, clearly 
/ = 1, so (3) is proved. 

COROLLARY 4.5. Let R be factorial and A = R[X\ XYj, X2Y^, . . . , Xn~l-

Y(n~1)j, Yn] with 0 < j < n and gcd (j, n) = 1. Then CI 04) is isomorphic to 
Z/nZ. 

Proof. If R is any Krull domain with quotient field K and S = R\0, then 
again by Nagata ' s theorem there is a short exact sequence 

0 -> kerf -> C104) 4 C l ( 5 " k ) -> 0. 

k e r / is generated by the height one prime ideals of A which meet 5. But these 
correspond to the height one primes of R, so ker / is isomorphic to Cl (R). 
Clearly S-Mi = K\Xn, XYj, . . . , P ' T ^ Yn],~so CI (S^A) is isomorphic 
to Z/nZ. If R is factorial, then CI (R) = 0, so CI 04) is isomorphic to Z/nZ. 

Theorem 4.4 may be used to calculate Go(A). Recall tha t Go (A) is the 
Grothendieck group with generators [M] for isomorphism classes of finitely 
generated A -modules and relations [M] = [M'~\ + [M"] for each short exact 
sequence 0 —> M' -> M —• M" -> 0. G0(A) is G0(A) modulo the subgroup 
generated by [A]. If 4 is a domain, then Go 04) is natural ly isomorphic to 
Z 0 Go(A). When A is a Krull domain, there is a natural epimorphism GQ(A) 
—> CI 04) [2, p. 500]. In general this map is not an isomorphism. 

Let A be an affine normal subring of B = MX, F] generated by monomials. 
In [1] it is shown tha t all finitely generated projective 4-modules are free, so 
KQ(A) is just Z. Here we show tha t GQ(A) is isomorphic to CI 04) , so GQ(A) is 
Z 0 CI (A). 
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THEOREM 4.6. Let A = k\X\ I P ' , X2Y2j, . . . , X»-iy(»-w, P ] where 0 < 
j < n and gcd (j, w) = 1. T^w Go (̂ 4) is isomorphic to CI (̂ 4) (isomorphic to 
Z/nZ.) 

Proof. For s £ A and 5 = {1, s, s2, . . .}, by [6, p. 122] the following localiza­
tion sequence 

Go(A/sA) -> GM) -> S o ^ s ) -> 0 

is exact. Lets = Xn,thenAs = A[l/Xn] = k[X\ XCY][1/Xn], so GQ(AS) = 0. 
Let R = A/XnA and B = i*/nil- (i?) where nil (J?) is the nilradical of R. The 
natural map GQ(B) —» Go(R) is an isomorphism [2, p. 454]. Clearly £ = k[Yn], 
so GQ(B) = Z on [£]. Thus G0(i?) = Z on [5] also. As a ^-module, 

R = B ® XYjB © . . . 0 x^Y^^B, 

S0[R] =_n[B]mGo(R). Hence n[B] = 0 in G0(R), so \G0(R)\ \n. Thus \GQ(A)\ 
\n, but Go(^4) —> Cl (A) œ Z/nZ is surjective; so it must be an isomorphism. 
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