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SUBRINGS OF k[x, Y] GENERATED BY MONOMIALS
DAVID F. ANDERSON

1. Introduction. In this paper we study subrings 4 of B = k[X, V]
generated by monomials over k. If 4 is normal and A C B integral, we can
completely characterize A. If dim A = 2, we show that A is isomorphic to a
subring 4’ of B generated by monomials with 4’ C B integral. The author
became interested in these rings while studying projective modules over sub-
rings of k[ X, V]. For some applications, see [1].

In Section 4 we calculate Cl1(A4), the divisor class group of 4. We also show
that Go(4) is precisely C1(4).

Rings generated by monomials may also be studied by considering the semi-
group of the exponents of their monomials. For example, see [4].

This paper constitutes part of the author’s dissertation at the University of
Chicago, under the direction of Professor M. Pavaman Murthy. The author
would like to thank Professor Murthy for his many helpful suggestions.

2. Subrings of k[X, Y] generated by monomials. & will always denote a
field, but in most cases it is clear that k could be any normal domain.

We first note that if 4 is a subring of k[ X, V] generated by monomials, then
A 1s a homogeneous or graded ring with the natural grading it inherits from
kIX, V]. In fact, 4 is also bihomogeneous, that is, > «;;X Y7 isin 4 if and only
if each a;;: X'V’ is in 4. We also note that if A4 is any bihomogeneous subring
of k[ X, Y] containing k, then necessarily A is generated by monomials over k.

First we study the case when A4 C k[X, V] is integral. Later (I’roposition
2.8) we will see that we can always reduce to this case when (Krull) dim 4 = 2.
The following lemma is obvious.

LeMMA 2.1, Let A be an affine subring of B = k[ X, V] generated by monomials,
then A C B is integral iof and only if X™ and V" are in A for some positive m
und n.

If some power of X and V is in A4, clearly 4 is athne and 4 C k[X, Y] is
integral. Of course not all subrings of 2[X, V] generated by monomials are
affine; for example, consider 4 = k[{ X"V},

LeMMa 2.2, Let 4 be an «ffine normal subring of B = k[X, Y] generated by
monomiuls with 4 C B integral. Let X™ and Y* be the smullest positive powers of
Xand Yin A. Then
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(1) if X®and Y arein A, then m|a and nb.

Also assume that k[ X™, Y] © A, and let X'Y7 bein A withij # 0 and i as
small as possible. Then

(2) 0 <1 < mandilm;

(3) if XeY%isin A, then 1lc.

Proof. We prove (1); the proofs of (2) and (3) are similar. Let X* be in 4,
thena = mqg 4+ r with 0 = 7 < m. Clearly X7 = (X*)(X™)~%is in the quotient
field of 4. But X7 is integral over 4, and 4 is normal, so X" is in 4. m was
chosen to be minimal, so r = 0, and thus m/|a.

Let 4 be asin Lemma 2.2 and X Y7 in 4 with 7 as small as possible. As above,
by dividing by powers of ¥*, we can also assume that 0 < j < n. So there is
a X'V in 4 with

(1) 0 <7< m,

(2)0<j<mn and

(3) 7 as small as possible.

It is casy to see that j is uniquely determined. These three monomials X™, V",
and XY/ completely determine 4.

ProrositioN 2.3. Let A be as above. Then A = k(X™, X'V/, Y*) N kX, V].

Proof. Let K be the quotient field of 4 and R = k(X™, X'V7, V") N k[X, V].
(X" XV, ¥Y*) C K,so R = k(X™, X'V, V") N\ kX, V] C KN kX, Y]
But 4 isnormaland 4 C kX, YV]integral,so K N kX, Y] = 4. ThusR C 4.
Conversely, suppose that X¢¥? is in 4. By arguments similar to Lemma 2.2,
clearly X?V?is in k(X™, X7V7, ¥™). But thus A C R since 4 is generated by
monomials, so 4 = R.

COROLLARY 2.4. Let A be an affine normal subring of B = k| X, V] generated
by monomials with A C B integral. Let X™ and Y" be the least positive powers of
X and YV in A. Suppose that R[X", V"] & A, then let XY be in A with 0 < 1
< m,0 < j < n,andias small us possible. Then

A = kX" XY X2y XmDiy =Dy
where m = qi and overscoring denotes mod n.

Remarks. (1). We could carry out the above arguments with X V7 in 4 with
0<i1<m 0<j<mn, and j as small as possible. Clearly we would obtain
similar results.

(2) If ged (m, n) = 1, then 4 = k[X™, V"]. For if not, then there exists an
X'V in 4 with 0 <7 <m, 0 <j<mn, and 7 as small as possible. i|m, say
m = qi,s0 (X'V7/)¢ = X"V’ isin 4. Thus Y% isin 4, so n|jq. But gcd (m, n)
= 1, so n|7, which is a contradiction.

(3) Assume that m = nand i =1, s0 4 = kX", XV/, X2V, ... XL
Y@=Di Y7, By the usual arguments, ged (j, n) = 1. Clearly any such j will
work. So for fixed m = n and 7 = 1, j can take on precisely ¢(n) values,
where ¢ is the Euler phi function. Distinct values of j may define isomorphic
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subrings; but for distinct values of n, none of these rings are isomorphic
(Theorem 4.4].

Our next result shows that we may actually assume, up to isomorphism,
that m = nand ¢ = 1.

THEOREM 2.5. Let A be an affine normal subring of B = k[ X, V] generated by
monomials with A C B integral. Then A is isomorphic to either B = k[X, Y] or
A’ = k(X" XYV, X2V, XY O=DI YV here 0 < j < nand ged (4, n)
= 1.

Proof. If A is not isomorphic to k[ X, V], then 4 = k(X" X1V X2V2, ..,
X=0iy=0i ¥ hy Corollary 2.4. By Lemma 2.2, ¢ divides all powers of X in
any monomial of 4. By replacing X by X'¢ we may assume ¢ = 1; thus
A = kX" XYV X2Y2 . Xm-1Y®=0J Y] Let b be the smallest power of
Y which appears in any monomial of 4. Then b divides all powers of ¥V in any
monomial of 4. By replacing ¥ by Y'/*, we may thus assume that both X ¥’
and X*Y are in 4. Thus (X Y?)*is in 4, so m|n. Similarly n|m, so m = n.

Remark. Let A be as above. Assume that X™ and Y are the lowest powers of
X and YV in 4. Also let X'Y7 and X®YV? be the monomials in 4 for which
0<i,a<m0<j b<mn and 7 and b are as small as possible. Then in
Theorem 2.5, n = m/1 = 1/b.

So far we have characterized the afhne normal subrings 4 of B = k[X, V]
with 4 C B integral. We next consider the case when 4 is not normal. Let 4
be the integral closure of 4 in its quotient field K. Since 4 is generated by
monomials, K = k(X™, X'V’ ¥") where m and # are the least positive powers
of X and Vin K respectively,and 0 = ¢ < mand 0 £ j < n with 7 as small as
possible. Clearly 4 = B(X™, X'Y?, Y") N kX, V], so 4 is generated by
monomials.

Let 4 and 4 be as above, and let I = {x ¢ A|xd C A} be the conductor of
A/A4. A and A have the same quotient field, and A is a finitely generated
A-module; so it is well-known that I # 0. In fact, using a similar proof, it is
easy to see that I actually contains a nonzero monomial X*Y?. However, this
also follows from the next lemma which shows that I is actually a bihomo-
geneous ideal.

LEMMA 2.6. Let A = @ Ay and B = @ B, . be bthomogeneous commauta-
twve rings with A C B and each A5 C By Then I = {x € BlxB C A} is«
bihomogencous ideal.

Proof. Let 2ay; be in I, we must show that each «;is also in I. If x,,, is in B,
then (3a;;)xu,isin A, and hence each %, 1810 A M Beiyw jony = Aivm, jon-
Thus a4, is in I, so [ is bihomogeneous.

Combining the previous remarks and the above lemma, we have proved the
following proposition.
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ProrosiTioN 2.7. Let A be an affine subring of B = k[X, Y| generated by
monomials with 4 C B integral. Then A, the integral closure of A, is also an
affine subring of B generated by monomials. 1The conductor ideal is bihomogeneous
and thus contuins « nonzero monomial.

Clearly not all affine subrings of B = k[X, V] generated by monomials have
A C B integral. By Lemma 2.1, this happens if and only if some power of X
and Visin 4. If 4 is athne and contained in B, then dim 4 = tr deg, 4 < 2.
IfdimA4 = 0, thenof course 4 = k. Ifdim 4 = 2, we show that we can change
variables so that 4 is isomorphic to an affine subring 4’ of B generated by
monomials with 4” C B integral. Clearly this can happen only whendim 4 = 2
because A C B integral implies dim 4 = dim B = 2. [f dim 4 = 1, then we
can change variables so that 4 is isomorphic to an affine subring 4" of k{7
generated by monomials.

Let A be an afhne subring of B = k[X, V] generated by monomials. Say
A = k[X0Yn, .., X%V%] and let § = {X@V"™, ..., X%V}, Pick X*V*
in .S with ¢/b maximum and X°¢¥Y?in S with d/¢c maximum. (We define «/0 >
i/jif j# 0orj=0and a > 1) We note that for X'V? in 4, «j 2 bi and
di = cj.

Define a k-homomorphism ¢ : kX, V] — k(X, V) by

o(X) = X9V and o¢(YV) = V¢/X¢

Then ¢(X*V?) = XY=t (X V) = V=t¢ and ¢(X V7)) = Xdi-cipas-bi
Thus ¢(4) C kX, V] and ¢(4) is generated by monomials.

If ad — bc = n > 0, then X" and Y™ are in ¢(4), so ¢(4) C kX, V] is
integral. Thus dim ¢(4) = 2, s0 ¢|4 is injective.

Next we show that » = 0 if and only if dim 4 = 1. If dim 4 £ 1, then
dim ¢(4) £ 1,s0 ¢(A4) C B is not integral, and thus n = 0. Conversely sup-
pose that n = 0. For any X'V’ in 4, «/b = 1/j and d/c = j/i, so bi = aj.
Thus (X'V7)? = (X°V?)?. We define a k-homomorphism ¢ : A4 — k[7] by
Y(X'Y7) = 1. By the above remarks ¢ is injective, so dim 4 < 1.

ProrosITION 2.8. Let A be an affine subring of B = k[X, V| generated by
monomials. If dim 4 = 1, then A is isomorphic to un affine subring of k[T)
generated by monomials. If dim A = 2, then A is isomorphic to un affine subring
A’ of B generated by monomiuls with 4’ C B integral.

Examples. (1) Let 4 = k[X2Y? X3V3] dim 4 = 1, so define ¢ : 4 — k[T]
by ¢(X?V?) = 7% and ¢(X?Y?) = 7% Thus 4 is isomorphic to k(772 1% C
kT

(2) Let 4 = kXY, XV, X*=1V] dim 4 = 2, so define ¢ : 4 — k[X, V]
by ¢(X) = X*'/Vand ¢(V) = V"1/X. Then ¢(X V) = X" 2y"2 ¢(X V1)
= Y*"=2 and ¢(X"1V) = X2 So 4 is isomorphic to k[ X2 Xr-2yn-2
Y*=27 which is isomorphic to kI X", XV, Y*] C kX, V).
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3. Rings of invariants. Affine normal subrings 4 of B = k[X, Y] generated
by monomials arise naturally in two ways. First, let G be a finite subgroup of
automorphisms of the form

5 X —aX
VY —>bY, a, b€k

Then 4 = B¢ = {f € B|6(f) = f, for all 6 in G} is an affine normal subring of
B generated by monomials with 4 C B integral. We give three examples.

Examples. (1) Let w € k be a primitive nth root of unity with ged (#, char k)
= 1. Define § in Aut,(B) by 6(X) = wX and 6(V) = wV; then 4 = B{® =
[ X, XYL .., Xm1Y, V.

(2) Let w be as in (1), and define 8 by 8(X) = wX and (V) = » 'V, then
A = B9 = kX", XV, Y.

(3) Let p be a prime not equal to char k2 and w € k a primitive pth root of
unity. For fixed 1 £1 =< p — 1, define 8 by 6(X) = wX and 6(Y) = 'YV,
Let j be the least positive integer such that p|l 4 7j. Such a j exists, and
0 < j < pbecause gcd (i, p) = 1. Then 4 = B(? = k[X? XV X2V¥ ...,
Xr=1y@=ni vr).

Next, let & be a field with char £ = p % 0 and D : B — B a k-derivation of
the form D(X) = ¢«X and D(Y) = bY witha,b € k. Then 4 = kerD C B =
k[X, Y] is an affine normal subring of B generated by monomials with 4 C B
integral. We note that D(X'V7?) = (10 4+ j0) XY/ and k[ X, V]? C 4. We give
three examples.

Examples. (1) Let k be as above and D defined by D(X) = X and D(Y) =
Y, then 4 = ker D = k[ X?, X Y7, ... K X?P1Y, V7).

(2) Let D be defined by D(X) = X and D(YV) = =YV = (p — 1)V, then
A =kerD = kX" XY, V7]

(3) Let 7 be a fixed integer with 1 £ 4 < p — 1. Define D by D(X) = X
and D(YV) = 1Y, then 4 = ker D = k[X?, XV’ X2V¥ . . Xv-1Yy@o-Dj V7]
where j is the least positive integer such that p|1 4+ 4j.

These examples lead one to ask when an affine normal subring 4 of B =
k[X, V] generated by monomials is either the ring of invariants of a k-auto-
morphism of finite order or the kernel of a k-derivation of B. Of course, it is
necessary to have 4 C B integral. But there are still many subrings 4 which
are not of these two types. We give three examples.

Examples. (1) k may not contain the necessary roots of unity. For example,
A =R[X4, XY, V4.

(2) If char & = p # 0, then for any k-derivation D of B, kX, VP C 4 =
ker D. Forexample 4 = Z/27Z[X* XY, Y*] cannot be obtained in this manner.

(3) Let 4 = C[X*, X2Y2 VY], then 4 is not B(? for any 6 in Autg(B). If
such a 6 exists, then necessarily 6,(X) = wX, 6,(Y) = «"¥Y where w € Cis a
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primitive 4th root of unity and n =1 or n = 3. If n =1, then B =
ClX, XV3 X212 X3V, Y4, while for n = 3, B{% = C|X* XV, I'*]. Note
that 4 = B¢ where G is generated by 6; and 6;.

However, these are essentially the only types of exceptions. In many cases,
even though 4 is not a ring of invariants or the kernel of a derivation, we can
show that 4 is isomorphic to a ring of the desired type.

ProrositioN 3.1. Let k be « field with char k = p # 0 and 4 an «ffine normal
subring of B = k| X, V] generated by monomials. If k[ X?, Y?] C A und A 1s noi
isomorphic to B, then there exists u k-dertvation D of B with A = ker D.

Proof. 1f X" is in 4, then p|n since p is prime. Similarly for powers of ¥, so
by Corollary 2.4, 4 = k[X?, X1V/ X2V .., Xr=1y@=0J y7] where ¢ < i,
7 < pandi|p. pis prime, so i = 1. Also ged (j, p) = 1, so there are integers
¢ and d with dp = 1 4 ¢j. Define a k-derivation D of B by D(X) = X and
D(Y) = cV. Then D(XY?) = (1 + ¢j)X¥? = 0 since p|1 + ¢j and char k =
p.So X V7 ¢ ker D, and thus 4 = ker D.

The next proposition may be proved in a similar manner.

ProprosiTION 3.2, Let k be a field with char k = p and q a prime disiinct from p.
Assume that k coniains « primitive gth root of unity. Lel A be an affine normal
subring of B = k| X, V] generated by monomials with k[ X?, Y] C A4 and A not
1somorphic to B. Then there exists a k-automorphism 6 of B of finite order with
A = B,

ProrositioN 3.3. Let k be « field with char k = p and A = kX", XY/,
X2V¥, 0, V. Letl = m/i and assume that ged (I, p) = 1 and that k contains
a primitive Ith root of unity. Then there exists « k-automorphism 6 of B =
kX, Y] of finite order with 4 isomorphic to B,

Proof. By Theorem 2.5 4 is isomorphic to A" = kX! XJ1v, X2y . |
X =100 ¥ where ged ([, ¢) = 1. There exist integers ¢ and d so that
cl =1+ dq. Let w ¢ k be a primitive /th root of unity. Define 8 by 6(X) =
wX and 0(Y) = o®V. Xtand V' are in B(?®  and these are the smallest such
positive powers because ged ([, d) = 1. (X V) = o 4X V7 = X V7 hecause
N1 + dg,so XV? ¢« B Thus X', V!, and X V¢ are in B(®  so B(# = 47,

4. The divisor class group of 4. Let 4 be an affine normal subring of
B = k[X, V] generated by monomials. Then 4 is a Krull domain. In this
section we calculate Cl (4 ), the divisor class group of 4.

Let A4 be a Krull domain with quotient field K. Div (4) is the free abelian
group on the height one prime ideals of 4. Prin (4) is the subgroup of Div
(A4) generated by > p Vp(x) (P) for 0 # x € K. Cl (4), the divisor class group of
A, is defined to be Div (4)/Prin (4).

There is another description of Cl (4) which we will use. A fractional ideal 1
is divisorial if it is an intersection of principal fractional ideals. Any prime ideal
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of height one is divisorial. A fractional ideal I is contained in a minimal divi-
sorial ideal T = A : (4 : I) where 4 : I = {x € K|xI C A}. This defines an
equivalence relation « on the set of fractional ideals of 4 with I «— J if and
only if I = J. Div (4) is just the abelian group of equivalence classes of frac-
tional ideals with the usual multiplication. Prin (4) is then the subgroup of
Div (4) generated by principal ideals.

If 4 is isomorphic to k[X, V7], then 4 is factorial, so Cl (4) = 0. Otherwise
A = k[Xm XY XYY . X@-Diy@=Di 7] where m = gi. We show that
Cl (4) isisomorphic to Z/qZ.

Special cases of 4 have been calculated in other ways, and they depend on
the field k. Suppose first that 4 = B¢ where G is a finite subgroup of Aut,(B).
If no height one prime ideal of B is ramified over 4, then 4 is isomorphic to
HY(G, B*) [3, p. 82]. In our case, B* = k* so if G is a finite cyclic group of
order #n, then Cl (4) is isomorphic to Z/nZ. For example, if k contains a
primitive nth root of unity, then Cl (k[X", XV, V"]) is isomorphic to Z/nZ.

If char # = p # 0 and 4 = ker D, where D is a k-derivation of B, then
Cl (4) is isomorphic to L/L’. Here L and L’ are the logarithmic derivatives,
L' = {D()/tt € B*}and L = {D(i)/t € B|t € K*}. In our special case, B* =
k*, so L' = 0. Thus Cl (4) is isomorphic to L, which is isomorphic to Z/pZ
[5, p. 61].

Waterhouse [7] has combined these two theories using the cohomology theory
of Hopf algebras. He has shown, for example, that if char 2 = p # 0, then
Cl(k|X?, XV, Y?)) is isomorphic to Z/p"Z. Note that none of the above
methods is applicable for calculating Cl (Z/2Z[ X% XV, V¢]), for example.

If4=4,® A, @ ... is a homogeneous Krull domain, it is well-known
[3, p. 42] that Cl (4) is isomorphic to HDiv (4)/HPrin (4) where HDiv (4)
is generated by the homogeneous prime divisorial ideals of 4 and HPrin (4)
= HDiv (4) N\ Prin (4). 1f 4 = ® A, is a bihomogeneous Krull domain,
we show that Cl (4) is isomorphic to BDiv (4)/BPrin (4) where BDiv (4)
is the subgroup generated by bihomogeneous prime divisorial ideals and
BPrin (4) = BDiv (4) M Prin (4).

Lemma 4.1. Let A = @ A, be « bithomogeneous ring and P a prime ideal of
A. Let I be the ideal generated by the bihomogeneous elements of P. Then I is prime.

Proof. Suppose that xy isin I, but neither x nor y isin I. Write x = > «;; and
y = > by, and assume that «;; and by, are the first terms not in /. But then
aihyisin I C P, so say ay;is in P. Thus «; is also in I, a contradiction; so
I must be prime.

LeEMMA 4.2. Let A be a bithomogeneous Krull domain and S the multiplicatively
closed set of bihomogeneous elements of A. Then S7 A 1s fuctorial.

Proof. Let A = @ A p, then S7'4 = @ jez (S7'4) (1, where (S™'4)
= {x(m,n)/y(lyk)lm —l=4un—Fk= ]} Clearly F = (S_IA)(Q'(;) is a field. We
may assume that the bigrading of 4 is not trivial, so there exists a bihomo-

https://doi.org/10.4153/CJM-1978-019-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-019-5

(S}
|8
o

DAVID F. ANDERSON

gencous U in S7'4 of degree (0, @) with @ > 0 as small as possible. Let 1" in
S—14 be a bihomogeneous element of degree (8, v) with 8,y > 0 and (8, v) as
small as possible with respect to the lexicographic order on N X N. Clearly U
and 1 are transcendental over F,so F{U, U=Y, V, V=11 C S~'4. Let tin S7'4 be
bihomogeneous of degree (7, j); we may assume 7 > 0. Write ¢ = g8 4+ 7 with
0 < r < B,s0 V=% has degree (r,j — ¢qy). Thusr = 0, so the degree of V=% is
(0, j — ¢qv). But then for a suitable multiple of U, namely p = (j — ¢v)/e,
U=V=4% € F. Hence t € FIU, V, U™, V1], s0 S7'4 = FLU, V, U™, "1,
which is factorial.

TuEOREM 4.3. Let A be a bihomogeneous Krull domain. Then Cl (4) s iso-
morphic to BDiv (4)/BPrin (4).

Proof. Let 4 = @ A, and S be the multiplicatively closed set generated
by the bihomogeneous elements of A. By Nagata’s theorem [3, p. 36], there is
a short exact sequence

0 — ker f — Cl(4) L c1(S74) — 0

where ker f is generated by the prime divisorial ideals of 4 that meet S. By
Lemma 4.1 these are precisely the height one prime ideals which are bihomo-
geneous. By Lemma 4.2, S—'4 is factorial, so Cl (§-'4) = 0. Thus Cl (4) =
ker f is isomorphic to BDiv (4)/BPrin (4).

Remurk. Theorem 4.3 clearly holds for more general gradings of 4.

Let 4 be an affine normal subring of B = k[X, V] generated by monomials
with 4 C B integral. We may assume that 4 = k[X* XV’ X2V¥ .. .|
X=1y@=17 ¥y where 0 < j < n and ged (j, n) = 1. Let P be a prime bi-
homogeneous ideal of height one. Then some X*V?isin P. 4 C B is integral,
so P can be lifted to a prime ideal P of B of height one. But X°V* ¢ P, so P is
either XB or YB. Thus P = P M A4 is either

Pr= (X" XV/ . . . X1Y=D) or Py= (XV/, ..., X"—lye-ni ynry,

So BDiv (4) is the free abelian group on (P;) and (P;). Let | ] denote the
image of an element in BDiv (4)/BPrin (4).

THEOREM 4.4. Let k be « field und A = k| X", XV’ X2V . Xw=1y®=Dj
V" where 0 < j < nand ged (4, n) = 1. Then Cl (A) is isomorphic to Z/nZ.

Proof. It is sufficient to show that

(1) [Pa]" = [Po]" = 0,

(2) [P1][P2) = 0, and

(3) for 0 < m < n, neither [P;]™ nor [P.]™ is 0.

Proof of (1). We show that [P]” = 0. Let I = P*, weshow that A : (4 : I)
= X"4. It is sufficient to show that any principal fractional ideal which con-
tains [ also contains X"4. For I C X"4 and 4 : (4 : I) is the intersection of
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all principal fractional ideals which contain I. Let (f/g)4 be a {ractional ideal
containing I. Since I is bihomogeneous we may assume f = X%V% is in 4.
X isin I, so X™ = (X°V?)(h/g) for some &k in A. Thus g = x* YV, so
f/g = X®/h, and hence I C (X™/h)A. Also X"V is in 4, so X"V =
X" (W' /h) for some &’ in A. Thus YW/, s0 X" = (X" /h) (k') V™) isin (X" /h)A
= (f/g)A. So X"4 C (f/g)A and the proof is complete.

Proof of (2). Let I = P, P,?, weshow that 4 : (4 : I) = XY’A. It is suffi-
cient to show that 7 C (X°VY?/h)A with X®Y? and & in 4 implies that X V7 is
also in (X°Y?/h)A. XYY" is in I, so hX Y/t = XV for some #' in A.
Thus X*V?/h = XV*™/}. For some ¢, X°V € P, (see the remark after
Theorem 2.5), so X*+/¢¥7isin I. Hence ' X™t7¢Y7 = X Y7+i"g for some g in 4.
But thus A'X"™7¢ = X Ving so Y™h'. Hence (X°V°/h)A = (XY//k'")A for
some k' in 4,s0 X V7isin (X*Y?/h)A.

Proof of (3). Let I = Py™ with 0 < m < n, we show that A : (4 : I) is not
principal. Clearly 4 : (4 : I) & 4 because I C P, C (X*/X*'V®-Di)4 and
A 7 (Xr/X 1Y ®=13) 4, So it is sufficient to show that 4 is the only principal
ideal of 4 containing I. But if I C f4 with f = X?V? homogeneous, clearly
f =1,s0 (3) is proved.

COROLLARY 4.5. Let R be factorial and A = R[X", X V7, Xey¥, . XL
Yo=0i Y with 0 < j < n and ged (j, n) = 1. Then Cl (4) is isomorphic to
Z/nl.

Proof. If R is any Krull domain with quotient field K and S = R\0, then
again by Nagata’s theorem there is a short exact sequence

0 — ker f — Cl(4) L CI(S~4) — 0.

ker f is generated by the height one prime ideals of 4 which meet S. But these
correspond to the beight one primes of R, so ker f is isomorphic to Cl (R).
Clearly S7'4 = K[X™, XY?, ..., X1ye=0i Y7 g0 Cl (§714) is isomorphic
to Z/nZ. 1f R is factorial, then Cl (R) = 0, so Cl (4) isisomorphicto Z/nZ.

Theorem 4.4 may be used to calculate Gy(4). Recall that Gy(4) is the
Grothendieck group with generators [M] for isomorphism classes of finitely
generated 4-modules and relations | M] = [M'] + [M"'] for each short exact
sequence 0 — M’ — M — M"” — 0. Go(4) is G¢(4) modulo the subgroup
generated by [A]. If 4 is a domain, then Gy(4) is naturally isomorphic to
Z ® Go(A4). When 4 is a Krull domain, there is a natural epimorphism G,(4)
— Cl (4) (2, p. 500]. In general this map is not an isomorphism.

Let 4 be an affine normal subring of B = kX, V] generated by monomials.
In [1] it is shown that all finitely generated projective 4-modules are free, so
Ky(4) is just Z. Here we show that Go(4) is isomorphic to Cl (4), so Go(A4) is
Z @ Cl (4).
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TurEorEM 4.6. Let 4 = B[ X", X VI X? Y o Xmtye=ni ] here O <
7 < nand ged (3, n) = 1. Then Go(A) is isomorphic to Cl (4) (isomorphic to
Z/nl.)

Proof. Fors € Aand S = {1,s, 5%, ...}, by [6, p. 122] the following localiza-
tion sequence

G()(A/SA) ks GQ(A) ad GO(AS) ——)0

isexact. Let s = X7, then As = A[1/X"] = B[ X", X°V][1/X"],50 Gy(A5) = 0.
Let R = A4/X"4 and B = R/nil (R) where nil (R) is the nilradical of R. The
natural map Go(B) — Go(R) is an isomorphism [2, p. 454]. Clearly B = k[ V"],
so Gy(B) = Zon [B]. Thus G¢(R) = Z on[B] also. As a B-module,

R=B®XV'B®...® X-1Y"1IB,

s0 [R] = n[B]in Go(R). Hence n[B] = 0in Gy(R), so |Gy(R)] |n. Thus |Gy(4)]
|n, but Gy(A4) — Cl (4) ~ Z/nZ is surjective; so it must be an isomorphism.
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