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Abstract

This paper is devoted to the study of the local existence, uniqueness, regularity, and continuous
dependence of solutions to a logistic equation with memory in the Bessel potential spaces.
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1. Introduction

The logistic equation that takes into account dispersal effects is given by

ut(t, x) = D∆u(t, x) + au(t, x) − bu2(t, x).

Here, u(t, x) is the concentration of the population at the location x and time t > 0,
D is the diffusion coefficient and a and b are the growth rate and the crowding effect,
respectively. This model has been widely utilised for many different purposes. See,
for example, [5, 6, 8, 9, 11, 13, 14, 16, 17] and the references therein.

Logistic equations subject to memory effects have also been considered; see, for
example, [7, 10, 12, 18, 24–26]. Cushing [7] gives a systematic analysis of memory
effects in population dynamics. Gopalsamy [12] investigated the asymptotic behaviour
of nonconstant solutions of delay logistic equations. In particular, he considered the
logistic equation with continuously distributed delays

dx
dt

= x(t)
[
a − b

∫ t

−∞

H(t − s)x(s) ds
]
,

where a and b are positive numbers and H is a delay kernel representing the manner in
which the past history of the species influences the current growth rate. Continuously
distributed delays are also known as the memory.
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Motivated by these considerations, we study the following logistic equation with
memory starting from the initial time:

ut(t, x) = ∆u(t, x) + u(t, x)
[
a − b

∫ t

0
λ(t − s)u(s, x) ds

]
. (1.1)

We also consider a more general Cauchy–Dirichlet problem:

ut(t, x)∆u(t, x) + u(t, x)
[
a − b

∫ t

0
λ(t − s)(−∆)βu(s, x) ds

]
in (0,∞) ×Ω, (1.2)

u = 0 on (0,∞) × ∂Ω, (1.3)
u(x, 0) = u0(x) in Ω, (1.4)

in a sufficiently regular domain Ω ⊂ Rn. Notice that (1.2) reduces to (1.1) whenever
β = 0. Here, λ : R −→ R functions as a delay kernel representing the manner in which
the history of the species influences the current growth rate. Condition (1.3) means
that the boundary of Ω is inhospitable.

Under certain conditions, the existence of solutions to the problem

ut(t, x) = ∆u(t, x) + u(t, x)
[
a − bu −

∫ t

0
λ(t − s)u(s, x) ds

]
,

∂u/∂n = 0,
u(x, 0) = u0(x),

for (t, x) ∈ (0,∞) × Ω, was proved by Schiaffino [19] and Yamada [24]. In [19]
the initial data was taken in {ϕ ∈ C1(Ω) : ∂u/∂n = 0 on ∂Ω}, whereas initial data in
{ϕ ∈ W2,p(Ω) : ∂u/∂n = 0 on ∂Ω} was considered in [24].

The study of partial differential equations in low-regularity spaces has attracted
much interest of late, which motivates us to take the initial data in the Bessel potential
space Hσ,p

0 = {ϕ ∈ Hσ,p(Ω) : ϕ|∂Ω = 0}, with 1 < p < ∞ and 0 < σ < 2. Thus we
allow more irregular initial data than Schiaffino [19] and Yamada [24]. As examples
of parabolic problems treated in Bessel potential spaces, we cite the study of the
Navier–Stokes equations (see [3, 4, 20, 21] and references therein) and the models
of population dynamics in low-regularity spaces in the recent paper by Viana [23].

Our main result gives a unique mild solution to the problem (1.2)–(1.4) which is
spatially more regular after the starting point, provided the indices N, p, σ and β are
suitably chosen, and depends continuously on the initial data. Moreover, the time of
existence of this solution is uniform for initial data taken in balls of small radius in
Hσ,p

0 , and therefore uniform in precompact subsets of Hσ,p
0 .

2. Preliminaries

Given a Banach space Y , as usual, ‖ · ‖Y denotes the norm associated to Y . The ball
of radius r and centred at x ∈ Y is denoted by BY (x, r). If X and Y are Banach spaces,
X ↪→ Y means that X is continuously and densely embedded in Y .
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Definition 2.1. A continuous function u : [0, τ] −→ Hσ,p
0 is said to be a mild solution

for (1.2)–(1.4), if it is a solution of the following integral equation:

u(t) = e∆tu0 +

∫ t

0
e∆(t−s)u(s)

[
a − b

∫ s

0
λ(s − r)(−∆)βu(r) dr

]
ds.

2.1. Bessel potential spaces and the heat semigroup. Let 1 < p < ∞ and
let σ ∈ (0, 2)\{1/p}. The Bessel potential space Hσ,p

0 coincides with the complex
interpolation space [W2,p ∩ W1,p

0 , Lp(Ω)]σ/2 for 0 < σ < 2, σ , 1/p (see [22,
Section 4.3.3]).

It is well known that the Dirichlet Laplacian ∆ is a sectorial operator from W2,p ∩

W1,p
0 into Lp(Ω) (see, for example, [15]). Therefore, by the theory developed in

[2, Ch. V], the heat semigroup e∆t : Lp(Ω) −→ Lp(Ω) satisfies the estimate

tσ
′/2−σ/2‖e∆tϕ‖Hσ′ ,p

0
≤ M‖ϕ‖Hσ,p

0
, (2.1)

for all ϕ ∈ Hσ,p
0 and t > 0, where M ≥ 1. Here 0 ≤ σ ≤ σ′ < 2 and neither of σ, σ′ is

equal to 1/p. In particular, if σ ∈ (0, 2)\{1/p}, then

tσ/2‖e∆tϕ‖Hσ,p
0
≤ M‖ϕ‖Lp(Ω), (2.2)

for all ϕ ∈ Lp(Ω) and t > 0.

Remark 2.2. The following estimate is essential to treat the term which involves the
fractional Laplacian:

‖(−∆)σ/2ϕ‖Lp ≤ c‖ϕ‖Hσ,p ,

for all ϕ ∈ Hσ,p. This is a consequence of the equivalence between the norms
‖(−∆)σ(·)‖Lp and ‖(I − (−∆)σ)(·)‖Lp , the fact that ‖(I − (−∆)σ)(·)‖Lp(RN ) is a norm on
H2σ,p(RN), and that the extension operator E : Hs,p(Ω) −→ Hs,p(RN) is continuous
(see [1, Ch. 7]).

Henceforth, we assume that

1 < p <∞, σ ∈ (0, 2) \
{ 1

p

}
and σ ≥ 2β +

N
2p
. (H)

Under these conditions, we use the results contained in [22, Section 4.6] to obtain the
embeddings

Hσ,p
0 ↪→ Hσ,p(Ω) ↪→ H2β,2p(Ω) ↪→ L2p(Ω) ↪→ Lp(Ω). (2.3)

2.2. Nonlinear estimates.

Lemma 2.3. Let λ : R→ R be a locally integrable function. Assume that (H) holds and
consider the function g : [0,∞) × Hσ,p

0 → Lp(Ω) defined by

g(t, ϕ) = ϕ
[
a − b

∫ t

0
λ(t − s)(−∆)βϕ ds

]
.
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Then, given ϕ, ψ ∈ Hσ,p
0 , there exists C > 0 such that

‖g(t, ϕ) − g(t, ψ)‖Lp(Ω) ≤ C‖ϕ − ψ‖Hσ,p
0

[‖λ‖L1
loc(0,t)(‖ϕ‖Hσ,p

0
+ ‖ψ‖Hσ,p

0
) + 1]

and
‖g(t, ϕ)‖Lp(Ω) ≤ C‖ϕ‖Hσ,p

0
(‖λ‖L1(0,t)‖ϕ‖Hσ,p

0
+ 1),

where the constant C depends on a, b, |Ω| (the Lebesgue volume of Ω) and the
embeddings (2.3).

Proof. Let ϕ, ψ ∈ Hσ,p
0 . First we write

g(t, ϕ) − g(t, ψ)

= (ϕ − ψ)
[
a − b

∫ t

0
λ(t − s)(−∆)βϕ

]
+ bψ

∫ t

0
λ(t − s)[(−∆)βψ − (−∆)βϕ] ds.

We now use the Minkowski and Hölder inequalities combined with Remark 2.2 and
the embeddings (2.3) to obtain

‖g(t, ϕ) − g(t, ψ)‖Lp

≤ ‖ϕ − ψ‖L2p

∥∥∥∥∥a − b
∫ t

0
λ(t − s)(−∆)βϕ ds

∥∥∥∥∥
L2p

+ b‖ψ‖L2p

∫ t

0
|λ(t − s)| ‖(−∆)βψ − (−∆)βϕ‖L2p ds

≤ C‖ϕ − ψ‖Hσ,p
0

(a|Ω|1/2p + b‖λ‖L1(0,t)‖ϕ‖Hσ,p
0

+ b‖λ‖L1(0,t)‖ψ‖Hσ,p
0

)
≤ C‖ϕ − ψ‖Hσ,p

0
[‖λ‖L1(0,t)(‖ϕ‖Hσ,p

0
+ ‖ψ‖Hσ,p

0
) + 1].

In particular, taking ψ ≡ 0,

‖g(t, ϕ)‖Lp ≤ C‖ϕ‖Hσ,p
0

(‖λ‖L1(0,t)‖ϕ‖Hσ,p
0

+ 1)

for all ϕ ∈ Hσ,p, because σ ≥ 2β + N/2p. �

Lemma 2.4. Let λ : R→ R be a locally integrable function. Assume that (H) holds and
consider functions ui : [0, τ]→ Hσ,p

0 such that

sup
t∈[0,τ]

‖ui(t)‖Hσ,p
0
≤ µ′, i = 1, 2,

where µ′ > 0. Further, suppose that λ : [0,∞)→ [0,∞) is locally integrable. Then∥∥∥∥∥∫ t

0
e∆(t−s)[g(r, u1(r)) − g(r, u2(r))] dr ds

∥∥∥∥∥
Hσ,p

0

≤ MC(2‖λ‖L1(0,t)µ
′ + 1)

2
2 − σ

t1−σ/2 sup
s∈[0,t]

‖u1(s) − u2(s)‖Hσ,p
0
,

and ∥∥∥∥∥∫ t

0
e∆(t−s)g(r, u(r)) dr ds

∥∥∥∥∥
Hσ,p

0

≤ MC(‖λ‖L1(0,t)µ
′ + 1)µ′

2
2 − σ

t1−σ/2. (2.4)
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Proof. A combination of Remark 2.2 and Lemma 2.3 gives∥∥∥∥∥∫ t

0
e(t−s)∆[g(r, u1(r)) − g(r, u2(r))] dr ds

∥∥∥∥∥
Hσ,p

0

≤ MC sup
s∈[0,t]

‖u1(s) − u2(s)‖Hσ,p
0

∫ t

0
(t − s)−σ/2 ds(2‖λ‖L1(0,t)µ

′ + 1)

≤ MC(2‖λ‖L1
loc(0,t)µ

′ + 1)
2

2 − σ
t1−σ/2 sup

s∈[0,t]
‖u1(s) − u2(s)‖Hσ,p

0
,

and in a similar way one obtains (2.4). �

3. Main result

We can now state and prove our main result.

Theorem 3.1. Let λ : R→ R be a locally integrable function and assume that (H)
holds. Given v0 ∈ Hσ,p

0 , there exist τ > 0 and r > 0 such that for every u0 ∈ BHσ,p
0

(v0, r)
the Cauchy–Dirichlet problem (1.2)–(1.4) possesses a unique mild solution u : [0, τ]→
Hσ,p

0 . Further, u ∈ C((0, τ]; Hσ′,p
0 ) for every σ′ ∈ [σ, 2)\{1/p} and the solutions depend

continuously on the initial data.

Proof. Let 0 < µ ≤ 1. Choose τ > 0 small enough so that, for all t ∈ [0, τ],

‖e∆tv0 − v0‖Hσ,p
0
<
µ

3
and

MC(‖λ‖L1(0,t)µ
′ + 1)µ′

2
2 − σ

t1−σ/2 <
µ

3
,

where µ′ := µ + ‖v0‖Hσ,p
0

. Set r = µ/3M. It follows that ‖e∆tu0 − v0‖Hσ,p
0
< 2µ/3.

Now define

B =

{
u ∈ C([0, τ]; Hσ,p

0 ) : sup
t∈[0,τ]

‖u(t) − v0‖Hσ,p
0
≤ µ

}
.

Consider the map Λ : B→ B defined by

(Λu)(t) = e∆tu0 +

∫ t

0
e∆(t−s)u(s)

[
a − b

∫ s

0
λ(s − r)(−∆)βu(r) dr

]
ds.

First, we will show that we actually have ΛB ⊂ B. For 0 ≤ t1 < t2 ≤ τ and u ∈ B,

‖(Λu)(t1) − (Λu)(t2)‖Hσ,p
0

≤ ‖e∆t1 u0 − e∆t2 u0‖Hσ,p
0

+

∫ t1

0

∥∥∥∥∥[e∆(t1−s) − e∆(t2−s)]u(s)
[
a − b

∫ s

0
λ(s − r)(−∆)βu(r) dr

]∥∥∥∥∥
Hσ,p

0

ds

+

∫ t2

t1

∥∥∥∥∥e∆(t2−s)u(s)
[
a − b

∫ s

0
λ(s − r)(−∆)βu(r) dr

]∥∥∥∥∥
Hσ,p

0

ds
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≤ ‖e∆t1 u0 − e∆t2 u0‖Hσ,p
0

+ ‖I − e∆(t2−t1)‖L(Hσ,p
0 )MC(‖λ‖L1(0,t1)µ

′ + 1)µ′
2

2 − σ
t1−σ/2
1

+ MC
2

2 − σ

(
1 −

( t1
t2

)1−σ/2)
(‖λ‖L1(0,t)µ

′ + 1)µ′,

which converges to zero as either t1 → t−2 or t2 → t+1 . Moreover, from Lemma 2.4,

‖(Λu)(t) − v0‖Hσ,p
0

≤ ‖e∆tu0 − v0‖Hσ,p
0

+

∫ t

0

∥∥∥∥∥e∆(t−s)
[
a − b

∫ s

0
λ(s − r)(−∆)βu(r) dr

]
dr

∥∥∥∥∥
Hσ,p

0

ds

<
2µ
3

+ MC
2

2 − σ
t1−σ/2(‖λ‖L1(0,t)µ

′ + 1)µ′ ≤
2µ
3

+
µ

3
= µ.

Hence, Λ is well defined.
Next, we show that Λ is a contraction. For u, v ∈ B, by Lemma 2.4,

‖(Λu)(t) − (Λv)(t)‖Hσ,p
0

≤ MC
2

2 − σ
τ1−σ/2(2‖λ‖L1(0,τ)µ

′ + 1) sup
s∈[0,t]

‖u(s) − v(s)‖Hσ,p
0

≤
µ

3
sup

s∈[0,t]
‖u(s) − v(s)‖Hσ,p

0

≤
1
3

sup
s∈[0,t]

‖u(s) − v(s)‖Hσ,p
0
.

Hence, by the Banach fixed point theorem, Λ has a unique fixed point u ∈ B. This is a
mild solution for (1.2)–(1.4).

If we repeat these steps, but using (2.1) instead of (2.2), we find that

‖u(t1) − u(t2)‖Hσ′ ,p
0

≤ Mtσ/2−σ
′/2‖I − e∆(t2−t1)‖

L(Hσ′ ,p
0 )‖u0‖Hσ,p

0

+ ‖I − e∆(t2−t1)‖
L(Hσ′ ,p

0 )MC(‖λ‖L1(0,t)µ
′ + 1)µ′

2
2 − σ

t1−σ′/2

+ MC
2

2 − σ′

(
1 −

( t1
t2

)1−σ′/2)
(‖λ‖L1(0,t)µ

′ + 1)µ′,

for 0 < t1 < t2 ≤ τ. Consequently, u ∈ C((0, τ]; Hσ′,p
0 ). This shows the existence and

regularity of the mild solution. Let us prove that it is unique. Let ũ be a mild solution
of (1.2)–(1.4). Then, by Lemma 2.3,

‖u(t) − ũ(t)‖Hσ,p
0

≤ M
∫ t

0
(t − s)−σ/2‖g(u(r)) − g(ũ(r))‖Lp dr ds

≤ MC
∫ t

0
(t − s)−σ/2 sup

r∈[0,s]
‖u(r) − ũ(r)‖Hσ,p

0
(2‖λ‖L1(0,t)η + 1) ds,
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where η := max{supt∈[0,τ] ‖u(t)‖Hσ,p
0
, supt∈[0,τ] ‖ũ(t)‖Hσ,p

0
}. Thus,

‖u(t) − ũ(t)‖Hσ,p
0
≤ MC(2‖λ‖L1(0,τ)η + 1)

∫ t

0
(t − s)−σ/2 sup

r∈[0,s]
‖u(r) − ũ(r)‖Hσ,p

0
ds.

Put f (t) := sups∈[0,t] ‖u(s) − ũ(s)‖Hσ,p
0

and C = MC(2‖λ‖L1(0,τ)η + 1). It follows that

f (t) ≤ C
∫ t

0
(t − s)−σ/2 f (s) ds,

for all t ∈ [0, τ]. By the singular Gronwall inequality, f (t) = 0 for all t ∈ [0, τ] and
uniqueness follows.

Finally, take u1, u2 ∈ BHσ.p
0

(v0, r) and, for i = 1, 2, let ui(t) be the mild solution that
starts at ui, i = 1, 2. Then

‖u1(t) − u2(t)‖Hσ,p
0

≤ ‖e∆tu1 − e∆tu2‖Hσ,p
0

+ MC(2‖λ‖L1 (0, τ)µ′ + 1)
2

2 − σ
τ1−σ/2 sup

s∈[0,t]
‖u1(t) − u2(t)‖Hσ,p

0

≤ ‖u1 − u2‖Hσ,p
0

+
µ

3µ′
sup

s∈[0,t]
‖u1(s) − u2(s)‖Hσ,p

0
.

Hence,
sup

s∈[0,t]
‖u1(s) − u2(s)‖Hσ,p

0
≤ 3

2‖u1 − u2‖Hσ,p
0
.

Thus the mild solution of (1.2)–(1.4) depends continuously on the initial data. �
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