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Restriction Operators Acting on Radial
Functions on Vector Spaces over Finite
Fields

Doowon Koh

Abstract. We study Lp → Lr restriction estimates for algebraic varieties V in the case when restriction
operators act on radial functions in the finite field setting. We show that if the varieties V lie in odd
dimensional vector spaces over finite fields, then the conjectured restriction estimates are possible for
all radial test functions. In addition, assuming that the varieties V are defined in even dimensional
spaces and have few intersection points with the sphere of zero radius, we also obtain the conjectured
exponents for all radial test functions.

1 Introduction

Let V be a subset of Rd, d ≥ 2, and dσ a positive measure supported on V . One may
ask for which values of p and r does the following inequality hold:

‖ f̂ ‖Lr(V,dσ) ≤ C p,r,d‖ f ‖Lp(Rd) for all f ∈ Lp(Rd).

This problem is known as the restriction problem in Euclidean space and it was first
posed by E. M. Stein in 1967. The restriction problem for the circle and the parabola
in the plane was completely solved by Zygmund [21]. The problem for cones in three
and four dimensions was also established by Barcelo [1] and Wolff [19], respectively.
However, this problem is still open in other higher dimensions and it has been con-
sidered as one of the most important, challenging problems in harmonic analysis.
We refer the reader to [2, 4, 16–18, 20] for further discussion and recent progress on
the Euclidean restriction problem.

As an analog of the Euclidean restriction problem, Tao and Mockenhaupt [15]
recently reformulated and studied the restriction problem for various algebraic va-
rieties in the finite field setting. In the introduction we review the definitions, con-
jectures, and known results on the restriction problem for algebraic varieties in d-
dimensional vector spaces over finite fields. Let Fd

q be a d-dimensional vector space
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over the finite field Fq with q elements. We endow this space with a counting mea-
sure dm. Thus, if f : Fd

q → C, then its integral over Fd
q is given by∫

Fd
q

f (m) dm =
∑

m∈Fd
q

f (m).

We denote by Fd
q∗ the dual space of Fd

q . We endow the dual space Fd
q∗ with a nor-

malized counting measure dx. Hence, given a function g : Fd
q∗ → C, we define its

integral ∫
Fd

q∗

g(x) dx =
1

qd

∑
x∈Fd

q∗

g(x).

Recall that the space Fd
q is isomorphic to its dual space Fd

q∗ as an abstract group. Also

recall that if f is a complex-valued function on Fd
q , its Fourier transform, denoted

by f̂ , is actually defined on its dual space Fd
q∗ :

f̂ (x) =

∫
Fd

q

χ(−m · x) f (m) dm =
∑

m∈Fd
q

χ(−m · x) f (m),

where χ denotes a nontrivial additive character of Fq. Let V be an algebraic variety
in the dual space Fd

q∗. Throughout the paper we always assume that |V | ∼ qd−1.

Namely, we view the variety V as a hypersurface in Fd
q∗. Recall that a normalized

surface measure on V , denoted by dσ, is defined by the relation∫
g(x) dσ(x) =

1

|V |
∑

x∈V
g(x),

where g : Fd
q∗ → C.

With notation above, the restriction problem for the variety V is to determine
1 ≤ p, r ≤ ∞ such that the following restriction estimate holds:

(1.1) ‖ f̂ ‖Lr(V,dσ) ≤ C‖ f ‖Lp(Fd
q ,dm) for all functions f : Fd

q → C,

where the constant C > 0 is independent of functions f and the size of the underlying
finite field Fq. We shall use the notation R(p → r) . 1 to indicate that the restriction
estimate (1.1) holds. By duality, inequality (1.1) is same as the following extension
estimate:

‖(gdσ)∨‖Lp′ (Fd
q ,dm) ≤ C‖g‖Lr′ (V,dσ).

Mockenhaupt and Tao [15] observed1 that necessary conditions for inequality (1.1)
take

(1.2) 1 ≤ p, r ≤ ∞, 1

p
≥ d + 1

2d
and

d

p
+

d− 1

r
≥ d.

Namely, R(p → r) . 1 only if (1/p, 1/r) lies in the convex hull of points

(1.3) (1, 0), (1, 1),
( d + 1

2d
, 1
)
,
( d + 1

2d
,

1

2

)
.

1In [15] Mockenhaupt and Tao actually stated inequalities in (1.2) in terms of dual exponents.
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They also showed that these necessary conditions can be improved in the case when
an affine subspace is contained in the variety V ⊂ Fd

q with |V | ∼ qd−1. However, it
has been conjectured that if no affine subspaces lie in V , then necessary conditions
in (1.2) are also sufficient conditions for R(p → r) . 1. Indeed, Mockenhaupt and
Tao [15] proved that necessary conditions (1.3) are in fact sufficient conditions for
A(p → r) . 1 if V is the parabola in F2

q∗. In [11], Koh and Shen generalized the result
to general algebraic curves in two dimensions. However, in higher dimensions the
restriction problem has not been solved, and the known results are even weaker than
those in Euclidean space. The currently best known results on restriction problems
for paraboloids in Fd

q∗ are due to A. Lewko and M. Lewko [13]. They established
certain endpoint restriction estimates for paraboloids that slightly improve on the
previously known results by Mockenhaupt and Tao [15] in three dimensions and
those by Iosevich and Koh [7] in higher dimensions. More precisely, the following
restriction results were essentially proved by them.

Proposition 1.1 Let V = {x ∈ Fd
q∗ : x2

1 + · · · + x2
d−1 = xd} be a paraboloid. If

d ≥ 4 is even or if d = 4k + 3 for some k ∈ N and −1 ∈ Fq∗ is not a square, then
A(p → r) . 1 whenever (1/p, 1/r) is contained in the convex hull of the points

(1, 0), (1, 1),
( d2 + 2d− 2

2d2
, 1
)
,
( d2 + 2d− 2

2d2
,

1

2

)
,
( 3

4
,

d + 2

4d

)
.

In the case that d = 3 and −1 ∈ Fq∗ is not a square, Bennett, Carbery, Carrigos,
and Wright first proved2 that A(p → r) . 1 whenever (1/p, 1/r) lies in the convex
hull of points

(1, 0), (1, 1), (13/18, 1), (13/18, 1/2), and (3/4, 3/8).

This result has been recently improved by M. Lewko [12], but the improvement is
not enough to establish the conjectured exponents given in (1.3).

Our main results below imply that the restriction conjecture (1.2) holds for para-
boloids in F3

q∗ with −1 ∈ Fq∗ not square if the restriction operator acts on radial
functions. The main purpose of this paper is to address general properties of vari-
eties for which the restriction conjecture holds for all radial test functions (see Theo-
rem 2.3 below).

Remark 1.2 In the Euclidean case, it is well known that the spherical restriction
conjecture is valid for the class of radial functions (see [5, p. 2]). More generally, De
Carli and Grafakos [5] proved it for the class of functions spanned by products of
radial functions and spherical harmonics.

2 Statement of Main Results

While we do not know how to improve Theorem 1.1, we are able to show that if
the test functions are radial functions, then the Lp → Lr restriction estimates for
paraboloids hold for the exponents given in (1.3). In fact, we shall prove more gen-
eral results. In order to clearly state our main theorems, let us introduce certain

2This result was not published, but it can be found in Carbery’s lecture notes [3].

https://doi.org/10.4153/CMB-2014-016-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-016-2


Restriction Operators 837

definitions and notation. For each m = (m1, . . . ,md) ∈ Fd
q, define

‖m‖ = m2
1 + · · · + m2

d.

We say that a function f : Fd
q → C is a radial function if

f (m) = f (n) whenever ‖m‖ = ‖n‖.
For each j ∈ Fq, we define

(2.1) Sd−1
j = {m = (m1, . . . ,md) ∈ Fd

q : m2
1 + · · · + m2

d = j}
which will be named as the sphere with j radius.

Definition 2.1 We write Rrad(p → r) . 1 if the restriction estimate (1.1) holds for
all radial functions f : Fd

q → C.

2.1 Restriction Results on Radial Functions

Our first result below shows that the restriction operators acting on radial functions
have quite good mapping properties.

Theorem 2.2 Let dσ be the normalized surface measure on an algebraic variety V ⊂
Fd

q∗ with |V | ∼ qd−1. Then we have

(2.2) Rrad

( 2d

d + 1
→ 2

)
. 1 for d ≥ 3 odd

and

(2.3) Rrad

( 2d− 2

d
→ 2(d− 1)2

d2 − 2d

)
. 1 for d ≥ 4 even.

Using the nesting properties of Lp-norms and interpolating (2.2) with the trivial
L1 → L∞, we see that necessary conditions (1.2) for A(p → r) . 1 are sufficient con-
ditions for Rrad(p → r) . 1 if the variety V with |V | ∼ qd−1 lies in odd dimensional
vector spaces over finite fields. Notice that the result of Theorem 2.2 in even dimen-
sions is weaker than that in odd dimensions. However, the following theorem shows
that if the variety V does not contain a lot of elements in the sphere with zero radius,
then the result in even dimensions can be improved to that in odd dimensions.

Theorem 2.3 Let dσ be the normalized surface measure on an algebraic variety V ⊂
Fd

q∗ with |V | ∼ qd−1. Suppose that |V ∩ Sd−1
0 | . q

d2−d−1
d . Then

Rrad

( 2d

d + 1
→ 2

)
. 1 for d ≥ 3.

It seems that if the algebraic variety V does not contain Sd−1
0 , the sphere of zero

radius, then the conclusion of Theorem 2.3 holds. For example, if

V = {x ∈ Fd
q∗ : x2

1 + · · · + x2
d−1 = xd}

is the paraboloid or
V = {x ∈ Fd

q∗ : x1 + · · · + xd = 0}
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is the plane, then |V ∩ Sd−1
0 | . qd−2 < q(d2−d−1)/d. In this case, we therefore ob-

tain the conclusion of Theorem 2.3. This fact is very interesting in that the Fourier
transform of radial functions can be meaningfully restricted to the plane.

Remark 2.4 When studying the finite field analogue of Euclidean problems, we
often find dichotomic results between even dimensions and odd dimensions. The-
orem 2.2 is one of examples showing such an unusual phenomena. Authors in [6]
also addressed it on the Erdös–Falconer distance conjecture in finite fields. One of
the main reasons for this can be explained in terms of the maximal dimension of
affine subspaces lying in the algebraic variety V ⊂ Fd

q . For example, let us assume
that −1 ⊂ Fq is a square number. It is well known in [9] that if the dimension

d is odd, then the sphere Sd−1
j ⊂ Fd

q contains the maximal affine subspace H with

|H| = q(d−1)/2. However, this never happens if the dimension d is even, because
(d − 1)/2 is not an integer for d even. In fact, if d is even, then we can show that
|H| = q(d−2)/2 for j 6= 0, and |H| = qd/2 for j = 0, where H denotes the maximal
affine subspace lying in Sd−1

j ⊂ Fd
q .

3 Fourier Decay Estimates on Spheres

Since the Fourier transform of a radial function can be written as a linear combi-
nation of the Fourier transforms on spheres, the Fourier decay estimates on spheres
will play a crucial role in proving our results. In this section, we go over the decay
properties of the Fourier transform on spheres Sd−1

j ⊂ Fd
q . We begin with reviewing

the classical exponential sum estimates. For each a ∈ F∗q , the Gauss sum is defined
by

Ga :=
∑

s∈F∗q

η(s)χ(as),

where η denotes the quadratic character of F∗q . In particular, we will write G for the
Gauss sum G1. The Kloosterman sum is given by

K(a, b) :=
∑

s∈F∗q

χ(as + bs−1) for a, b ∈ Fq.

In addition, recall that the Salié sum is the exponential sum given by

S(a, b) :=
∑

s∈F∗q

η(s)χ(as + bs−1) for a, b ∈ Fq.

It is well known that |Ga| =
√

q for a ∈ F∗q , |K(a, b)| ≤ 2
√

q for a 6= 0 or b 6= 0, and
|S(a, b)| ≤ 2

√
q for a, b ∈ Fq (see [14, p. 193] and [10, pp. 322–323]). In terms of the

aforementioned exponential sums, the Fourier transform on the spheres in Fd
q can be

explicitly expressed. Modifying a normalizing factor, one can deduce the following
result from Lemma 4 in [8].

Lemma 3.1 Let Sd−1
j be the sphere in Fd

q , defined as in (2.1). Then for any x ∈ Fd
q∗,

we have

Ŝd−1
j (x) =

{
qd−1δ0(x) + q−1GdK(− j,−4−1‖x‖) for d ≥ 2 even,

qd−1δ0(x) + q−1GdS(− j,−4−1‖x‖) for d ≥ 3 odd,
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where δ0(x) = 1 if x = (0, . . . , 0) and δ0(x) = 0 otherwise.

Proof By the definition of the Fourier transform of a function on Fd
q, we see that if

Sd−1
j ⊂ Fd

q and x ∈ Fd
q∗ , then

Ŝd−1
j (x) =

∑
m∈Sd−1

j

χ(−x ·m) =
∑

m∈Fd
q

χ(−x ·m)δ0(‖m‖ − j).

Applying the orthogonality relation of χ, we can write

δ0(‖m‖ − j) = q−1 ∑
s∈Fq

χ
(

s(‖m‖ − j)
)

for x ∈ Fd
q∗ .

It therefore follows that

Ŝd−1
j (x) = q−1 ∑

m∈Fd
q

χ(−m · x) + q−1 ∑
s∈F∗q

χ(− js)
( ∑

m∈Fd
q

χ(s‖m‖ − x ·m)
)

= qd−1δ0(x) + q−1 ∑
s∈F∗q

χ(− js)
d∏

k=1

∑
mk∈Fq

χ(sm2
k − xkmk).

(3.1)

Completing the square and using a change of variables, it follows that

(3.2)
∑

mk∈Fq

χ(sm2
k − xkmk) = χ

(
−x2

k/(4s)
) ∑

mk∈Fq

χ(sm2
k) for k = 1, 2, . . . , d.

Let A = {t ∈ F∗q : t is a square number} and observe that, for each s ∈ F∗q ,∑
t∈Fq

χ(st2) = 1 +
∑

t∈F∗q

χ(st2) = 1 +
∑
t∈A

2χ(st)

= 1 +
∑

t∈F∗q

(
1 + η(t)

)
χ(st) =

∑
t∈F∗q

η(t)χ(st) = η(s)G1.

Applying this equality to (3.2), it follows from (3.1) that

Ŝd−1
j (x) = qd−1δ0(x) + q−1Gd ∑

s∈F∗q

ηd(s)χ
(
− js +

‖x‖
−4s

)
.

Since ηd = 1 for d ≥ 2 even, and ηd = η for d ≥ 3 odd, the statement of Lemma 3.1
follows immediately from the definitions of the Kloosterman sum and the Salié sum.

The following corollary can be obtained by applying the estimates of the Gauss
sum G, the Kloosterman K(a, b), and the Salié sum S(a, b) to Lemma 3.1.

Corollary 3.2 Let d ≥ 3 be an integer. Then,

(3.3) Ŝd−1
j (0, . . . , 0) = |Sd−1

j | ∼ qd−1 for j ∈ Fq.

If d ≥ 2 and x ∈ Fd
q∗ \ {(0, . . . , 0)} then

(3.4) |Ŝd−1
j (x)| .


q

d−1
2 for d odd, j ∈ Fq

q
d−1

2 for d even, j 6= 0

q
d
2 for d even, j = 0.
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In particular, if ‖x‖ 6= 0 and d ≥ 4 is even, then

(3.5) |Ŝd−1
0 (x)| = q

d−2
2 .

Proof First, let us prove (3.3). It is clear from the definition of the Fourier transform
that

Ŝd−1
j (0, . . . , 0) =

∑
m∈Fd

q

χ
(

m · (0, . . . , 0)
)

Sd−1
j (m) = |Sd−1

j |.

On the other hand, it follows from Lemma 3.1 that

Ŝd−1
j (0, . . . , 0) =

{
qd−1 + q−1GdK(− j, 0) for d ≥ 2 even

qd−1 + q−1GdS(− j, 0) for d ≥ 3 odd.

Since |G| = √q, |K(− j, 0)| ≤ q for j ∈ Fq, and |S(− j, 0)| ≤ 2
√

q for j ∈ Fq, we
see that if d ≥ 3, then qd−1 + q−1GdK(− j, 0) ∼ qd−1 + q−1GdS(− j, 0) ∼ qd−1. Thus,
(3.3) holds. Next, using Lemma 3.1, the conclusion (3.4) is an immediate conse-
quence from facts that |G| = √q, |K(a, b)| ≤ 2

√
q if a 6= 0 or b 6= 0, |K(a, b)| = q−1

if a = b = 0, and |S(a, b)| ≤ 2
√

q if a, b ∈ Fq. Finally, equality (3.5) follows from
Lemma 3.1 and the observations that |G| = √q, |K(0, b)| = 1 for b 6= 0.

4 Proofs of Theorem 2.2 and Theorem 2.3

In this section we shall complete the proofs of main results on restriction oper-
ators acting on radial functions. First, we shall derive sufficient conditions for
Rrad(p → r) . 1. We aim to find certain conditions on 1 ≤ p, r ≤ ∞ such that

‖ f̂ ‖Lr(V,dσ) . ‖ f ‖Lp(Fd
q ,dm) for all radial functions f : Fd

q → C.

Without loss of generality, we may assume that f is a nonnegative, radial function
on Fd

q . Therefore, we can write

f (m) = M j ≥ 0 if m ∈ Sd−1
j for some j ∈ Fq.

By multiplying a normalizing constant, we may also assume that

‖ f ‖Lp(Fd
q ,dm) = 1.

It therefore follows that

1 = ‖ f ‖p
Lp(Fd

q ,dm) =
∑

m∈Fd
q

| f (m)|p

=
∑
j∈Fq

∑
m∈Sd−1

j

M p
j =

∑
j∈Fq

M p
j |S

d−1
j |.

Since |Sd−1
j | ∼ qd−1 for j ∈ Fq and d ≥ 3, we have

(4.1)
∑
j∈Fq

M p
j ∼ q1−d.
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Under the above assumptions on the radial function f , it suffices to find certain con-
ditions on 1 ≤ p, r ≤ ∞ such that

(4.2) ‖ f̂ ‖r
Lr(V,dσ) =

1

|V |
∑

x∈V
| f̂ (x)|r . 1.

Since f̂ (x) =
∑

m∈Fd
q
χ(−m · x) f (m) =

∑
j∈Fq

∑
m∈Sd−1

j
χ(−m · x)M j , it follows that

‖ f̂ ‖r
Lr(V,dσ) =

1

|V |
∑

x∈V

∣∣∣ ∑
j∈Fq

M j Ŝ
d−1
j (x)

∣∣∣ r

=
1

|V |
∑

x∈V\{(0,...,0)}

∣∣∣ ∑
j∈Fq

M j Ŝ
d−1
j (x)

∣∣∣ r
+

1

|V |

∣∣∣ ∑
j∈Fq

M j Ŝ
d−1
j (0, . . . , 0)

∣∣∣ r
.

(4.3)

Since M j ≥ 0, |V | ∼ qd−1, and Ŝd−1
j (0, . . . , 0) = |Sd−1

j | ∼ qd−1 for d ≥ 3, we see
that

‖ f̂ ‖r
Lr(V,dσ) ∼

1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣ ∑
j∈Fq

M j Ŝ
d−1
j (x)

∣∣∣ r
+

qr(d−1)

qd−1

( ∑
j∈Fq

M j

) r
.

From Hölder’s inequality and (4.1), observe that

(4.4)
( ∑

j∈Fq

M j

) r
≤
( ∑

j∈Fq

1p′
) r

p′
( ∑

j∈Fq

M p
j

) r
p ∼ qr(1− d

p ),

where p′ denotes the Hölder conjugate of p, that is p′ = p/(p − 1). It follows that

‖ f̂ ‖r
Lr(V,dσ) .

1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣ ∑
j∈Fq

M j Ŝ
d−1
j (x)

∣∣∣ r
+ qrd(1− 1

p )−d+1.

Combining this with (4.2), the sufficient conditions on 1 ≤ p, r ≤ ∞ for Rrad(p →
r) . 1 are given by

(4.5)
1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣ ∑
j∈Fq

M j Ŝ
d−1
j (x)

∣∣∣ r
. 1

and

(4.6) rd

(
1− 1

p

)
− d + 1 ≤ 0.

Remark 4.1 Observe that if (0, . . . , 0) /∈ V , then the second term in (4.3) must
disappear. In this case, we therefore see that the sufficient condition for Rrad(p →
r) . 1 only takes the condition (4.5).

4.1 Proof of the First Part of the Conclusions in Theorem 2.2

We prove (2.2) of Theorem 2.2. Namely, we shall prove that if d ≥ 3 is odd, then

‖ f̂ ‖L2(V,dσ) . ‖ f ‖
L

2d
d+1 (Fd

q ,dm)
for all radial functions f : Fd

q → C.

With p = 2d/(d + 1) and r = 2, it is enough to show that (4.5) and (4.6) hold. Now,
(4.6) follows immediately from a direct observation that if p = 2d/(d + 1) and r = 2,
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then rd(1 − 1/p) − d + 1 = 0. To prove (4.5), we recall from (3.4) in Corollary 3.2
that if d ≥ 3 is odd, then

|Ŝd−1
j (x)| . q

d−1
2 for j ∈ Fq, x 6= (0, . . . , 0).

From this fact and (4.4), it is not hard to obtain (4.5) for p = 2d/(d + 1) and r = 2.
Indeed, we have

1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣ ∑
j∈Fq

M j Ŝ
d−1
j (x)

∣∣∣ 2
.

∑
x∈V\{(0,...,0)}

( ∑
j∈Fq

M j

) 2

. |V |
( ∑

j∈Fq

M j

) 2
. qd−1q2(1− d+1

2 ) = 1,

(4.7)

where we also used that M j ≥ 0 and |V | ∼ qd−1.

4.2 Proof of the Second Part of the Conclusions in Theorem 2.2

We prove (2.3) of Theorem 2.2. When d ≥ 4 is even, we must prove Rrad(p → r) . 1
for p = 2d− 2/d and r = 2(d− 1)2/(d2 − 2d). As mentioned before, it suffices to
prove both (4.5) and (4.6) for p = (2d− 2)/d and r = 2(d− 1)2/(d2 − 2d). In this
case, (4.6) is clearly true because rd(1 − 1/p) − d + 1 = 0. To prove (4.5), we recall
from (3.4) in Corollary 3.2 that if d ≥ 4 is even and x 6= (0, . . . , 0), then

|Ŝd−1
j (x)| .

{
q

d−1
2 for j 6= 0

q
d
2 for j = 0.

From this fact, the left part of (4.5) can be estimated as follows:

1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣ ∑
j∈Fq

M j Ŝ
d−1
j (x)

∣∣∣ r

.
1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣M0Ŝd−1
0 (x)

∣∣∣ r
+

1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣∑
j 6=0

M j Ŝ
d−1
j (x)

∣∣∣ r

.
1

qd−1
q

rd
2 Mr

0

( ∑
x∈V\{(0,...,0)}

1
)

+
1

qd−1
q

r(d−1)
2

(∑
j 6=0

M j

) r( ∑
x∈V\{(0,...,0)}

1
)

. q
rd
2 Mr

0 + q
r(d−1)

2

( ∑
j∈Fq

M j

) r
. q

rd
2 Mr

0 + q
r(d−1)

2 qr(1− d
p ),

where the last inequality follows from (4.4). Since M j ≥ 0 for j ∈ Fq, it is clear

from (4.1) that M0 . q
1−d

p . Thus, we have

(4.8) Mr
0 . q

r(1−d)
p .

We therefore see that if p = (2d− 2)/d and r = 2(d− 1)2/(d2 − 2d), then

1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣ ∑
j∈Fq

M j Ŝ
d−1
j (x)

∣∣∣ r
. q

rd
2 + r(1−d)

p + q
r(d−1)

2 +r(1− d
p )

= q0 + q−
d−1

d(d−2) . 1,

which proves (4.5) and we complete the proof.
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4.3 Proof of Theorem 2.3

Let dσ be the normalized surface measure on an algebraic variety V ⊂ Fd
q∗ with

|V | ∼ qd−1. Assuming that |V ∩ Sd−1
0 | . q(d2−d−1)/d, we aim to prove that

Rrad

( 2d

d + 1
→ 2

)
. 1 for d ≥ 3.

In the case when d ≥ 3 is odd, this statement was already proved in the first part of
Theorem 2.2 with much weaker assumptions. Thus, we may assume that d ≥ 4 is
even. Suppose that

|V ∩ Sd−1
0 | . q

d2−d−1
d .

As before, our task is to prove that both (4.5) and (4.6) hold for p = 2d/(d + 1) and
r = 2. As mentioned before, (4.6) clearly holds for p = 2d/(d + 1) and r = 2. To
prove (4.5), we set

L :=
1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣ ∑
j∈Fq

M j Ŝ
d−1
j (x)

∣∣∣ r

and show that L . 1. It follows that

L .
1

qd−1

∑
x∈V\{(0,...,0)}

Mr
0|Ŝd−1

0 (x)|r +
1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣∑
j 6=0

M j Ŝ
d−1
j (x)

∣∣∣ r

:= R + M.

It suffices to prove that for p = 2d
d+1 and r = 2,

(4.9) R =
1

qd−1

∑
x∈V\{(0,...,0)}

Mr
0|Ŝd−1

0 (x)|r . 1

and

(4.10) M =
1

qd−1

∑
x∈V\{(0,...,0)}

∣∣∣∑
j 6=0

M j Ŝ
d−1
j (x)

∣∣∣ r
. 1.

Notice that (4.10) follows immediately from the same argument as in (4.7). To prove
(4.9), we write

R =
1

qd−1

∑
x∈V\{(0,...,0)}:‖x‖=0

Mr
0|Ŝd−1

0 (x)|r +
1

qd−1

∑
x∈V\{(0,...,0)}:‖x‖6=0

Mr
0|Ŝd−1

0 (x)|r.

Since d ≥ 4 is even, the application of (3.4) and (3.5) in Corollary 3.2 yields that

R .
Mr

0

qd−1
q

rd
2 |V ∩ Sd−1

0 | + Mr
0

qd−1
q

r(d−2)
2 |V |.

By (4.8) and our assumption that |V ∩ Sd−1
0 | . q

d2−d−1
d , we see that if p = 2d

d+1 and
r = 2, then

R . q
r(1−d)

p + rd
2 −

1
d + q

r(1−d)
p + r(d−2)

2 = q0 + q
1−2d

d . 1.

The proof of Theorem 2.3 is complete.
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