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Abstract

Carnap’s (Categoricity) Problem concerns the relationship between (rules of) inference and model-

theoretic values. In particular, it asks whether proof-theoretic constraints are ‘strong enough’ to

uniquely determine intended semantic values. Carnap (1943) demonstrated that already in the

classical bivalent setting this is not the case for the majority of the usual logical constants. To

remedy this underdetermination of ‘semantics by syntax’ a variety of solution strategies has been

explored in the literature. This article is a philosophical-logical survey of these attempts, comparing

them with respect to scope, motivation and success. Besides the mathematical interest held by

Carnap’s Problem, the underdetermination it uncovers has significant consequences for a variety

of philosophical projects and positions, warranting a systematic study of attempts at resolving it.
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1 Introduction: A Full Formalization of Logic

A recurring theme in Carnap’s work on the foundations of logic and mathematics is a concern with no-

tions of formal completeness and questions pertaining to the determinacy and uniqueness of formal, i.e.,

logical and mathematical, concepts. The most prominent example of this can be found in his ultimately

abandoned Untersuchungen zur Allgemeinen Axiomatik, containing the ill-fated Gabelbarkeitssatz, in
which he aimed to unify several extant conceptions of the completeness of an axiom system. After

Carnap’s ‘semantic turn’, following the rise and wide-spread acceptance of Tarskian model-theory,

questions concerning the determinacy of formal notions gained a further layer of complexity.
1
It was

in this context that Carnap worried that the usual characterizations of logical notions, in spite of the

soundness and completeness of the systems they were part of, i.e., in spite of a perfect match at the

level of consequence, left essential properties underspecified.

Carnap took up the question of a full formalization of logic in a “very little known” (Raatikainen,

2008, 283) work (Carnap, 1943). There, he demonstrated that, surprisingly, the standard rules for al-

most all of the usual logical constants of FOL severely underdetermine their standard model-theoretic

semantics. This state of affairs, Carnap thought, was highly undesirable: a unique determination of

the standard semantic values of the constants by their rules of inference was to be a desideratum for

a logical system on par with its soundness and completeness. Although tradition has not followed

him in this assessment of importance, Carnap’s discovery had impactful consequences for a wide va-

riety of philosophical views and projects, even outside the foundations of logic. Due to this, Carnap’s
(Categoricity) Problem has, in recent years, been the subject of intense attention, after only sporadic

discussions and rediscoveries for the over 60 years directly following the publication of (Carnap, 1943).
2

Despite the renewed interest there exists, to the best of my knowledge, no fully systematic study of

the solution strategies put forward for resolving Carnap’s Problem.
3
This is the gap the present paper

aims to fill. In doing so, it is bound to remain incomplete as the literature is, by now, vast and scattered.

While containing several novel observations and results, its main goal remains expository; it tries to

bring under common philosophical perspectives different solution strategies that have been proposed

and elaborated in the literature.

Carnap’s Problem has consequences for debates in the philosophy of language, mind, mathematics,

ontology, epistemology, and logic and constitutes a deep and fruitful starting point for evaluating

seemingly unrelated philosophical positions and proposals. Even though Carnap’s original interest

in and treatment of the issue was much more narrow, this paper deviates in this from his original

focus and starting point. It is, moreover, less concerned with a faithful reconstruction of the historical

Carnap, but rather attempts a systematic survey and discussion of Carnap’s Problem in a contemporary

context. It is hoped that this, by bringing together various avenues of investigation, will shed light on

just how deep, basic and widespread the issues raised by Carnap’s Problem are.

The structure of the paper is as follows: in Section 2 I will, based on existing treatments of the

issue, introduce the basic structure of Carnap’s Problem and provide a partial and incomplete overview

of debates it impacts. Section 3 surveys and discusses the first of the major families of strategies

addressing the problem, strategies who have in common the idea that the notion of inference needs to
be refined or strengthened in order to rule out the underdetermination of the logical constants. Sections

4 and 5 take up the, less widespread, semantic strategy for remedying Carnapian underdetermination

and investigate its scope and prospects. Finally, Section 6 concludes with a brief outlook. A short

appendix contains definitions and results clarifying several points from the main parts of the paper.

1

Cf. (Leitgeb and Carus, 2020, Section 6.2) and (Awodey and Carus, 2001).

2

See the references in note 6.

3

Though see, e.g., Hjortland (2014), Bonnay and Westerståhl (2016), Button and Walsh (2018) and Brîncus (2024a) for

comparative assessments of several of the solutions discussed in this paper.

2
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2 Carnap’s Categoricity Problem

Let L be a propositional language consisting of a countably infinite stock of propositional variables

p, q, r . . . and the usual connectives ¬,∧,∨,→ and ↔. The set of sentences of L is designated by

SentL . A (single-conclusion) consequence relation ⊢L over L is a relation of the form:
4

⊢L ⊆ P(SentL )× SentL

As usual, we write Γ ⊢L φ for ⟨Γ, φ⟩ ∈ ⊢L .

A (two-valued) valuation v is a total function v : SentL 7→ {0, 1}. A sentence φ is true under a
valuation v if v(φ) = 1. We designate the set of all (two-valued) valuations by ValL . Let V ⊆ ValL .

A sentence φ is a V-consequence of a set of sentences Γ, Γ |=V φ, if, for all v ∈ V , whenever v(γ) = 1
for all γ ∈ Γ then also v(φ) = 1 (we write v(Γ) = n for v(γ) = n for all γ ∈ Γ).

A valuation v is consistent with a consequence relation ⊢L if, whenever Γ ⊢L φ, it is not the case
that v(Γ) = 1, but v(φ) = 0. A set of valuations V is consistent with a consequence relation ⊢L if

⊢L ⊆ |=V . V(⊢L ) = {v ∈ ValL | v is consistent with ⊢L } yields the set of valuations consistent

with ⊢L . The semantic value of a connective c ∈ {¬,∧,∨,→,↔}, JcK, is a set of valuations, i.e.,

JcK ⊆ ValL . JcK is consistent with a consequence relation ⊢L if JcK ⊆ V(⊢L ). JcK is (uniquely)
determined if V(|=JcK) = JcK.5

Carnap’s Problem concerns the question of what semantic value we are able to recover on the basis

of inferential information and demonstrates, in particular, the failure of standard inferential character-

izations of the logical notions to determine their standard semantics.
6

2.1 Classical Propositional Logic

To appreciate the scope and import of Carnap’s Problem it is best to start with a case of successful

meaning-determination. Consider, to this end, conjunction as inferentially characterized by the usual

clauses – (∧I) φ,ψ ⊢L φ∧ψ; (∧E1) φ∧ψ ⊢L φ and (∧E2) φ∧ψ ⊢L ψ – and endowed with its usual

semantic value (as provided by the standard boolean satisfaction-clause):

J∧K = {v ∈ ValL | for all φ,ψ ∈ SentL : v(φ ∧ ψ) = 1 iff v(φ) = 1 and v(ψ) = 1}

From the fact that V(·) and |=_ form an antitone Galois-connection it immediately follows that J∧K ⊆
V(|=J∧K).

7
Suppose, then, that there exists a v∗ ∈ ValL , s.t. v∗ ∈ V(|=J∧K) but v

∗ /∈ J∧K. This means

4

Note that we don’t impose any further requirements on⊢L to constitute a consequence relation, though all consequence

relations considered in this paper are fully Tarskian, see Avron (1991).

5V(·) and |=_ form an antitone Galois-connection, see (Humberstone, 2011), (Hjortland, 2014), (Hardegree, 2005) and

(French and Ripley, 2019). In the propositional setting we follow the set-up of (Humberstone, 2011) and (Hjortland, 2014).

6

The original discussion of Carnap’s Problem occurs in (Carnap, 1943). Church’s review (Church, 1944) contains refer-

ences to earlier work that was aware of the issue Carnap discussed, though did not address its philosophical dimensions. In

the following decades, Carnap’s Problem was occasionally re-discovered and investigated, though few discussions explicitly

addressed the philosophical concerns driving Carnap’s treatment of the issue, see (Church, 1954), (McCawley, 1975, 1981),

(Leblanc et al., 1977), (Gabbay, 1978), (Shoesmith and Smiley, 1978), (Hart, 1982), (Belnap and Massey, 1990), (Garson, 1990),

(Koslow, 1992) and (Humberstone, 1996). See esp. (Humberstone, 2011) for an extensive list of references addressing the

propositional versions of Carnap’s Problem. (Raatikainen, 2008, 283) laments the absence of attention that had been paid to

the issues raised by Carnap 60 years earlier and points out several philosophical consequences of Carnap’s discovery (see,

in this context, especially the responses by (Murzi and Hjortland, 2009) and (Incurvati and Smith, 2010)). Several accounts

that have taken up both the formal and the philosophical challenge associated with Carnap’s Problem include (Smiley, 1996),

(Rumfitt, 1997, 2000), (Humberstone, 2000). Recently, Carnap’s Problem has attracted growing attention among inferentialists

and philosophers of logic, see (Koslow, 2010), (Garson, 2010, 2013), (Hjortland, 2014), (Peregrin, 2014), (Woods, 2014), (Bonnay

and Westerståhl, 2016), (Button, 2016), (Button and Walsh, 2018), (Haze, 2019), (Brîncuş, 2019; Brîncus, 2024a), (Bonnay and

Speitel, 2021), (Murzi and Topey, 2021), (Bonnay andWesterståhl, 2023), (Tong andWesterståhl, 2023), (Tabakçı, 2024), (West-

erståhl, 2025), (Picollo, 2025). This renewed attention motivates the current papers’ goal of taxonomizing extant approaches

and solution-strategies to Carnap’s Problem.

7

An antitone Galois-connection is a pair of maps ⟨f, g⟩ between ordered sets A,B – f : A → B and g : B → A, –

such that, for all a ∈ A and b ∈ B, b ≤ f(a) iff a ≤ g(b). In the case at hand, A = P(ValL ), B = {⊢L | ⊢L⊆
P(SentL ) × SentL }, f is |=_, g is V(·), and the order relation is given by ⊆. See (Humberstone, 2011, 0.12 & p. 58 (G2))

for the result that for any set of valuations V , V ⊆ V(|=V).

3
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that, for some pair of sentences φ and ψ, v∗ is not boolean, i.e., (a) v∗(φ ∧ ψ) = 1 but v∗(φ) = 0 or

v∗(ψ) = 0; or (b) v∗(φ ∧ ψ) = 0 yet v∗(φ) = 1 and v∗(ψ) = 1.
Note that, in case (a), v∗ would be inconsistent with ∧E1 or ∧E2, whereas in case (b) v∗ would be

inconsistent with∧I. Clearly, however, |=J∧K respects∧I,∧E1, and∧E2, and v∗ is therefore inconsistent
with |=J∧K. It follows that v

∗ /∈ V(|=J∧K) and therefore J∧K = V(|=J∧K). In other words, ∧I, ∧E1 and
∧E2 uniquely determine J∧K.

Now let ⊢CPL be the (single-conclusion) consequence relation of classical propositional logic and

consider the valuations v⊤ and v⊢:
8

(i) v⊤(φ) = 1 for all φ ∈ SentL

(ii) v⊢(φ) = 1 iff ⊢CPL φ

v⊤ does not rule out any sentence and does thus not constitute a counterexample to any claim of

consequence – it is consistent with every consequence relation and in particular with ⊢CPL. Moreover,

since anything derivable from a set of theorems in CPL is itself a theorem of CPL, v⊢ is consistent with

⊢CPL as well. However, note that, for any φ ∈ SentL , v⊤(φ) = v⊤(¬φ) = 1 and, for an arbitrary

propositional atom p, v⊢(p) = v⊢(¬p) = 0 yet v⊢(p ∨ ¬p) = 1.
Since both v⊤ and v⊢ are consistent with ⊢CPL and ⊢CPL is sound and complete with respect to

the class of boolean valuations B, we have that v⊤, v⊢ ∈ V(|=B). Furthermore, since B ⊆ J¬K and

B ⊆ J∨K∩ J¬K for the usual semantic values of ¬ and ∨ (provided by the standard boolean satisfaction

clauses)

J¬K = {v ∈ ValL | for all φ ∈ SentL : v(φ) = 1 iff v(¬φ) = 0}
J∨K = {v ∈ ValL | for all φ,ψ ∈ SentL : v(φ ∨ ψ) = 1 iff v(φ) = 1 or v(ψ) = 1}

it follows from the fact that V(·) and |=_ form a Galois-connection that V(|=B) ⊆ V(|=J¬K) and V(|=B
) ⊆ V(|=J∨K∩J¬K) (see (Humberstone, 2011, Ch. 1.12)). Hence, v⊤ ∈ V(|=J¬K) and v⊢ ∈ V(|=J∨K∩J¬K).
Therefore V(|=J¬K) ̸= J¬K and V(|=J∨K∩J¬K) ̸= J∨K ∩ J¬K. In other words, the usual boolean semantic

values of ‘¬’ and ‘∨’ are not determined by a (complete) description of their inferential behaviour, as

captured by ⊢CPL.

This is somewhat surprising given that the class of boolean valuations B was sound and complete
with respect to classical propositional consequence ⊢CPL, i.e., both ⊢CPL ⊆ |=B and |=B ⊆ ⊢CPL

hold, hence |=B =⊢CPL. It means that although the consequence relation of CPL fully and adequately

captures the relation of logical consequence for the language of classical propositional logic, and the

boolean valuations provide sufficiently many counterexamples for any claim of consequence not li-

censed by CPL, something is left out and cannot be secured at the level of consequence. The usual

axiomatizations of CPL fail to provide, in Carnap’s words, a full formalization of CPL and thus require

amendment. Thus, despite the completeness of ⊢CPL for the intended interpretations of the logical

constants not every aspect of their meaning is adequately captured by the consequence relation.
9
From

the perspective of ⊢CPL there is therefore no reason to think that the boolean clauses are the right

way of semantically describing the meanings of the connectives.

This Carnapian underdetermination demonstrates two things: on the one hand, we are unable to

recover the standard, intended meanings of the connectives from their inferential behaviour. On the

other, the usual boolean meanings of these connectives are unstable in the sense that they cannot be

recovered from the consequence relation they generate – they fail to be uniquely determined on the

basis of the inferential patterns they give rise to.

8

These examples are well-known, see, e.g., (Carnap, 1943) and (Belnap and Massey, 1990).

9

That not all aspects of the meaning of a connective can be adequately captured at the level of consequence is a claim

familiar from debates concerning the relation between classical and non-classical logics: several non-classical logics, such

as ST (Cobreros et al., 2012) or supervaluationist logics (van Fraassen, 1966), coincide with classical logic at the level of the

consequence relation, but differ from it at the level of meta-inferences, cf. (Barrio et al., 2020). Yet, as a reviewer of this paper

helpfully points out, meta-inferences have just as legitimate a claim to being relevant to a connective’s meaning as inferences

do. Hence, not all aspects of a connective’s meaning are codified by the consequence relation. For applications of this point

to Carnap’s Problem see Section 3.4 below. Thanks to an anonymous referee of this paper for raising this point.

4
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How ‘bad’ or extensive is Carnap’s Problem? Already in (Carnap, 1943), Carnap provided an ex-

haustive classification of what can go wrong with valuations at the level of classical propositional

consequence. He there showed that what he termed non-normal valuations, unintended valuations

consistent with ⊢CPL, are of two kinds: (i) the single valuation v⊤ that interrupts the law of non-

contradiction by making everything true; and (ii) valuations that make at least one sentence false and

fail to be boolean for at least one connective by violating bivalence and making a sentence and its

negation both false (of which v⊢ is one of many instances).
10

What is lost through these ‘non-normal’ valuations is the truth-functionality of the semantic values

of the connectives. Given a set of valuations V and a connective c of adicity n, c is truth-functional
with respect to V if there exists a function fc : {0, 1}n 7→ {0, 1}, s.t. for all φ1, . . . , φn ∈ SentL and

v ∈ V :11

v(c(φ1, . . . , φn)) = fc(v(φ1), . . . , v(φn))

fc is called a truth-function for c. It follows from the truth-functionality of a connective with truth-

function f that, whenever v(φi) = v(ψi), then f(v(φ1), . . . , v(φn)) = f(v(ψ1), . . . , v(ψn)). Thus, if
c is truth-functional, v(c(φ1, . . . , φn)) = v(c(ψ1, . . . , ψn)). Consider, once more, the valuation v⊢ and

let f∨ be the usual binary truth-function of ∨. We then have that v⊢(p ∨ ¬p) = f∨(v⊢(p), v⊢(¬p)).
However, f∨(0, 0) = 0while v⊢(p∨¬p) = 1. Hence, f∨ cannot be a truth-function for∨ overB∪{v⊢}.
Similar arguments establish that there can be no truth-function for ∨ over B ∪ {v⊢}.12

Just as severe as Carnap’s Problem is for an adequate meaning-theory of the connectives, just as

easy it is to address: force the truth-functionality of any one of the connectives ¬,∨,→,↔ and the

standard, intended, truth-functional interpretations will thereby be determined for all of them.
13

Thus,

what is needed is a way to stabilize the standard boolean meaning of any one of the connectives other

than conjunction in order to obtain a solution to Carnap’s Problem for CPL.
14

2.2 First-Order Logic (FOL)

Carnap was aware that the underdetermination uncovered by him extended to the quantifiers as well.

In (Carnap, 1943) he outlined and discussed the non-normal interpretations affecting the standard

first-order universal and existential quantifiers. Arguably, however, Carnap was not yet able to fully

appreciate the dimension of underdetermination as it occurs at the level of quantification, since the

mature concept of a quantifier only emerged later through the work of (Mostowski, 1957), (Lindström,

1969) and (Montague, 1974). This observation is supported by the (limited) solution he put forward to

resolve the underdetermination of the quantifiers by, essentially, reducing universal quantification to

infinitary conjunction and existential quantification to infinitary disjunction. Since the concern of the

present article lies less with a reconstruction of the historical Carnap we will here treat the issue from

the perspective of generalized quantifier theory to emphasize the generality of the issue of Carnapian
underdetermination.15

Let L (Q1, . . . , Qn) be a relational first-order language
16
with a countably infinite set of individ-

ual variables x1, x2, . . ., a countably infinite set of relation-symbolsRn
1 , R

n
2 , . . . for any adicity n, a full

10

See (Church, 1944, 493), (Belnap and Massey, 1990, 68), (Raatikainen, 2008, 284) and (Bonnay andWesterståhl, 2016, 727).

11

See, for example, (Humberstone, 2011, 376), (McCawley, 1975, 412), (Hart, 1982, 132), (Belnap and Massey, 1990, 71).

12

See (Bonnay and Westerståhl, 2016, 728).

13

See, e.g., (Carnap, 1943) (McCawley, 1975), (Garson, 2013).

14

The formal results concerning Carnap’s Problem are well-known. See (Humberstone, 2011) for an extensive and system-

atic treatment of the relationship between consequence relations and their valuational presentations. Most, if not all, formal

results mentioned in this section can be found there.

15

Though see (Carnap, 1943) and cf. (Leblanc et al., 1977). Cf. also (Bonnay and Westerståhl, 2016) for criticizing attempts

of this kind for resolving Carnap’s Problem.

16

For ease of presentation we restrict attention to purely relational first-order languages and signatures in the following,

though the results mentioned of course generalize. Bonnay and Westerståhl (2016) consider languages with constant and

function symbols. The theorem below is thus a special case of their result which also demands that the base of the principal

filter be closed under the interpretation of terms.

5
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complement of propositional connectives ¬,∧,∨,→,↔, and quantifier-symbols Q1, . . . , Qn. Models

for L (Q1, . . . , Qn) are standard relational first-order structuresM = ⟨M,R1,R2, . . . , ⟩. The defini-
tion of sentence, consequence relation (written: ⊢L (Q1,...,Qn)) and truth-in-a-model are as expected and

analogous to the propositional case.
17

From the perspective of generalized quantifier theory,
18
a quantifierQ is a second-order predicate

‘checking’ whether a (sequence of) first-order predicate(s) has the property expressed by the quantifier.

A quantifier-expression is of type ⟨k1, . . . , kn⟩ if it combines with n formulas to form a well-formed

expression, binding ki variables in the i-th formula. The usual universal and existential quantifiers are

of type ⟨1⟩. For simplicity of presentation we consider, unless noted otherwise, only quantifiers of type

⟨1⟩ in the following.

Let M be the class of all first-order models. The semantic value of a (type ⟨1⟩) quantifier JQK is a
class of (first-order) models (Lindström, 1969):

19

JQK = {M ∈ M | M = ⟨M,X⟩ and Ψ(X)}

where Ψ is some (set-theoretic) property. The satisfaction clause for generalized quantifiers is as fol-

lows (whereM is a first-order model with domainM and Jφ(x)KM = {a ∈M | M |= φ(a)}):

M |= Qxφ(x) iff ⟨M, Jφ(x)KM⟩ ∈ JQK

Examples of generalized quantifiers include the usual first-order quantifiers ∀, ∃, elementarily definable

quantifiers such as ‘at least 3’ (∃≥3), but also quantifiers such as ‘infinitelymany’ (Q0) and ‘uncountably

many’ (Q1):

(i) J∀K = {⟨M,X⟩ |X =M}
(ii) J∃K = {⟨M,X⟩ |X ̸= ∅}
(iii) J∃≥3K = {⟨M,X⟩ | |X| ≥ 3}
(iv) JQ0K = {⟨M,X⟩ | |X| ≥ ℵ0}
(v) JQ1K = {⟨M,X⟩ | |X| ≥ ℵ1}

Let ⊢FOL be the usual (single-conclusion) consequence relation of classical first-order logic. In a recent

paper, Bonnay & Westerståhl (2016) precisely characterized the shape of possible interpretations of ∀
consistent with its inferential behaviour in the context of ⊢FOL.

20
LetM be a model with domainM .

The local quantifier JQKM over a particular model M can be obtained from the corresponding global

quantifier JQK by restricting attention to the domain M of M in the following way (for a type ⟨1⟩
quantifier): JQKM = {X | ⟨M,X⟩ ∈ JQK}. In keeping with the global characterization of meaning, we

say that a quantifier-interpretation JQK is consistent with a consequence relation ⊢ iff ⊢ is sound with

respect to the model-theoretic consequence relation generated by JQK (see Appendix for details).
21

Then

17

Unless noted otherwise, we take a claim of consequence to be, first and foremost, a relation between sentences rather
than (open) formulas. This constitutes a choice point in the debate which, at times, has consequences for resolving Carnap’s
Problem (see esp. the latter part of Section 3.4).

18

See (Peters and Westerståhl, 2006) for overview.

19

In analogy with the propositional case, we here identify the meaning of a quantifier-expression with a global quantifier,
see (Peters and Westerståhl, 2006).

20

See (Button and Walsh, 2018, Ch. 13) for a characterization of the underdetermination of the first-order quantifiers in

terms of Boolean models.

21

For ease of presentation and consistency with characterizing the meaning of logical expressions globally I here deviate

from the formal set-up used by Bonnay andWesterståhl (2016) to establish their result. Whereas they consider so-calledweak
models in the context of languages containing also predicate-variables, and assess consistency relative to individual models,

I here take the interpretation of a quantifier to be global and, therefore, to depend only on the domain of a model. This

difference in presentation is largely insubstantial for the result itself. The assumption of predicate-variables in Bonnay &

Westerståhl’s set-up allows them to avoid having to take definability-facts into account when formulating their main result.

The same is achieved by making the interpretation of the quantifier dependent on only the underlying domain of a model,

independently of what is and is not definable in that particular model, and adjusting the relevant standard of consistency
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Theorem (Bonnay and Westerståhl, 2016): An interpretation J∀K of the universal quantifier is consis-
tent with ⊢FOL as long as, for allM, J∀KM is a principal filter overM .

A principal filter FX over a setM has the form FX = {A ⊆ M |X ⊆ A} for some X ⊆ M .
22

The

intended interpretation J∀KM = {M} is of course a principal filter overM (set X = M ), – it is the

maximal principal filter overM , – but it is, in general (as long as |M | > 1), far from the only one. As

a result, ⊢FOL underdetermines the semantic value of ∀ and, derivatively, of ∃ as well.

How to best understand the scale of underdetermination here? The meaning of ∀ according to

⊢FOL essentially boils down to meaning ‘for all X’ and the meaning of ∃ to ‘some X’, where X is

an arbitrary subset of the domain (Bonnay and Westerståhl, 2016). As an example, let X be the base

of a principal filter FX interpreting ∀ over a model M. Due to the duality of ∀ and ∃ we have that

J∃KM = {A ⊆ M |X ̸⊆ M − A}. Thus, M |= ∃xφ(x) iff Jφ(x)KM ∈ J∃KM iff X ̸⊆ M − Jφ(x)KM

iff Jφ(x)KM ∩ X ̸= ∅, i.e., iff there is some X that is φ. Models of first-order logic thus come to

resemble inner domains of models of free logic, distinguishing between ‘existing’ (those in the base

of the principal filter) and ‘non-existing’ (those not present in the base of the principal filter) objects

(Bonnay and Westerståhl, 2016). Allowing constant-symbols in the language, the only interpretation

guaranteed to be recoverable from first-order inference patterns is the substitutional interpretation of

the quantifiers.
23

This is, of course, deeply troubling, for it “undermines the prospects of philosophical ontology

construed as the quintessentially armchair project of extracting ontological commitments from the

semantic analysis of quantified statements" (Antonelli, 2015, 171). For philosophical projects relying

on an objectual interpretation of the usual first-order quantifiers, combined with the idea that this

meaning is, ultimately, to be ‘read off’ their inferential behaviour, Carnap’s Problem is devastating.

2.3 The Philosophical Significance of Carnap’s Problem

Carnap’s Problem is more than a mere formal curiosity in the mathematical foundations of proposi-

tional and first-order logic. Carnap deemed a categorical, i.e., unique, determination of the semantic

values of the logical expressions of these systems to be a desideratum on par with soundness and com-

pleteness results for the relevant calculi. The underdetermination of semantics by ‘syntax’ that he

uncovered constitutes a stumbling block for many philosophical projects that rely on the formalisms

of the respective logical systems. In this brief section I want to provide a few examples of places where

Carnap’s Problem might be taken to cause issues.

Informally, Carnap’s Problem problematizes the idea that understanding how an expression func-

tions in inference suffices for grasping its truth-conditional content. It therefore constitutes an imme-

diate and sizeable issue for moderate inferentialism, a group of positions that attribute an important

meta-semantic function to inferential roles in a theory of meaning. According to positions of this type,

meanings are (best modelled by) model-theoretic objects (semantic maximalism) that can be known or

‘gotten to’ on the basis of epistemically minimal, and naturalistically acceptable, resources – inferential

roles of the relevant expressions. Inherent to moderate inferentialism is the adoption of a meaning-
determination thesis according to which it is inferential roles that determine, but are not identified with,

the meanings of the logical expressions. As such, their success is threatened by Carnap’s Problem.
24

Relatedly, Carnap’s Problem undermines the idea that “soundness and completeness serve to legit-

imate talk of reference, denotation, semantic value, and the like; these model-theoretic terms derive

accordingly. Thus, Bonnay and Westerståhl’s result carries over to the current setting without restriction. In response to

criticism of their assumption of second-order variables in stating their result in (Valle-Inclán, 2024) I argued (Speitel, 2025)

that the assumption of these second-order variables merely captures the domain-dependency of quantification and thereby

serves as a simplifying but, for their purposes, inessential device. See the Appendix for spelling out the differences and

correspondences between the current and Bonnay and Westerståhl’s setting in more detail. I thank an anonymous referee

for urging me to clarify the relationship between the presentation of the result here and in (Bonnay and Westerståhl, 2016).

22

See, e.g., (Davey and Priestley, 2002, 45) for precise definition.

23

Cf. also (Garson, 2013, Ch. 14) and (Picollo, 2025) for the underdetermination of quantifiers.

24

See (Raatikainen, 2008). See (Murzi and Steinberger, 2017) for an overview.
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their sense from the connection between models and valid inference” (Ripley, 2013, 142). For it demon-

strates that there is a gap between completeness and categoricity (in Carnap’s sense): soundness and

completeness of a logical system are not sufficient for the categoricity of its logical expressions (and,

as will be shown in Section 5.2, neither are they necessary). More, then, is needed to accommodate a

grasp of or reference to non-inferential meanings on the basis of inferentially mediated access.

Carnap’s Problem severely distorts the idea that the understanding of a logical notion is constituted

by an appreciation of its (characteristic) inferential patterns, an idea popular in certain debates in the

philosophy of logic and language (see, e.g., (Boghossian, 1996)). Where unique determination is made

part of the conditions for the logicality of a notion (see (Feferman, 2015) and (Bonnay and Speitel,

2021)), the need to address Carnapian underdetermination is obvious.

Logic, as a tool for scientific theory-building, is meant to provide a framework that not only ensures

safe and reliable inference, but also limits the inevitable underdetermination arising at the level of

scientific data (underdetermination of theory by evidence) and at the level of possible models of a

theory (due to Löwenheim-Skolem and similar phenomena). Instead, Carnap’s Problem introduces

a further dimension of underdetermination into the logical apparatus used for formalizing scientific

theories, thereby increasing indeterminacy at a particularly basic level: “[o]ur student has heard of the

difficulties of excluding nonstandard interpretations in the upper stories of mathematics; now he finds

the same thing in the basement [of logical theorizing]” (Shoesmith and Smiley, 1978, 3).

A further, philosophically important aspect of Carnap’s Problem was already briefly mentioned

in the previous section. According to Quine’s (in)famous criterion of ontological commitment (Quine,
1953) the ontological commitments of a theory are determined by its quantified-over variables. Com-

bining this with the view that the meaning of those quantifiers is to be determined in a naturalistically

acceptable way by inferential patterns renders this assessment of ontological commitment inadequate:

“the possibility of nonstandard interpretations reveals that being the value of a variable is at best a

sufficient, but not necessary condition for ontological commitment” (Antonelli, 2013, 657).

Although Carnap’s discussion of the eponymously named underdetermination phenomenon in

(Carnap, 1943) took place in the context of classical languages and truth-conditional semantics, noth-

ing about Carnap’s Problem restricts it to this setting. Carnap’s question can be asked for any language

and logical system that possesses a sufficiently formalized syntax and semantics. Carnap’s Problem
arises just as forcefully for other logical systems. What changes when moving to a different language

or logic are not just the inferential descriptions of the relevant notions but, more importantly, the

semantic space, i.e., the space of values of the logical expressions under consideration. In an inten-

sional setting, for example, it will no longer do to treat propositional meanings as given by functions

from sentences to truth-values, and we might have to assess categoricity with respect to a semantic

framework identifying meanings with, say, sets of worlds. We will consider applications of Carnap’s
Problem to non-classical and richer settings in sections 4.2 and 4.3 below. At this point it is worth em-

phasizing the extent and reach of Carnap’s Problem and the concomitant wealth of philosophical and

formal questions revealed by it for debates in logic, philosophical logic and the philosophies of logic

and language.

3 Inferential Strategies for Solving Carnap’s Problem

Common to inferential strategies addressing Carnap’s Problem is the belief that the shortcoming re-

vealed by it is to be located in the restricted way inference can be represented in a purely assertion-

based, single-conclusion framework. What Carnap’s Problem shows, according to accounts of this

type, is that we should adopt a richer notion of inference to tighten control over the semantic values

determined, fixed, or ‘pinned down’ by rules and inferential patterns. The basic method underlying in-

ferential strategies consists therefore in a strengthening of the proof-theory or language so as to enable

it to express further or stronger conditions on the semantic framework with which it is to cohere.

This section briefly surveys four inferential strategies that have been put forward to resolve Car-

napian underdetermination and points out some of their (philosophical) weaknesses in the context of
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addressing Carnap’s Problem. The first strategy (Section 3.1) takes issue with the fact that inference is

considered single-conclusion, the second with the fact that inference is taken to be (solely) assertion-
based (Section 3.2). Nonetheless, both still support the idea that determination of semantic value should

be effected by inferences, i.e., sequents consisting of premisses and conclusion(s). In contrast, the solu-

tion strategies of sections 3.3 and 3.4 shift perspective from sequents to rules, and thus from inferences
to inferring, maintaining that the dynamics of drawing inferences have a role to play in the determi-

nation of semantic value.

3.1 Enriching Consequence: Multiple Conclusions

Introduced in Gentzen’s seminal study of the proof-theory of classical and related systems (Gentzen,

1934), amultiple conclusion consequence relation (mcr) ⊢m
L over a languageL is a relation of the form:

25

⊢m
L ⊆ P(SentL )× P(SentL )

The basic notion of an argument according to the multi-conclusion perspective is thus one with multi-

ple premises andmultiple conclusions. A valuation v is consistent with anmcr⊢m
L iff, wheneverΓ ⊢m

L ∆
and v(Γ) = 1, then v(δ) = 1 for some δ ∈ ∆. The remaining notions are defined analogous to the

single-conclusion case.

This ‘simple’ modification has significant repercussions, for it strengthens the resulting notion of

consequence to such a degree that the multiple-conclusion consequence relation for classical logic

⊢m
CPL forces consistent valuations to be boolean.

26
In the context of mcrs the usual semantic values

of the classical connectives are therefore uniquely determined – the expressive resources of the mcr-

framework are sufficiently strong to ensure that the standard meanings of the logical constants possess

inferential roles that determine them.

Whence the additional control over semantic values? By way of example, consider the valuations

v⊤ and v⊢ from above. v⊤ is ruled impermissible by the fact thatmcrs permit empty succedents. Thus,

it holds in particular that φ,¬φ ⊢m
CPL ∅ (Humberstone, 2011, 78). v⊢, on the other hand, fails to be

consistent with ⊢m
CPL p,¬p. The enriched multiple conclusion framework is in fact so expressive that

every truth-value assignment to formulas of the language possesses a corresponding statement of de-

ducibility – as a result, any class of valuations can be uniquely described by a set of multi-conclusion

inferences.
27
Themcr-framework is thereby able to ensure the truth-functionality, and thus booleaness,

of the inferentially characterized classical operators.
28

The “valuational semantics implicit in [a] con-

sequence relation" (Humberstone, 2011, 389) is so tightly constrained and regulated in the setting of

mcrs that non-standard interpretations are rendered impossible: the additional means of expression

made available by moving to a multi-conclusion framework allow for the enforcement of constraints

on consistent valuations that are sufficient to rule out Carnap’s non-normal valuations.
29

For the propositional case, making consequence multi-conclusion thus successfully solves Carnap’s
Problem and fully formalizes CPL in the sense of Carnap. Things look less promising for the quantifiers,

however. Accounts extending the multiple conclusion strategy to expressions from this grammatical

category usually do so by reducing universal and existential quantification to infinite conjunctions and

disjunctions, respectively, and stipulating that domains remain countable with every object in them

possessing a name.
30
However, “[t]his procrustean strategy shows at best that if quantifiers are reduced

to connectives, what works for connectives works for quantifiers as well" (Bonnay and Westerståhl,

2016, 723). In particular, given the infinitary rules that must be adopted for the quantifiers on this

25

For a systematic study of mcrs see (Shoesmith and Smiley, 1978) and (Humberstone, 2011). The multiple conclusion

strategy is essentially the strategy adopted by Carnap himself.

26

See, e.g., (Humberstone, 2011, Theorem 1.16.6). Cf. (Shoesmith and Smiley, 1978, Ch. 17) for further categoricity proofs.

27

See (Humberstone, 2011, 1.17.3) and (Hjortland, 2014, Theorem 4.6).

28

See (Humberstone, 2011, Sect. 3.11-3.13).

29

See (Hjortland, 2014) for an extension of this approach to many-valued logics via multi-sided sequents.

30

See (Carnap, 1943), (Kneale and Kneale, 1962) or (Hacking, 1979) for this type of strategy.

9

https://doi.org/10.1017/bsl.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10083


conception the result is a rather unattractive formalism coupled with an apparent misconstruction of

the grammatical type of quantificational expressions.

The multiple conclusion strategy was, in effect, already applied by Carnap himself (Carnap, 1943).

Adopting an mcr-framework to resolve Carnap’s Problem, however, encounters several philosophical

obstacles. Even independently of the problematic treatment of quantifiers, mcrs have been regarded

as sufficiently unnatural to lack philosophical motivation, especially in relation to the inferentialist

program in the philosophy of logic.
31

The complaint is that “multiple-conclusion systems represent so marked a departure from our

actual practice that they can hardly be said to track that practice even in an idealised sense" (Stein-

berger, 2011, 335).
32

Given that reliance on inferences was to satisfy the naturalistic demand for non-

mysterious determination of logical meanings, such artificiality poses a challenge to the proponent of

a multi-conclusion strategy. For the inferences codified in a consequence relation were to capture the

usual practice according to which the meaning of the relevant expressions was determined. The move

to a distinct and unrelated practice does very little to bridge that gap.

In his review of (Carnap, 1943), Church was less worried about the artificiality of the multi-con-

clusion framework than he was about the fact that “Carnap’s use of them [mcrs] is a concealed use of

semantics” (Church, 1944, 496). The worry stems from the way multiple conclusion sequents are inter-

preted. According to the disjunctive interpretation, a (multi-conclusion) sequent Γ ⊢m
L ∆ is equivalent

in meaning to the (single-conclusion) sequent∧
γ∈Γ

γ ⊢L
∨
δ∈∆

δ

Understanding amulti-conclusion sequent via the associated single-conclusion sequent, however, seems

to violate a fundamental inferentialist tenet in that the “very format of the proof system requires us to

have a prior grasp of the meanings of some logical constants” (Steinberger, 2011, 346), namely of (pos-

sibly infinite) conjunctions and, more problematically, disjunctions.
33

Similarly, Dummett agrees that

“[s]equents with two or more sentences in the succedent [...] have no straightforwardly intelligible

meaning, explicable without recourse to any logical constant” (Dummett, 1991, 187). One thus already

needs to possess an understanding of disjunction before being able to use the multiple conclusion

framework whose purpose was precisely to determine such a meaning.

Without presupposing a prior understanding of disjunction, however, “non-normal interpretations

of this ‘full formalization’ [the mcr formalization] become possible” (Church, 1944, 496),
34
for without

fixing the meaning of disjunction a revenge Carnap’s Problem would affect “

∨
”. The disjunctive inter-

pretation of multi-conclusion sequents, built into what it means for a valuation to be consistent with

an mcr, therefore appears unable to ground a non-circular explanation of how the semantic values of

the propositional connectives are determined in virtue of the inferences they feature in.
35

3.2 Expanding Language: Bilateralism

The fundamental assumption of bilateralism is that there are two types of primitives logical theory

has to account for:
36

the speech-acts of assertion and denial, both falling into the purview of logic,

31

See esp. (Steinberger, 2011) for sustained criticism of the use of mcrs by inferentialists.

32

See (Tennant, 1997, 320) and (Rumfitt, 2000, 795) for similar assessments. See (Restall, 2005) for a dissenting opinion.

33

The situation for conjunction, an understanding of which, it might be alleged, must also already be present in a single-

conclusion framework, is disanalogous, as the conjunction of a set of sentences is equivalent to their sequential assertion,

unlike in the case of disjunction.

34

Cf. also (Murzi, 2010, 242): “If commas cease to mean what [...] Carnap takes them to mean, Carnap’s non-normal

interpretations are not ruled out.”

35

See (Restall, 2005) for an alternative interpretation of multi-conclusion sequents and (Steinberger, 2011) and (Rumfitt,

2008) for comment.

36

Several different positions fall under the label “bilateralism” in the literature: the bilateral interpretation of multi-

conclusion consequence relation as in (Restall, 2005), bi- and multi-lateralist interpretations in terms of multiple consequence
relations (see Wansing and Ayhan (2023)), and the bilateralist position at issue in the current chapter, which relates to a mul-
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are conceived as “distinct activities on all fours with one another” (Smiley, 1996, 1). Consequently,

appropriate axiomatizations of logical systemswill have to include two types of rules – those governing

the interaction of a constant with the speech-act of assertion, and those governing the interaction of

a constant with the speech-act of denial. Notwithstanding the equivalence between the rejection of φ
and the assertion of ¬φ, the bilateral enrichment is not inert: it enables a harmonious formulation of

classical logic in a single-conclusion setting (Rumfitt, 2000) and a resolution of Carnap’s Problem.

To formally express the added dimension of meaning, bilateralists introduce force-markers +, for

assertion, and −, for denial, into the language. Just as speech-acts apply to contents, force-markers

attach to sentences φ ∈ SentL to yield signed sentences+φ and−φ. Let the set of all signed sentences
of L be Sent

∗
L . Force-markers do not “contribute to propositional content, but indicate[...] the force

with which that content is promulgated” (Rumfitt, 2000, 803). They are thus, unlike logical constants,

non-embeddable and cannot be iterated. Their interaction is governed by coordination-principleswhich
constitute structural rules of the relevant logical calculi.37

What is true or false is of course contents and not the speech-acts themselves, but every valuation

v over SentL induces a correctness-valuation vc over Sent∗L , s.t. vc(+φ) = c(orrect) if v(φ) = 1,
vc(+φ) = i(ncorrect) if v(φ) = 0, vc(−φ) = c if v(φ) = 0 and vc(−φ) = i if v(φ) = 1.38 Thus, an

assertion is correct iff the asserted content is true and a rejection is correct iff the rejected content is

false.

Bilateral consequence relations ⊢b
L are single conclusion consequence relations of the form:

⊢b
L ⊆ P(Sent∗L )× Sent

∗
L

tracking the preservation of correctness, rather than of truth. This change of focus effects a redefini-

tion of the notion of consistency. A correctness valuation vc is now consistent with ⊢b
L iff, whenever

Γ ⊢b
L φ and vc(Γ) = c, then also vc(φ) = c.39 Despite this shift we may continue to speak of the con-

sistency of a valuation v with a consequence relation ⊢b
L directly, due to the correspondence between

valuations and correctness-valuations: v is consistent with ⊢b
L iff the induced vc is consistent with

⊢b
L . Similarly, for a given set of correctness valuations Vc we say that a (signed) sentence φ ∈ Sent

∗
L

is a Vc-consequence of a set of (signed) sentences Γ ⊆ Sent
∗
L , Γ |=b

L φ, if, for all vc ∈ Vc, whenever

vc(Γ) = c, then also vc(φ) = c. Definitions of related notions can be given analogously to the above.
40

Smiley (1996) then shows that the bilateralist’s framework is sufficiently expressive to uniquely

determine the semantic values of the connectives and resolve Carnap’s Problem: for any set of val-

uations V and bilateral consequence relation |=Vc induced by V , it holds that V = V(|=Vc) (Smiley,

1996). By way of example, the valuation v⊤ is ruled inadmissible due to the fact that+φ ⊢b
CPL −¬φ.41

Here, v⊤ fails to induce a correctness-preserving correctness valuation, for the correctness valuation

induced by v⊤ will be such that vc⊤(+φ) = c, whereas vc⊤(−¬φ) = i (Hjortland, 2014, 454). Similarly,

the valuation v⊢ is inconsistent with ⊢b
CPL due to the fact that −p,−¬p ⊢b

CPL −(p ∨ ¬p), in which

case vc⊢ takes us from correct to incorrect (Rumfitt, 2000, 807).

The situation in the bilateral case is analogous to the case of mcrs in that the bilateral formalism is

expressive enough to associate every possible truth-value assignment with a statement of deducibil-

ity, thereby constraining consistent valuations tight enough so as to only permit boolean valuations

titude of speech acts or attitudes toward contents that ought to be taken into account in a theory of consequence. For this type

of bilateralism see (Smiley, 1996), (Rumfitt, 2000), (Murzi and Hjortland, 2009), (Incurvati and Smith, 2010) and references

therein, as well as (Humberstone, 2000) and (Button and Walsh, 2018, Ch. 13.6) for overview and discussion. For recent

developments of positions of this type see (Incurvati and Schlöder, 2017, 2019, 2024).

37

Such as, for example, +φ,−φ ⊢b
L ⊥. See (Humberstone, 2000, 346ff.) and (Rumfitt, 2000, 804ff.).

38

See (Murzi and Hjortland, 2009, 485), (Hjortland, 2014, 453), (Humberstone, 2000, 345) and (Murzi, 2010, 235).

39

See, e.g., (Murzi and Hjortland, 2009, 485).

40

See (Hjortland, 2014, 453/454) for a clean formal treatment.

41

This inference constitutes an application of the negation-introduction rule for denial of Rumfitt’s bilateral natural deduc-

tion calculus (Rumfitt, 2000, 802). We can convince ourselves of its correctness as follows: let vc be a correctness valuation
based on boolean valuation v (for the class of which classical bilateral consequence is sound and complete), s.t. vc(+φ) = c.
Hence, v(φ) = 1 and v(¬φ) = 0. But then vc(−¬φ) = c as well and the inference +φ ⊢b

CPL −¬φ is thus correctness-

preserving.
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as semantic values of the classical connectives. This is not surprising, for one can show that, in the

classical case, mcrs and bilateral consequence relations are, in fact, intertranslatable.
42

This intertrans-

latability, however, “should not blind us to what is [...] a crucial philosophical difference” (Rumfitt,

2000, 810) between mcrs and bilateralist consequence. For bilateral systems not only allow for the

harmonious formulation of an axiomatization of CPL in a single-conclusion setting, but also resolve

Carnap’s Problem while avoiding the objections brought forward against mcrs.
43

The resolution of Carnapian underdetermination in the bilateral framework is achieved through

the assumption of the force-markers ‘+’ and ‘−’. It is therefore not surprising that the status of their

meaning is critical to a well-motivated response to Carnap’s Problem. In many ways, the force-marker

of denial behaves just like a negation-operator,
44

raising suspicion that the bilateralist might have

made a hidden, and potentially illegitimate, semantic assumption in her usage of ‘−’ (see (Murzi and

Hjortland, 2009, 486)). Given the (formal) similarity between unilateral negation and bilateral denial,

then, it seems unclear how “bilateralism could possibly hope to offer any resistance against the semantic

underdetermination argument” (Button and Walsh, 2018, 308).

But even if this line of reasoning could be resisted, and a distinction between negation and denial

be upheld, a revenge Carnap’s Problem might arise at the level of correctness valuations. For it might

be asked with what justification the bilateralist excludes non-normal correctness valuations like v⊤c ,
where v⊤c (φ) = c for all φ ∈ Sent

∗
L (Murzi and Hjortland, 2009, 486). Bilateral consequence will be

consistent with v⊤c , yet v
⊤
c will block the reconstruction of the boolean semantic value for negation

from ⊢b
CPL. Carnap’s Problem has thus been shifted upwards to the level of correctness valuations, but

is by no means resolved.

A proponent of this type of objection will see themselves accused of having failed to appreciate

some of the bilateralist’s basic assumptions. For the correctness norms governing assertion and denial

are part and parcel of the bilateralist framework and not up for re-interpretation (see, e.g., (Incurvati

and Smith, 2010, 10)). Taking them to possess the same openness and underdetermination as the logical

constants misunderstands the bilateral approach: the question is not what the meaning of assertion

and denial is, but “whether the content of the negation sign is fixed by the bilateral inferential practice

when added to a given background of the use of force-markers to construct sentences whose default use is
for assertion and rejection” (Incurvati and Smith, 2010, 10). The bilateral practice, however, is assumed

given from the outset – the formal similarity between ‘¬’ and ‘−’ belies this crucial difference between

the status of the meaning of these symbols.
45 Still, it might be objected that the bilateralist approach to

Carnap’s Problem ultimately succeeds because it amounts to the tacit assumption of semantic principles

going beyond those that can be established on an inferential basis alone. For some of the philosophical

positions sketched in Section 2.3 this will constitute an issue.

Lastly, how does the bilateralist fare with respect to the quantifiers? Results by Button and Walsh

suggest that they fare better than the unilateralist, but that preservation of correctness is still insuffi-

cient to determine the standard meanings of the first-order universal and existential quantifiers fully

(see (Button andWalsh, 2018, Ch. 13)). However, it must be pointed out that a canonical (set-theoretic)

42

In the sense that to every multi-conclusion sequent there corresponds a bilateral sequent consistent with the same class

of valuations, and vice versa. See (Hjortland, 2014, 455), (Rumfitt, 2000, 810) and (Humberstone, 2000, 353ff.). See (Hjortland,

2014) for extension to multilateral frameworks for many-valued logics.

43

For application, discussion and extension of the bilateral approach to resolving Carnapian underdetermination see (Rum-

fitt, 1997) and (Hjortland, 2014). Note, however, that extensions of the speech-act approach to alternative logics is, philo-

sophically, not straightforward. For the behavior of the speech-acts in the classical two-valued case need not transfer to

other logics, whose conception of the relationship of the different speech-acts to one another might be different, see Brendel

(2024). Hence, a reformulation of the structural rules governing interactions between speech-acts might be necessary, which

might lead to losing the previously attained solution to Carnap’s Problem. The author thanks Elke Brendel for raising this

issue.

44

A suspicion backed up by various equivalence results, see (Button and Walsh, 2018, Theorem 13.11) and (Murzi and

Hjortland, 2009, 486).

45

The difference between bilateralist framework-assumptions and meaning-determination in their context is reflected at

the level of rules: whereas the rules for the logical constants are operational rules, the rules for the force-markers are structural
rules that articulate constraints on the underlying notion of deducibility itself.
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semantics for bilateral quantification is still in its infancy, so that a conclusive judgement on this issue

cannot be reached at this point.
46

3.3 Re-interpreting Inference: Open-Endedness

Open-ended inferentialism is characterized by two general tenets: (i) rules of inference determine the

meaning of the logical constants; and (ii) such meaning-determining rules “hold always and without
exception” (Button and Walsh, 2018, 313).

47
The former indicates a shift from consequence relations to

rules presenting consequence relations (this makes it possible to talk about rules continuing to hold, in

full generality, in expansions of a language).
48

The latter is the principle of open-endedness, – the idea

that “rules of inference are truth preserving within anymathematically possible extension of language”

(McGee, 2000, 70), – grounded in the pre-linguistic and language-transcendent nature of inference (see,

e.g., (Murzi and Topey, 2021)).
49

The open-ended character of rules of inference is codified through the

demand that these rules continue to hold, no matter how the language is expanded.

Button (2016) and Button and Walsh (2018) show that the requirement of open-endedness suffices

to pin down the intended semantic space, a two-valued Boolean algebra, among all possible Boolean

algebras. Under the assumption that the semantic space providing possible interpretations of the con-

nectives must be a Boolean algebra, the connectives are thereby uniquely determined.
50

Despite these

strong results, Carnap’s Problem remains, at least partially, unaddressed, for the determination succeeds

under the assumption that the relevant semantic space forms a Boolean algebra, which precludes cer-

tain non-normal but inferentially admissible valuations from the outset. Yet, the restriction to Boolean

algebras itself remains inferentially unmotivated.
51

McGee pursues a different route to unique determination. According to his interpretation of the

open-endedness requirement the rules for a connective c must continue to hold when the language is

extended with a duplicate c′ of that connective, governed by identical rules of inference. A connective

c is uniquely determined by its rules if sentences including it are interderivable with sentences that are

identical, except that occurrences of c have been replaced with its duplicate c′, and vice versa (McGee,

2000, 2015). Such interderivability ensures that the inferential role of a connective c has been so tightly
constrained by its rules that there is but a unique candidate filling that role.

52
The usual connectives

of propositional logic all possess rules satisfying this requirement (Harris, 1982).

Assuming a further soundness condition for the uniquely characterizing rules with respect to a

given semantic space ensures that a constant and its duplicate will possess identical semantic values

(McGee, 2000). They are, therefore, not only inferentially, but also semantically uniquely determined.

The rules for the usual connectives and quantifiers of FOL, understood as open-ended rules, “create a

uniquely defined semantic role for each of the connectives and quantifiers” (McGee, 2000, 68). Note,

however, that this type of uniqueness still falls short of solving Carnap’s Problem. For while inferential

uniqueness is sufficient to ensure sameness of semantic values for constants governed by identical

sets of rules, it still cannot guarantee that there is only one possible interpretation of the constants

with respect to which they are sound (McGee, 2006, 193). It achieves, in other words, identical but not

categorical interpretations – the constants are unambiguous, but not unique.
53

46

Though see (Incurvati et al., 2019).

47

There usually is a further implicit assumption active, namely, that every object can, in principle, be named, which I will

ignore in the following, however.

48

Note that this view is compatible with a variety of rule-formats which, in turn, influence the possibility of resolving

Carnap’s Problem. To not obscure what I take to constitute the (philosophical) core of the open-ended strategy I will remain

non-committal about what format these rules take in the following, though see (Warren, 2020) and (Murzi and Topey, 2021)

for concrete implementations.

49

See esp. (McGee, 2000, 2006, 2015) for motivation and development of the idea of the open-ended nature of rules.

50

See (Button, 2016) and (Button and Walsh, 2018, Ch. 13.7) for details.

51

This is of course noticed by (Button, 2016, 13) and (Button and Walsh, 2018, n. 25).

52

See (Belnap, 1962) for the original suggestion and motivation of this form of inferential uniqueness. Cf. (Došen and

Schroeder-Heister, 1988) for an in-depth study.

53

This is a very abbreviated summary ofMcGee’s views. See (McGee, 2000, 2006, 2015) for further elaboration and (Brîncuş,

2019; Brîncus, 2024a,b) for comment and criticism.
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How does open-ended inferentialism fare in the case of the quantifiers? Motivated by Quinean

and Putnamian concerns regarding indeterminate quantifier meanings and restricted quantification,

McGee shows that the possibility of deviant meanings of the quantifiers is undermined by the open-

endedness of the quantifier rules (McGee, 2006, 191).
54

Carnapian underdetermination of the quanti-

fiers showed that the standard rules of universal quantification are sound for an interpretation accord-

ing to which the variables range over a proper subset of the domain, so long as this subset constitutes

the baseX of a principal filter over the domainM . The meaning of ∀ therefore amounts to something

like ‘for allX’ rather than ‘for all elements of the domainM ’. Under the assumption that the rules for

the universal quantifier are open-ended, and thus need to remain valid no matter how the language is

extended, they remain applicable when the language is extended by a predicate P , s.t. JP KM = M ,

and a constant c, s.t. JcKM = a /∈ X . In this extended language, ∀xPx will be true, yet Pc will be
false inM. But this conflicts with the rule of universal instantiation according to which ∀xPx ⊢L Pc
(McGee, 2000, 68). Since this argument can be reiterated as long as the base of the principal filter pro-

viding the interpretation of ∀ is not maximal, demanding that the rules for the universal quantifier be

open-ended appears to force it to take on its standard interpretation: “So, the default value of ‘∀’ [...]
is quantification over everything” (McGee, 2000, 69).

The possibility of excluding non-normal interpretations of the quantifiers stems from the uncon-

strained nature of naming: “singular terms are unconstrained in their taking denotations [...], thereby

giving access to the ‘dark corners’ of the first-order domain where the light of the quantifiers does

not shine” (Antonelli, 2013, 638/639). While the rules for the quantifiers by themselves “do not deter-

mine the range of quantification”, they ensure that “the domain of quantification in a given context

includes everything that can be named within that context” (McGee, 2000, 69). Combining this with

the idea that the rules must remain valid under any extension of the language, and modulo any ar-

tificial restrictions on naming and designation, forces the standard interpretation of the quantifiers.

The fact that the reach of singular terms might outstrip the range of quantification was the reason

that Bonnay and Westerståhl (2016) had to close the admissible interpretations of the quantifiers un-

der the interpretation of terms. Insistence on open-endedness makes the possibility of naming global

and overcomes the remaining local underdetermination, therefore constituting a promising approach

to resolving Carnap’s Problem at the level of quantification.
55

3.4 Meta-inferential Determinacy: Local Models of Rules

In devising a stable foundation for a moderate inferentialist position that escapes Carnapian under-

determination J.W. Garson, in a series of works (Garson, 1990, 2001, 2010, 2013), slightly shifts the

parameters of the way Carnap’s Problemwas construed above, bringing it more in line with traditional

inferentialist approaches to meaning.
56

Thus, instead of taking entire consequence relations as ba-

sic, Garson considers sets of rules instead. Moreover, the rules he considers possess a meta-inferential
format – they no longer govern transitions between sentences but describe permissible transitions

between entire arguments. I.e., the rules have the general format of

Γ1 ⊢ φ1 · · · Γn ⊢ φn
R

∆ ⊢ ψ

54

McGee’s concerns are slightly different from those of the current paper. While he wishes to rule out Putnamian non-

standard models and defend the unrestricted interpretation of universal quantification as the intended and determined in-

terpretation, we are concerned with worries about Carnapian-style underdetermination here.

55

For applications of the open-endedness strategy to resolve Carnap’s Problem see (Warren, 2020) and (Murzi and Topey,

2021); cf. also Section 5.3. See (Brîncus, 2024a,b) and (Picollo, 2025) for critical assessment.

56

Garson, especially (Garson, 2013), pursues a somewhat different project than the one we are engaged in here. Rather

than determining the conditions under which a pre-given meaning is determined by a set of associated inferences he asks

what, given the latter, an appropriate semantics (the natural semantics of an operator) is for the expressions occurring in these
inferences, such that such a semantics is uniquely determined by them. His work includes an elegant solution to Carnap’s
Problem in the way it is conceived here. Garson (2013) extends consideration beyond propositional connectives and further

formulates and investigates the natural semantics for quantifiers and modal operators as well.
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The particular rules for disjunction adopted by Garson, for example, are:
57

Γ ⊢ φi ∨I, i ∈ {1, 2}
Γ ⊢ φ1 ∨ φ2

Γ ⊢ φ ∨ ψ Γ, φ ⊢ χ Γ, ψ ⊢ χ
∨E

Γ ⊢ χ

The shift to a rule-based presentation of transitions between arguments allows for the formulation and

implementation of further requirements constraining the relationship between inference and model-

theoretic meaning. Carnapian underdetermination, Garson says, is the result of ignoring the way

inferential patterns of a constant are given: “The deductive benchmark we are using for what counts

as a model of a system is completely insensitive to the rules that are used to formulate it. It has

been assumed that all that matters for specifying the inferential relations set up by a logic are the

arguments that qualify as provable in the system. However, this view is shortsighted” (Garson, 2013,

15). Admissible models, then, need not just be consistent with the arguments deemed acceptable by the

consequence relation, but with the rules themselves: “[a] model of the arguments [...] is insensitive to

principles that regulate how one deduces new arguments from old ones, and this information matters

to the interpretation of the connectives” (Garson, 2010, 166).

For our purposes, the interesting case of consistency with a rule is Garson’s criterion of local con-
sistency:58 a valuation v is (locally) consistent with a rule R if, whenever v is consistent with the rule-

premises it must also be consistent with the rule-conclusion (where the notion of a valuation and

consistency with a rule-premise-/conclusion are identical to the notions defined at the beginning of the

previous section). A valuation v is thus consistent with a meta-inferential rule R in case v preserves

(standard) consistency from the rule-premises to the rule-conclusion. Excluding the valuation v⊤ on

the basis of a non-triviality constraint (see Section 4.1 below), Garson then shows that local consis-

tency with the rules adopted for the classical connectives suffices to establish their boolean meanings

(Garson, 2010, 2013). Hence, adopting a meta-inferential, rule-based specification of the inferential

behaviour of the classical connectives suffices to solve Carnap’s Problem.

By way of example, consider, once more, the deviant valuation v⊢ from above. What, in the current

framework, renders v⊢ inadmissible from the inferential perspective? Recall that, for some proposi-

tional letter p, v⊢(p) = v⊢(¬p) = 0 and assume v⊢ was consistent with the rules for disjunction.

Observe that v⊢ is consistent with (i) ⊢L p ∨ ¬p, (ii) p ⊢L p and (iii) ¬p ⊢L p. Hence, by the as-

sumed consistency of v⊢ with ∨E, it follows that v⊢(p) = 1 – contradiction. Hence, v⊢ is inconsistent

with the rules for disjunction. The meta-inferential formulation of the rules coupled with the adoption

of a local consistency constraint allows us to make effective use of false sentences in antecedents of

rule premises, thereby obtaining access to those rows of a truth-table that were out of reach of simple

consequence relations (Garson, 2013, 39).
59

Despite its success in resolving Carnapian underdetermination Garson ultimately abandons the

standard of local consistency. This might be justified on the grounds that local consistency constitutes

the wrong standard of consistency for rules that govern transitions not between sentences, but be-

tween arguments: while individual inferences must be truth-preserving, meta-inferences – transitions

between inferences, – ought to be validity-preserving.
60
Validity, however, is a global phenomenon and

should, accordingly, not be assessed ‘one valuation at a time’, but ‘wholesale’ with respect to a class

of (appropriate) valuations. Thus, whenever a (meta-inferential) rule premise is valid, so should be its

conclusion. This gives rise to the standard of global consistency according to which a set of valuations V

57

See (Garson, 2013, 35ff.) for a full statement of the system he adopts.

58

Garson ultimately opts for a different standard of consistency, see below.

59

Garson’s notion of local consistency leads to issues in the case of the rules for the quantifiers. For generating a natural
semantics for quantifiers, see (Garson, 2013, Ch. 14).

60

I am here following the account given in (Picollo, 2025, Sect. 1.1). Garson’s own reasoning is different: he rejects local

consistency due to the semantics determined by the rules under this standard yielding a meaning for the connectives that

outstrips the rules’ ‘inferential content’. In other words, they determinemodel-theoretic values that validate inferences which

cannot be shown valid on the basis of the rules themselves, they give rise to meanings that are incomplete for the rules that

determined them. Garson takes this asymmetry to be undesirable and thus advocates for a stronger standard of consistency

to align inferential and model-theoretic meanings more closely, see (Garson, 2013, Ch. 3 & 4).
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is (globally) consistent with a (meta-inferential) ruleR just in case whenever all the rule-premisses are

consistent with every v ∈ V , the rule conclusion must also be consistent with every v ∈ V . If, in other

words, the rule preserves (V-)validity (Garson, 2013, 15ff.). Global consistency succeeds in weakening

the meanings of the logical constants determined by this standard of consistency so as to remove the

asymmetry between what can be established on the basis of the rules and on the basis of the model-

theoretic meanings thus determined.
61

However, it fails to remove Carnapian underdetermination and

thus to solve Carnap’s Problem in the way it was constructed in the context of this paper.
62

Murzi and Topey (2021) develop a variation of Garson’s approach that (a) succeeds in resolving

Carnapian underdetermination, (b) discharges the unmotivated assumption of the exclusion of v⊤ on

non-inferentialist friendly grounds, and (c) allows an extension of the approach to quantifier-rules.

(a) is, essentially, achieved through the adoption of a (suitably adjusted) standard of local consistency.

However, to accommodate the quantifiers and overcome incompleteness phenomena that lead Garson

to ultimately abandon the local standard of consistency they generalize his framework significantly.

Without fully discussing their proposal in detail, central aspects include the adoption of a calculus

of meta-inferential rules featuring single-conclusion arguments that may consist of open formulas in

addition to sentences (the inclusion of open formulas makes it necessary to adapt the standard of local

consistency to now involve, in addition to models, also variable assignments. The result is what Picollo

(2025) terms a hybrid account, with models obeying a local, and variable assignments a global standard

of consistency).

Moreover, their calculus allows for the possibility of higher-order rules, i.e., the assuming and

discharging of rules, which makes it possible to interpret falsum as a punctuation mark, – signaling a

dead-end in an argument, – instead of a logical constant, and renders the rule of reductio ad absurdum
a structural rule (thereby achieving (b) above).

63
They modify the quantifier rules to allow for open

formulas to feature in the respective premise- and conclusion-sequents and, further, adopt an open-

endedness constraint (see Section 3.3). This allows them to resolve Carnap’s Problem uniformly for the

propositional connectives and the quantifiers (see Section 5.3 for generalizing this strategy to higher-

order quantifiers).
64

Moving from consequence relations to their rule-based presentations, together with the adoption

of a specific rule-format, succeeds in avoiding Carnapian underdetermination. Both parameters play

an essential role in resolving Carnap’s Problem. They thus require philosophical justification if they

are to feature in a successful defense of the moderate inferentialist position. Even independently of the

question whether open formulas are legitimate constituents of (a natural model of) arguments, and

whether argumentative practice is best captured in meta-inferential terms,
65

the shift towards rules

together with the requirement of a specific rule-format introduces a rather significant, and potentially

unwelcome, presentation-dependency: “[t]he upshot of this is that the model of rules criterion is sensi-

tive to details concerning how a system is formulated” (Garson, 2010, 166). Whether or not Carnapian

underdetermination is resolved thus seems to depend on particular, and potentially unstable, dynamics

of reasoning.

61

It secures other desirable properties of rule-based specifications of meaning as well, see (Humberstone, 1996).

62

This is not to the detriment of the project pursued in (Garson, 2013) however, who is engaged in a project different from

the one pursued here (see fn. 56). Cf. also Picollo (2025) who develops and argues for a sentential semantics of the first-

order quantifiers, different from their substitutional and objectual interpretations, as the ‘right’ semantics of the quantifiers

determined on the basis of their rules in an inferentialist setting.

63

Their calculus is based on Murzi (2020). See Schroeder-Heister (1984) for the framework of higher-order rules.

64

The approach of Murzi and Topey (2021) has several further nice properties that overcome weaknesses of Garson’s

setting but that we cannot address in the context of this paper. See Brîncus (2024a) and Picollo (2025) for criticisms of their

strategy.

65

See, e.g., Picollo (2025).

16

https://doi.org/10.1017/bsl.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10083


4 Semantic Strategies for Solving Carnap’s Problem I (the proposi-
tional case)

The basic idea of semantic strategies for solving Carnap’s Problem consists in restricting the space of

possible valuations or models that can serve as interpretations of the logical symbols from the outset.

Underlying this is the idea that Carnap’s Problem “is made artificially difficult by considering all pos-

sible interpretations [of the language], no matter how bizarre” (Bonnay and Westerståhl, 2016, 733).

Thus, not all consistent models are equally legitimate as some might be excluded on the basis of con-

siderations having to do with general linguistic competence, constraints of logicality, or other factors.

4.1 Valuations vs Interpretations

Do all consistent valuations constitute legitimate interpretations of the logical expressions of a lan-

guage? Is consistency with inferential behaviour, in other words, sufficient for being considered a

potential meaning? Bonnay and Westerståhl (2016) argue that it is not.
66

General principles underly-

ing linguistic competence, they claim, narrow down the space of candidate interpretations from the

outset, making Carnap’s Problem thereby easier to track.

One such constraint put forward in (Bonnay and Westerståhl, 2016) is a principle of non-triviality:

(Non-Triv) Every language contains at least one false sentence.

Such a principle, they say, is “a very weak requirement, hardly in need of motivation” (Bonnay and

Westerståhl, 2016, 725); after all, drawing some kind of distinction between what is true and what is

false seems fundamental to the functioning of language. Nonetheless, the adoption of such an obvious

constraint on potential interpretations is not inert: it rules out v⊤ as inadmissible.

(Non-Triv) is a very natural constraint on a semantic space. Note, though, that if themotivation for

adopting it was that a languagemust be able to draw some kind of distinction to be considered language

at all it might best be interpreted as a demand of non-uniformity: at least two sentences of the language
must take on different truth-values. In this formulation, the constraint of non-uniformity would also

rule out the valuation according to which every sentence of the language is false, a valuation violating

the classical truth-tables and inconsistent with classical consequence due to the fact that classical logic

possesses tautologies.
67

As soon as we move to a multi-valued setting (see Section 4.2), however, the assumption of non-

uniformity becomes problematic. This is the case since the valuation that assigns all atomic sentences

the third truth-value in three-valued logics governed by strong Kleene truth-tables extends to a val-

uation that assigns all sentences of the language the third value, thereby violating the constraint of

non-uniformity. This valuation, however, plays an important role in the meta-theory of such logics

(demonstrating, for example, that K3 has no theorems). So as simple and natural as non-triviality

appears on first view, more might have to be said about the particular shape it takes in different logics.

Amore significant requirement defended in (Bonnay andWesterståhl, 2016) and (Westerståhl, 2025)

is a constraint of compositionality. Compositionality has sometimes been put forward as a semantic
universal, a principle universally instantiated across languages explaining the otherwise mysterious

phenomenon of linguistic creativity, the ability of speakers to understand and produce a potential in-

finitude of meaningful expressions based on finite amounts of data. The principle of compositionality

states that
68

(Comp) The meaning of a complex expression is a function of the meanings of its constituting ex-
pressions and their way of composition.

66

Cf. also (Westerståhl, 2025) for an elaboration of this argument.

67

Cf. (Tabakçı, 2024, n. 28) for further comment on (Non-Triv).

68

See (Pagin and Westerståhl, 2010a,b) for precise statement and discussion and (Davidson, 2001) for a defense of a com-

positionality requirement.
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To be admissible, then, a valuation needs to respect (Comp) – otherwise it won’t even be recognized as

an acceptable candidate based on rudimentary linguistic competence. In the context of the language

of propositional logic in which meanings are truth-values, (Comp) forces the interpretation of a logical

constant to be a truth-function. Which truth-function a particular constant then denotes is determined

by the constant’s inferential behaviour.

More precisely, compositionality requires that the meaning of a constant c is given by a function

fc, s.t. the meaning of a compound expression c(φ1, . . . , φn) under a valuation v, v(c(φ1, . . . , φn)),
is a function of the meaning of c, fc, applied to the values of φ1, . . . , φn under v: v(c(φ1, . . . , φn)) =
fc(v(φ1), . . . , v(φn)). Since the possible semantic values of expressions under v are the truth-values

0 and 1, fc must be a truth-function. A valuation v is said to be c-compositional for a connective c iff
there exists a truth-function fc for c, s.t. v(c(φ1, . . . , φn)) = fc(v(φ1), . . . , v(φn)) for allφ1, . . . , φn ∈
SentL .

Consider, once again, v⊢ to see how the requirement of compositionality suffices to rule out Car-

nap’s non-normal valuations. By (Comp) we know that there must be a truth-function f∨, s.t. v(φ ∨
ψ) = f∨(v(φ), v(ψ)) for all φ,ψ ∈ SentL and v ∈ ValL . In particular, then, v⊢(p ∨ ¬p) =
f∨(v⊢(p), v⊢(¬p)). But note that v⊢(p) = v⊢(¬p) and thus 1 = v⊢(p ∨ ¬p) = f∨(v⊢(p), v⊢(¬p)) =
f∨(v⊢(p), v⊢(p)) = v⊢(p∨ p) = 0 – contradiction (Bonnay and Westerståhl, 2016, 728).

69
Hence, v⊢ is

not an admissible valuation, it is not a legitimate candidate for meaning.

Bonnay andWesterståhl (2016) show that (Non-triv) and (Comp) suffice to rule out Carnap’s non-

normal valuations and to secure the intended values of the propositional connectives. According to

(Westerståhl, 2025) this is a favourable and in some sense natural result, for non-compositional valu-

ations shouldn’t have even been considered legitimate candidates for interpretations of a language in

the first place, as they violate principles characteristic of basic linguistic competence: “absent compo-

sitionality, the idea of meanings makes little sense” (Westerståhl, 2025, 1).
70

4.2 Carnap’s Categoricity Problem in Three Values

Westerståhl (2025) demonstrates the effect the assumption of compositionality has on the determina-

tion of semantic values of logical constants for a variety of logics and semantics. Here, we are concerned

with the possibly most straightforward extension of the semantics of classical propositional logic to

a three-valued context, and the question whether compositionality still suffices in this slightly richer

setting to uniquely determine the intended semantic values of the logical constants.
71

A three-valued logic shares the language of classical propositional logic. A valuation v is now a total

function v : SentL → {0, u, 1}, where u is a third truth-value. We denote the class of all three-valued

valuations by Val
3
L . The designated values of the family of logics we are interested in in the following

are the members of the set D = {1, u}. For V ⊆ Val
3
L , a sentence φ is a V-consequence of a set of

sentences Γ, Γ |=D
V φ, if it preserves designation. If, in other words, for all v ∈ V , whenever v(Γ) ∈ D,

then v(φ) ∈ D as well. All other notions are analogous to those defined above.
72

The specific three-valued logics we are concerned with in this section are given by the two classes

of valuations VK and VG3 , where v ∈ VK iff v obeys the strong Kleene Schema and v ∈ VG3 iff v obeys
the Gödel Schema:

Strong Kleene Schema

69

Bonnay and Westerståhl (2016) attribute this observation to (Carnap, 1943). It can also be found in (Belnap and Massey,

1990).

70

Other semantic constraints to shrink the space of admissible models could be considered. Johannesson (2022) defends

completeness as providing a philosophically motivated constraint ruling out non-standard interpretations of the classical

connectives. See also Speitel and Tabakçı (2025) for comment and extension of this idea to non-classical logics, as well as for

discussion of other semantic principles to achieve categoricity.

71

The following is based on joint-work with D. Bonnay and S.K. Tabakçı. See (Tabakçı, 2024) for a systematic and detailed

investigation of Carnap’s Problem for K3 and LP, with which the below shares many details.

72

For a detailed treatment of multi-valued logics see, e.g., (Priest, 2008).
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¬
1 0

u u

0 1

∧ 1 u 0
1 1 u 0

u u u 0

0 0 0 0

∨ 1 u 0
1 1 1 1

u 1 u u

0 1 u 0

→ 1 u 0
1 1 u 0

u 1 u u

0 1 1 1

Gödel Schema

¬
1 0

u 0

0 1

∧ 1 u 0
1 1 u 0

u u u 0

0 0 0 0

∨ 1 u 0
1 1 1 1

u 1 u u

0 1 u 0

→ 1 u 0
1 1 u 0

u 1 1 0

0 1 1 1

Note that the strong Kleene and the Gödel Schema agree on the truth-tables for conjunction and dis-

junction, but disagree on the tables for negation and the conditional.

It can now be shown that Γ |=D
VG3

φ iff Γ ⊢CPL φ.73 In other words, the logic generated by the

class of valuations VG3 with designated values D = {1, u} is a three-valued presentation of classical

propositional logic. The logic generated by the class of valuations VK and designated values D =
{1, u}, on the other hand, is the logic LP. Consider now a valuation v+ ∈ VG3 , s.t. v

+(p) = v+(q) = u
for some atomic sentences p, q ∈ SentL . Then, it is easy to observe the following:

(i) v+ /∈ VK since, for example, v+(p→ q) = 1.

(ii) v+ is compositional as witnessed by the Gödel Schema.

(iii) v+ is consistent with |=D
VK

: let Γ |=D
VK

φ and suppose that v+(γ) ∈ D = {1, u} for all γ ∈ Γ,

but v+(φ) = 0. That means that Γ ̸|=D
VG3

φ and, therefore, Γ ̸⊢CPL φ. However, since LP is a

sublogic of CPL, – i.e., if Γ |=D
VK

φ then Γ ⊢CPL φ, – it follows that Γ ̸|=D
VK

φ, contradiction to

the assumption. Hence, v+ is consistent with |=D
VK

.

The above demonstrates that compositionality by itself is insufficient to rule out non-normal valuations

for logics moderately richer than classical propositional logic; that there are, in other words, unin-

tended, yet compositional, valuations consistent with the consequence relation of, for example, LP.
74

Tabakçı (2024) investigates in detail just how deep the failure of compositionality in fixing intended

interpretations runs for the three-valued logics LP and K3, and discusses possible solution strategies.
75

Much more would need to be said about the case of three- and multi-valued logics in general to

reach a conclusive verdict. However, what the simple example above seems to demonstrate is that

the constraint of compositionality would have to be refined further to keep ruling out inadmissible

valuations in the case of logics with more than two values. In particular, the above seems to point in

the direction of compositionality not being a local property of a valuation, but rather a global property
of a class thereof, for notice that there will not be a single truth-function f interpreting, say, →, s.t.

all v ∈ VK ∪ {v+} will be compositional w.r.t. f .76 We will not pursue the issue further here, but see

(Tabakçı, 2024) for a more detailed investigation of Carnap’s Problem in the three-valued setting.
77

Foreshadowing some of the concluding remarks of this paper, (Tabakçı, 2024) investigates a further,

elegant solution for resolvingCarnap’s Problem for the logics K3 and LP: demanding that the valuational

73

Cf., e.g., (Open-Logic-Project, 2024).

74

Note that the above actually provides a method for demonstrating the failure of compositionality in fixing intended

interpretations for any (properly) sub-classical logic. See (Tabakçı, 2024) for a more elaborate and differentiated investigation

of the failure of compositionality for fixing standard interpretations in the three-valued setting, making use of different ‘non-

normal’ matrices in a many-valued SET-SET framework.

75

In particular, Tabakçı (2024) demonstrates that even in the more expressive SET-SET framework, and under the as-

sumption of additional logical constants, can the non-normal valuations not be excluded unless one is willing to adopt further

strong and somewhat ad-hoc semantic assumptions.

76

See (Tabakçı, 2024, n. 25) for a similar observation.

77

Cf. also (Speitel and Tabakçı, 2025).
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space obeys the constraint that a complex formula take on the third value u when all its immediate

subformulas take on the value u establishes categoricity in a multi-conclusion setting. That such a

constraint should be adopted, however, appears to be intimately connected with the role one takes u
to play in the semantics of the logic. If a sentence receives the value u because it is ungrammatical
or otherwise meaningless, as, for example, in Bochvar’s three-valued logic B3, it is natural that this

property is inherited by more complex sentences involving a constituent with value u, informing the

resulting truth-tables of the language. If u is taken to indicate a contingency or indeterminacy, as

in Łukasiewicz’s three-valued logic Ł3, for example, it becomes less clear why that indeterminacy

should be inherited in all cases by more complex sentences and thus whether the semantic constraint

is appropriate to impose.
78

Whether it is therefore reasonable to accept such a constraint depends on

the philosophical foundations of the logic formalized by means of the relevant matrices.
79

4.3 Beyond Classical Settings: Intuitionistic Connectives and Modal Operators

Carnap’s question can be asked for any logic and logical constant therein. It appears naturally in multi-

valued settings and beyond. In (Bonnay and Westerståhl, 2016, Sect. 6) it was established that the

classical connectives retain their intended interpretations under the assumption of (Non-Triv) and

(Comp) when moving to a possible-world semantics, where sentence-values no longer simply consist

of truth-values, but sets of points or possible worlds.80 Here, the intended interpretation of ‘¬’ is the
complementation operation on the powerset of the set of worlds, ‘∧’ the union-operation on the same

set, and so on. These values are uniquely determined by the classical consequence relation over the

enriched semantic space as long as constraints of non-triviality and compositionality are adhered to.
81

Of course, once the switch to a more expressive semantics has been made, questions about deter-

minacy don’t just arise for the usual logical operators, but also and especially for the novel operators

characteristic to the richer settings. In the possible worlds framework this includes, in particular, the

modal operator □.
82

Here, Carnap’s Problem takes on additional complexities: on the one hand, modal

logics admit a plethora of different types of semantics – from Kripke, over topological, to neighbour-

hood semantics, – all with reasonable claim to being an appropriate semantics for the modal language

under consideration. On the other hand, the meaning of□ in modal logic is a different type of meaning
than that of the other propositional connectives. For while the pointwise truth of a formula without□
in a model depends only on the values of the subformulas of the formula at that point, the pointwise
truth of a boxed formula in a model also depends on the values of its subformulas at other points of
the model (though, usually, not all others). Semantically, this special status of the meaning of □ is

captured by including an additional parameter in the model (accessibility relations in Kripke frames,

the interior function in topological frames, neighbourhoods in neighbourhood frames) with respect to

which truth of a boxed formula at a point in a model is determined.

To fruitfully ask Carnap’s question in this enriched framework, then, some preliminary issues have

to be settled. Relating to the first point raised above, a choice of semantics has to be made: given the

different types of semantics, with respect towhich arewe askingwhether the inferential behaviour of□
determines its intended value? Second, what is characteristic of the intendedmeaning of the□ operator

within that semantics, and how can this feature best be captured? Ideally, this latter consideration can

be translated into semantic constraints restricting the values deemed legitimate for□within the chosen

78

See Malinowski (1993) for interpretations of the third truth-value.

79

Further ways of resolving Carnapian underdetermination in the three-valued case are explored in (Tabakçı, 2024), where

it is demonstrated that fixing the standard behaviour of strong Kleene negation suffices to solve the underdetermination of

the other connectives of the logic as well. A similar result had been discovered independently by K. Chatain (unpublished).

For proof-theoretic strategies resolving Carnap’s Problem in the multi-valued case, see also (Rumfitt, 1997) and (Hjortland,

2014).

80

Cf. also (Westerståhl, 2025).

81

An interesting fact about this result is that whereas in the case of the two-valued semantics already intuitionistic con-

sequence suffices to fix classical meanings, in this richer setting genuinely classical patterns of inferences are needed to

determine the intended interpretations, see (Bonnay and Westerståhl, 2023).

82

Cf. also (Garson, 2013, Ch. 16) for a discussion of the semantics determined by axioms and rules for modal logics.

20

https://doi.org/10.1017/bsl.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10083


semantics.

Bonnay and Westerståhl (2023) take possible worlds semantics to constitute an appropriate compo-

sitional semantics for modal languages. The most general type of possible worlds semantics is neigh-
bourhood semantics. This settles the first question in a well-motivated manner. What is distinct about

the intended interpretation of □ is that, unlike ¬ or ∨, it does not receive a unique interpretation,

possibly indexed by world domains but, rather, what is codified in Kripke semantics: that the meaning

of □ is such as to allow one to recover an accessibility relation between worlds, such that the truth of

a boxed formula at a world depends on the truth of its subformulas at accessible worlds. This captures

the idea that an intended meaning of □ is such that the truth-values at a point of formulas involving

it may depend on truth-values of its subformulas at different points of the model. This settles the sec-

ond question concerning □’s meaning-type. A first version of Carnap’s question then asks under what

conditions a modal consequence relation forces consistent neighbourhood interpretations to be, in the

informal way described above, Kripkean (Bonnay and Westerståhl, 2023, 585).
83

Unlike propositional or first-order logic, the framework of modal logic does not constitute a single

theory, but rather gives rise to a family of theories in which the behaviour of □ can be characterized

by different axioms and rules. Since the modal logic K, – containing the characteristic axiom □(p →
q) → (□p → □q) and closed under the (meta-)rule of necessitation “from ⊢ φ infer ⊢ □φ” (modal

logics satisfying these are normal modal logics), – is sound and complete with respect to the class of

all Kripke frames, it can be taken to articulate some basic adequacy constraints on the meaning of □.

Carnap’s question thus becomes: under what circumstances do modal consequence relations extending

K force a neighbourhood frame to be Kripkean (Bonnay and Westerståhl, 2023, 585)?

For finite frames the constraints imposed by K suffice to force the intended interpretation of □
(Bonnay and Westerståhl, 2023, Theorem 12) – as well as of the remaining constants, – but this result

does not generalize to the infinite case (Bonnay andWesterståhl, 2023, Fact 13). Here, further semantic

constraints are required to limit the space of consistent interpretations to the class of intended ones.

Yet, what sort of semantic constraint is well-motivated based on the choice of semantics for modal

languages? What is distinctive of the semantics of the modal elements of these languages?

What is characteristic of the meaning of □ is that it contributes a local flavour to the evaluation of

formulas including it: their truth depends on the truth of their subformulas at other ‘nearby’ points of

the model as well.
84

Yet, the set of points that needs to be taken into consideration for the truth of a

boxed formula at a point falls (usually) far short of the entire domain of the model. Distinctive of the

semantic value of□ thus seems to be a type of truth-locality – some, but not all, points of the model are

relevant for the truth of formulas including it. This locality can be semantically expressed by means

of bisimulation invariance:85 “[t]he locality of modal logic [...] is often framed in terms of invariance

under bisimulation: bisimilar worlds satisfy the same modal formulas, so that only the local features

of the structure of the Kripke models [...] matter to modal satisfaction” (Bonnay andWesterståhl, 2023,

598).
86

Does bisimulation invariance, in conjunction with consistency w.r.t. the consequence relation of

modal logics extending K, suffice to yield Kripkeanity?
87

Near enough: together with a further closure

condition, bisimulation invariance indeed ensures Kripkeanity, and thus the intended (type of) inter-

pretation of □ (Bonnay and Westerståhl, 2023, Theorem 44 & Corollary 45). It is worth emphasizing

that the adoption of a constraint of bisimulation invariance was not arbitrary. Rather, its acceptability

was the result of a reflection on the underlying motivations of the semantic framework itself – what

was characteristic of the meaning of the expressions of modal languages was their locality. Once a

83

We deviate slightly from the terminology in (Bonnay and Westerståhl, 2023). For precise definitions and statements of

the results mentioned here we refer the reader to this paper.

84

Cf. (Bonnay and Westerståhl, 2023, 600): “The distinctive feature of modal logic [...] is the fact that modal evaluation is

local; everything is taking place at a world and at worlds reachable from that world.”

85

See, e.g., (Blackburn et al., 2001) for definition.

86

Bonnay and Westerståhl (2023) also consider a further notion of locality, subframe invariance, which we leave out here.

87

We here present a very simplified picture of the situation and ignore many of the formal subtleties of Bonnay & West-

erståhl’s account. For precise set-up, definitions, and details see (Bonnay and Westerståhl, 2023).
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particular semantics was chosen, the way that locality could be expressed and captured relative to that

framework came with it.

Similar choice-points as in the modal case can also be observed in intuitionistic logic(s): here, too,

there is an embarrassment of riches when it comes to adopting a semantics – from Kripke over Beth-,

topological, Dragalin and, finally, algebraic semantics there are plenty of candidates to consider with

respect to which Carnap’s question could be asked. Based on results in (Bezhanishvili and Holliday,

2019), Tong andWesterståhl (2023) arrange the abovementioned semantics in a hierarchy, with Kripke-

semantics being the most specific, and algebraic semantics being the most general type of semantics

for intuitionistic propositional logic.
88

Carnap’s question takes interestingly different shapes when applied to algebraic semantics as op-

posed to the other, set-based, semantics. Characteristic of the former is that the semantic values of

sentences of the language are elements of the algebra, whereas semantic values of sentences in the

latter type of semantics are (specific types of) subsets of the domains of the relevant models. This

has consequences for the way the meanings of the logical connectives are conceived: in the alge-

braic case, interpretations of the logical constants are delivered by the respective algebra ‘directly’. To

informatively ask Carnap’s question in this case one would therefore have to ask why (and whether

it is only) Heyting algebras (that) constitute the intended interpretation of the intuitionistic connec-

tives. In the case of non-algebraic semantics the interpretations of the connectives are not part of

the model but provided, so to say, from the outside: conjunction is interpreted as set-union, negation

as set-complementation, etc. Here, then, we need not consider alternative (types of) models but can

ask whether the same class of models, when the connectives are interpreted by different set-theoretic

operations, remains consistent w.r.t. intuitionistic propositional consequence ⊢IPC .

Tong and Westerståhl (2023) show that Carnap’s Problem is successfully resolved in the case of

intuitionistic propositional logic by assuming compositionality and consistency with ⊢IPC for all the

semantics considered. The result for set-based semantics is in fact a special case of the more general re-

sult for algebraic semantics. They first recall the fact that an algebraic interpretation of the language of

intuitionistic logic is consistent with ⊢IPC iff it is a Heyting algebra (Tong and Westerståhl, 2023, Fact

3.4). They then show that the Heyting-algebra interpretation of the connectives over the domain of

an algebra is the unique interpretation over that domain consistent with ⊢IPC (Tong and Westerståhl,

2023, Theorem 3.6).
89

From this it follows that compositionality and consistency with ⊢IPC suffice to

uniquely determine the standard interpretations of the intuitionistic connectives over all set-based se-

mantics considered by Tong and Westerståhl, which include Kripke-, Beth-, and topological semantics

(Tong and Westerståhl, 2023, Corollary 3.8).

This result is remarkable for a variety of reasons. On the one hand, it demonstrates the surprising

robustness of intuitionistic consequence w.r.t. determining the intended extensions for its logical op-

erators across a variety of semantics. On the other hand, the successful determination of the intended

interpretations relies essentially on consistency with full consequence, consistency with ‘mere’ theo-

rems is insufficient to achieve the desired determination (Tong and Westerståhl, 2023, Example 3.10).

Moreover, the categoricity of the intuitionistic connectives is, in general, not modular : while the conse-
quence relation over the full intuitionistic language ensures unique determination for all connectives,

this result does not continue to hold when considering arbitrary fragments of the language (Tong and

Westerståhl, 2023, 175ff.).

5 Semantic Strategies for Solving Carnap’s Problem II (the quantifi-
cational case)

Quantifiers introduce additional levels of semantic complexity, for they perform operations on sub-

sentential components, thus unveiling a much more fine-grained structure than could be captured and

88

See (Bezhanishvili and Holliday, 2019) and (Tong and Westerståhl, 2023, 165ff.) for details.

89

We are very imprecise in our statement of the result and set-up here. For its proper formulation see (Tong and Wester-

ståhl, 2023, 170ff.).
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expressed in the propositional case. Here, (Comp) and (Non-Triv) prove insufficient to pin down the

intended meanings of the usual quantifiers. However, at the level of quantification other constraints

emerge as natural candidates for adoption in the attempt to resolve Carnapian underdetermination.

5.1 Invariance

What distinguishes a quantifier from a ‘qualifier’, i.e., a mere run-of-the-mill second-order predicate

(a predicate of (first-order) predicates), is that the former should only be sensitive to quantitative, i.e.,

cardinality-based, properties, of its arguments. Within the set-theoretic framework of the background

theory for the definition of quantifiers cardinality is captured in terms of bijections.90 SetsM and N
have the same cardinality if there exists a bijection between them. A permutation π is a bijection from

a setM to itself. A permutation of a setM naturally induces a permutation of objects from the type

hierarchy overM .
91

An object o from the type-hierarchy over a domainM is permutation-invariant
if π[o] = o for all permutations π of M . A permutation-invariant object is thus an object that is

insensitive to (model-internal) qualitative features – it is only capable of detecting distinctions on the

basis of differing cardinality.
92

Since (local) quantifiers are second-order predicates over domains, demanding that they be permu-

tation-invariant naturally captures their nature as quantifiers, thereby distinguishing them from other,

non-quantificational predicates like, for example, ‘is a colour’. The requirement that quantifiers be

permutation- or, more generally, bijection-invariant,
93
is further supported by considerations pertain-

ing to their logicality: invariance has long been regarded as an at least necessary feature of the logicality

of a notion, capturing the idea that logical operations are insensitive to the identity of objects and thus

uninfluenced by ‘empirical’ features.
94

Thus, for something to be a quantifier or a logical notion, it

ought to be at least permutation-invariant:

(Perm) Quantifiers are permutation-invariant.

Bonnay and Westerståhl observe that the only permutation-invariant principal filter over a domain

M is the maximal principal filter {M} (Bonnay and Westerståhl, 2016, 730). Thus, permutation-

invariance, in addition to (Comp) and (Non-Triv), suffices to fix the intended interpretation of the

universal, and thereby also the existential, quantifier.
95

This is a very welcome result, given the role

played by permutation-invariance in a theory of (logical) quantification. Since being a (logical) quan-

tifier means being permutation-invariant, it appears to follow from the very nature of quantification

that the standard universal and existential quantifiers of FOL are uniquely determined.
96

90

A bijection β : M → N is a function betweenM and N that is one-to-one and onto.
91

Letπ : M → M be a permutation ofM . ForX ⊆ M , π[X] = {π(a)|a ∈ X}; forX ⊆ P(M), π[X] = {π[A]|A ∈ X};
etc.

92

Our focus on permutation- rather than the more general notion of bijection-invariance is solely for presentational pur-

poses. Nothing essential is lost by this.

93

I.e., closed under isomorphic structures in their global manifestation.

94

Cf. (Tarski, 1986), (Sher, 1991).

95

See (Valle-Inclán, 2024) for a recent criticism of Bonnay and Westerståhl’s solution strategy.

96

Note that there are at least two salient ways of distinguishing between permutation-invariant and non-permutation-

invariant second-order predicates: those who take permutation-invariance to mark, first and foremost, a distinction between

logical and non-logical expressions of a language will distinguish between logical (i.e., permutation-invariant) and non-
logical (non-permutation-invariant) quantifiers. There are thus two types of quantifiers, logical and non-logical ones, and

what distinguishes them is a condition that is motivated on the basis of considerations of what makes a denotation or

meaning of an expression logical. On the other hand, others maintain that for something to be a quantifier simply means

for it to be insensitive to all but quantitative features of its arguments. Being permutation-invariant is thus constitutive of

an expression to be a quantifier, independently of its logical status. There are, accordingly, not two types of quantifiers, but

only one, which is opposed to ‘qualifiers’ such as ‘is a virtue’, ‘is a property of individual x’, etc. Whether or not a specific

view on logicality is thus part and parcel of a motivated solution to Carnap’s Problem depends on the underlying conception

of quantification. Elsewhere (Bonnay and Speitel, 2021) we argued that logicality considerations are pertinent to Carnap’s
Problem, and (Bonnay and Westerståhl, 2016) appear to defend Perm on the basis of such considerations. Nonetheless,

maintaining that to be a quantifier simply entails permutation-invariance loosens this commitment to specific views on

logicality. I thank an anonymous referee for pressing me on this point.
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5.2 Generalized Quantification

The universal and existential quantifiers of FOL are at the lower end of a class of possible first-order

quantifiers. Bonnay and Westerståhl’s result guarantees that considering them as (logical) quantifiers,

and thus demanding that they be permutation-invariant, suffices to determine their standard interpre-

tations. This also yields the determinacy of notions definable in terms of them, in particular of finite

cardinality quantifiers of the form J∃≤nKM = {X ⊆M |n ≤ |X|}. How far beyond ∀ and ∃ does this

strategy generalize? I.e., for which other quantifiers is (Perm) the only constraint needed to uniquely

‘fix’ their interpretation?

The study of the unique determinability of generalized quantifiers beyond ∀ and ∃ is still in its

beginnings
97
but already allows several interesting observations. We say that a type ⟨1⟩-quantifier Q

is generalized elementarily definable, EC∆ for short, if there exists a set ∆ of sentences of FOL of the

form φ(P ), whose only non-logical symbol is the predicate letter P of adicity 1, s.t. for all models

M = ⟨M,X⟩:

M = ⟨M,X⟩ ∈ Q iff M |= φ(P ) for all φ(P ) ∈ ∆

In other words, where ∆ is such a set of sentences of FOL andMod(∆) = {M |M |= ∆}, Q is EC∆

if there exists∆, s.t. Q =Mod(∆). When Q =Mod(∆) for some appropriate set of sentences∆ we

denote it by Q∆. We then observe the following:

Observation 5.1. LetQ = Q∆ for some set of sentences∆ of FOL and assume thatQ∆ interpretsQ, i.e.
JQK = Q∆. Then

(a) QxPx |= φ for all φ ∈ ∆

(b) ∆ |= QxPx

Proof: For (a), suppose that M |= QxPx. That means that M ∈ Q∆ = Mod(∆). Hence, M |= ∆.

For (b), suppose that M |= ∆. HenceM ∈Mod(∆) = Q∆ and thereforeM |= QxPx. ■

Let M |=Q φ mean that M |= φ when Q is interpreted by Q and designate with |=Q the resulting

model-theoretic consequence relation. From the observation above it then follows that

Proposition 5.2. If Q = Q∆ for a set ∆ of sentences of FOL, then Q is uniquely determinable.

Proof: Suppose that Q′
is consistent with |=Q. Let M ∈ Q′

. Thus M |=Q′
QxPx. By (a) above we

know that QxPx |=Q∆
φ for all φ ∈ ∆. Since Q′

is consistent with |=Q∆
, it follows that M |=Q′

φ
for all φ ∈ ∆. But then M ∈ Mod(∆) = Q∆. For the other direction, suppose that M ∈ Q∆, but

M /∈ Q′
. Thus, M ̸|=Q′

QxPx. Since M ∈ Q∆ = Mod(∆) we have that M |=Q∆ ∆. However,

since all φ ∈ ∆ are sentences of FOL we also have that M |=Q′
∆. Since Q′

is consistent with |=Q∆

it follows, by (b), that M |=Q′
QxPx – contradiction. Hence,M /∈ Q. Therefore, Q′ = Q∆. ■

Since Q0 = {⟨M,X⟩ | ℵ0 ≤ |X|} =Mod(∆) where ∆ = {∃nxPx | n ∈ N} it follows that the quan-

tifier there are infinitely many is uniquely determinable by its associated consequence relation |=Q0 .
98

Furthermore, it was observed by Dag Westerståhl (p.c.) that the property of unique determinability is

preserved under the operation of complementation, where the complement Qc
of a (type ⟨1⟩) quantifier

Q is such that ⟨M,X⟩ ∈ Qc
iff ⟨M,Xc =M −X⟩ ∈ Q.

99
SinceQfin = {⟨M,X⟩ | |X| < ℵ0} = Qc

0,

the unique determinability of the quantifier there are finitely many follows as well. Hence, (Perm)

suffices to ensure the unique determinability of quantifiers going beyond FOL.

Howmuch further does the unique determinability of type ⟨1⟩ quantifiers extend? Several observa-
tions suggest that it stops atQ1: it already follows from results proven in (Keisler, 1970) that a quantifier

97

See (Bonnay and Speitel, 2021) and (Speitel, 2020) for initial investigation and results.

98

The unique determinability of the quantifier there are infinitely many was first observed by Dag Westerståhl (p.c.) and

is stated and proven as following from the more general result above in (Speitel, 2020).

99

See (Speitel, 2020) for a reproduction of the proof.
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Q is consistent with the complete axiomatization of L (Q1) – FOL extended with the quantifier Q1, –

as long as Q = {⟨M,X⟩ | ℵα ≤ |X|} for some regular cardinal ℵα. Hence, it is immediately apparent

that Q1 is severely underdetermined by its associated consequence relation.
100

This underdetermina-

tion continues into higher cardinalities: based on results in (Keisler, 1968) it is possible to show that

no quantifier of the formQ = {⟨M,X⟩ | ℵα ≤ |X|} for a strong singular limit cardinal ℵα is uniquely

determinable by any consequence relation over its language. Making strong set-theoretic assumptions,

the underdetermination can be shown to affect further quantifiers: let Qα = {⟨M,X⟩ | ℵα ≤ |X|}.
Then, assuming V = L, it is possible to show that no quantifier of the form Qα+1 is uniquely deter-

minable by a consequence relation over its language.
101

Further quantifiers of different types corroborate the failures of unique determination further (see

(Speitel, 2020) for examples). What is particularly noteworthy is the coming apart of completeness and

unique determinability as demonstrated by Q0 and Q1. Whereas the logic of FOL extended with the

quantifierQ0 is incomplete,Q0 is uniquely determined by |=Q0 . On the other hand, FOL extended with

the quantifierQ1 possesses a complete recursively enumerable axiomatization, yetQ1 is not uniquely

determined by |=Q1 . This not only demonstrates the limits of permutation-invariance in reducing

admissible interpretations but also undermines the sometimes implicitly assumed access to reference

and denotation by the inferentialist on the basis of completeness and soundness results. It furthermore

supports the Carnapian claim that for a ‘full formalization of logic’ both completeness and categoricity

are required, as these results demonstrate that completeness of a logical system is neither necessary

nor sufficient for the categoricity of its logical notions.

5.3 Higher-Order Quantification

For the first-order case we are left with an interesting situation: while (Perm) successfully determines

the intended quantifier meanings of the quantifiers of FOL and beyond, it does not suffice to resolve

underdetermination in general for all generalized quantifiers, nomatter howwell-behaved their respec-

tive logics are. How does the strategy that brought at least partial success in the context of first-order

languages fare with respect to second- and higher-order languages?

Murzi and Topey (2021) claim that the first-order strategy generalizes to cover second- as well as

higher-order universal and existential quantifiers.
102

The non-standard, unintended, interpretations of

the second-order quantifiers are constituted by so-called general orHenkin-interpretations, in which the
quantifiers range over, suitably closed, subsets of the set of all relations over the first-order domain.

These interpretations are inferentially indistinguishable from the intended full interpretation of the

quantifiers according to which they range over all relations over the first-order domain.
103

By what

mechanism, then, might the full interpretation of the quantifiers be secured?

Murzi and Topey (2021) claim that this can be achieved by means of the same mechanism that

ultimately secured the standard interpretations of the first-order quantifiers. In the first-order case,

what ensured that standard interpretations of the universal and existential quantifier were determined

was their permutation-invariance under permutations of their range (i.e., of the first-order domain). In

the second-order case, they say, one should, analogously, demand permutation-invariance under the

100

For a strengthening of this result see (Bonnay and Speitel, 2021) where the unique determinability of a notion by inference

was argued to be a necessary condition for its logicality.

101

See (Speitel, 2020, 328) for this result and its proof. It follows straightforwardly from a result of Jensen (1972), cf. (Schmerl,

1985, Corollary 2.1.7).

102

Murzi and Topey (2021) explicitly do not advance a semantic solution strategy to Carnap’s Problem in terms of (Perm), but

pursue an inferentialist strategy by showing how the open-endedness of the rules for the quantifiers (first- and second-order),
in combination with a particular rule-format (see Section 3.4 above), suffices to fix their intended interpretations. This they

do in a two-step argument: they first demonstrate how permutation-invariance ensures standard interpretations. Then, they

show how the (local) validity of open-ended rules implies the permutation-invariance of the quantifiers. The ‘detour’ via

permutation-invariance ensures “that our result is available even to those who don’t share our inferentialist assumptions, so

long as they accept the topic neutrality of logic” (Murzi and Topey, 2021, 3410). In the context of this paper, we will consider

this step separately from Murzi and Topey’s overall (inferentialist) goals and project.

103

See, e.g., Shapiro (1991) or Väänänen (2021). See, e.g., (Putnam, 1980) for pointing out the philosophical significance of

the inferential indistinguishability of Henkin- and full semantics for SOL.
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appropriate range of the second-order quantifiers. This range does not consist of a setM of a model

M, however, but rather of the powerset ofM , i.e., P(M):

Notice that, while the permutation invariance of the interpretation of the first-order quan-

tifier ∀ amounts to the invariance of its range under all permutations of the domain M ,

what the permutation invariance of the interpretation of ∀2 requires is somewhat different.

Since we are now quantifying over relations rather than objects, the range of ∀2, when it

binds a variable of arity n, must remain invariant under all permutations, not ofM itself,

but of P(Mn) – i.e. the set of n-ary relations on M. (Murzi and Topey, 2021, fn. 37)

This, however, essentially reduces the second-order case to the situation of the first-order case. The

relations over the domain are treated as objects in their own right that can be mapped directly, so

to speak, to other relations. Just as in the first-order case, if any relation is left out of the range of

the second-order quantifiers that interpretation will not be permutation-invariant, vis-a-vis the result

of (Bonnay and Westerståhl, 2016). Hence, permutation-invariance of the second-order quantifiers

ensures their intended, full, interpretation: “insofar as permutation invariance is a necessary condition

for logicality, and insofar as the second-order quantifiers are genuinely logical, the rules for the second-

order quantifiers are simply incompatible with any restricted interpretation” (Murzi and Topey, 2021,

3411). Moreover, this strategy can be replicated at any finite order, thereby guaranteeing standard

interpretations of higher-order quantifiers as well.

Note, however, that the perspective here has, ever so slightly, shifted. For the adoption and appli-

cation of the permutation-invariance demand has been modified to apply directly to objects in P(M),
rather than the permutations being induced via permutations of M . Not only is this a marked de-

parture from the Tarskian picture of logicality (Tarski, 1986) but given the inherent instability of the

power-set operation – resulting from its non-absolute nature – and related questions concerning the

notion of ‘all subsets’ one might wonder whether some further indeterminacy might be looming in the

background here.

6 Outlook: Philosophical Consequences of Carnap’s Problem

Carnap (1943) demonstrated that several logical facts about the standard logical constants of proposi-

tional and first-order logic remain undecided and underdetermined by the usual formulations of these

logics. The question Carnap raises is, however, much broader: Carnap’s question, the question whether
inferential characterizations of a logic uniquely determine that logic’s intended semantics, can be asked

for any logical system and Carnap’s Problem arises for most of them. Importantly, it even arises for

systems for which the usual adequacy theorems, meant to ensure a match between proof-theoretic and

model-theoretic characterizations of consequence, hold. Despite this, some logically relevant aspects

might, nonetheless, remain indeterminate. Carnap’s question therefore reveals an interesting perspec-

tive from which to consider what semantic information is contained in inferences, and which sort of

facts are left out.

This has philosophical ramifications: the fact that inferential patterns succeed in determining in-

tended values for several constants at once, but not for any of the involved constants in isolation, as was

the case for several of the intuitionistic operators, for example, throws into serious doubt the widely

held assumption that it is characteristic of logical operators that their meaning is atomistic, i.e., can
be fully and sufficiently characterized independently of any other non-schematic expressions of the

language. Moreover, the fact that some semantic universals succeed in significantly reducing underde-

termination suggests that these semantic constraints are part and parcel of the (philosophical) theory

underlying the logic. This impression is further strengthened by the observation that constraints that

can be motivated on the basis of the philosophical interpretation of a logical theory lead to unique

determinability of that logic’s operators (see, e.g., Tabakçı (2024)).

Carnap’s Problem is not merely a mathematical curiosity in the foundations of logic. It has signifi-

cant repercussions for theories of meaning that rely on the methods of formal logic. It further impacts
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philosophical debates at the intersection of logic, mathematics and philosophy. In (Bonnay and Spei-

tel, 2021) a criterion of logicality was motivated which used the insights provided by Carnap’s Problem
to delineate a core of logical operations grounding a particularly stable and reliable set of inferential

patterns. (Speitel, 2024) argued, on the basis of uniquely determinable notions, for the possibility of

determinate access to the natural number structure. All these direct and indirect repercussions will, we

hope, further stimulate interest in Carnap’s Problem, rehabilitating Carnap’s own ambitions to grant

the same importance to the unique determinability of logical notions as was given to the completeness

of logical systems.

7 Appendix

This short appendix clarifies the connection between Bonnay andWesterståhl’s (2016) main result and

the way it is stated in the context of this paper.
104

The following definitions are adaptations of the definitions from (Bonnay and Westerståhl, 2016):

Definition 7.1. Let M be a first-order model with domainM and q∀ ⊆ P(M). A weak model (for the
universal quantifier) is a tuple ⟨M, q∀⟩.

Definition 7.2. Let ⟨M, q∀⟩ be a weak model. Then:

⟨M, q∀⟩ |= ∀xφ(x) iff {a ∈M | ⟨M, q∀⟩ |= φ(a)} ∈ q∀.

Definition 7.3. A model M is consistent with a consequence relation ⊢ iff, whenever Γ ⊢ φ and
M |= γ for all γ ∈ Γ, thenM |= φ.

In the following, let L ∗
be a purely relational language that contains predicate variables.105 Bonnay

and Westerståhl (2016) then establish the following result:

Theorem 7.4. (Bonnay andWesterståhl, 2016) A weak model ⟨M, q∀⟩ is consistent with ⊢FOL (overL ∗)
iff q∀ is a principal filter overM .

Arguably, the treatment of quantifier-interpretations via weak models introduces an asymmetry be-

tween the treatment of the propositional connectives and quantifiers as ‘fixed’ expressions in the con-

text of logical languages. For just as the interpretation of the propositional connectives was conceived

of globally, as consisting of classes of valuations, so quantifiers should be thought of as Lindström-
quantifiers. For this reason, we adapt the setting as follows:

Definition 7.5. A global (type ⟨1⟩) quantifier is a class Q = {⟨M,X⟩ |M is a set and X ⊆M}.

Definition 7.6. LetQ be a global quantifier. The local quantifier-on-a-modelQM, corresponding toQ,
is the set QM = {X | ⟨M,X⟩ ∈ Q}, whereM is the domain ofM.

Note that the interpretation of QM
depends solely on Q and the domain ofM, and is independent of

any further elements of the signature ofM. That is:

Observation 7.7. Let Q be a global quantifier and M1,M2 be models, s.t. M1 = M2. Then QM1 =
QM2 .

Definition 7.8. Let Q be a global quantifier interpreting ∀ and M be a model. M |=Q ∀xφ(x) iff
{a ∈M | M |=Q φ(a)} ∈ QM.

Definition 7.9. Γ |=Q φ iff, for allM, wheneverM |=Q γ for all γ ∈ Γ, then alsoM |=Q φ.
104

See footnote 21. Thanks to an anonymous referee for urging me to clarify the relationship between Bonnay and West-

erståhl’s set-up and the framework of this paper.

105

Bonnay and Westerståhl (2016) consider languages that also include singular terms. The following theorem is a special

case of their theorem, restricted to languages that do not contain any terms.
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Definition 7.10. A (global) quantifier Q is consistent with a consequence relation ⊢ iff ⊢ ⊆ |=Q.

Lemma 7.11. LetQ be a global quantifier interpreting ∀ andM be a model. M |=Q φ iff ⟨M,QM⟩ |=
φ.

Proof: The proof proceeds by induction on the complexity of φ. The propositional cases are standard.
For φ := ∀xψ(x) we have: M |=Q ∀xψ(x) iff {a ∈ M | M |=Q ψ(a)} ∈ QM

iff (by the induction

hypothesis) {a ∈M | ⟨M,QM⟩ |= ψ(a)} ∈ QM
iff ⟨M,QM⟩ |= φ. ■

Now let L be a purely relational first-order language (without predicate variables). Then

Theorem 7.12. A (global) quantifier Q interpreting ∀ is consistent with ⊢FOL (over L ) iff, for all M,
QM is a principal filter overM .

Proof: The right-to-left direction follows directly from Bonnay andWesterståhl’s original proof: letM
be a model and QM

a principal filter overM . Let Γ ⊢FOL φ and assume that M |=Q γ for all γ ∈ Γ.
By Lemma 7.11 it follows that ⟨M,QM⟩ |= γ for all γ ∈ Γ. Then, by Theorem 7.4, ⟨M,QM⟩ |= φ
and thus, by Lemma 7.11 again,M |=Q φ as well. Hence, ⊢FOL ⊆ |=Q.

For the left-to-right direction assume thatQ, interpreting ∀, is consistent with ⊢FOL, yet that there

existsM, s.t. QM
is not a principal filter overM . From Bonny and Westerståhl’s result we know that

this must be due to some set(s) being undefinable over L (as this possibility is ruled out when all sets

are rendered definable through the addition of predicate variables). However, we can easily move to

an expansionM∗
ofM where precisely these sets are named by predicate constants of the expanded

signature. SinceM = M∗
it follows from Observation 7.7 that QM = QM∗

. Yet, as soon as sets that

‘interrupt’QM
from being a principal filter become definable we can find Γ ∪ {φ}, s.t. Γ ⊢FOL φ but

Γ ̸|=Q φ and thus ⊢FOL ̸⊆ |=Q, i.e., Q, interpreting ∀, is not consistent with ⊢FOL as assumed.

As a concrete example, assume that QM
was not closed under super-sets; i.e. assume there were

setsX,Y ⊆M , s.t. X ⊆ Y ,X ∈ QM
, but Y /∈ QM

. SinceQM = QM∗
we also have thatX ∈ QM∗

,

but Y /∈ QM∗
. Now let M∗

be an expansion of M containing two additional predicate constants P ,
R, s.t. JP KM∗

= X and JRKM∗
= Y . Note that ∀xφ(x) ⊢FOL ∀x(φ(x) ∨ ψ(x)). But now we have

that M∗ |=Q ∀xPx, yet M∗ ̸|=Q ∀x(Px ∨ Rx). Hence, ∀xφ(x) ̸|=Q ∀x(φ(x) ∨ ψ(x)) and thus Q,

interpreting ∀, is not consistent with ⊢FOL. ■

Thus, instead of internalizing definability facts as Bonnay & Westerståhl do by means of including

predicate variables in the language, the same effect is achieved in the current setting by conceiving of

quantifier meaning as global and forcing QM
to be identical over all models with the same domain.
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