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SUMMARY
A new model of invitational production of alleles was proposed which may be

appropriate to estimate the number of electrophoretically detectable alleles
maintained in a finite population. The model assumes that the entire allelic states
are expressed by integers (...,A_1,A0,A1, ...) and that if an allele changes
state by mutation the change occurs in such a way that it moves either one step
in the positive direction or one step in the negative direction (see also Fig. 1).
It was shown that for this model the ' effective' number of selectively neutral
alleles maintained in a population of the effective size Ne under mutation rate v
per generation is given by

When 4:Nev is small, this differs little from the conventional formula by Kimura
& Crow, i.e. ne = l+4ZVe«, but it gives a much smaller estimate than this
when 4:Nev is large.

Since a model of isoalleles with infinite states was proposed by Kimura & Crow (1964)
it has been used extensively to estimate the number of selectively neutral isoalleles that
can be maintained in a finite population under a given mutation rate. In this model it is
assumed that the number of possible allelic states at a locus is so large that whenever
mutation occurs it represents a new, not pre-existing allele. This model could be applied
directly to actual situations if individual variants were identified at the level of nucleotide
or amino acid sites. At present, however, our experimental analyses of the genetic vari-
ability of natural populations are at much cruder level of identifying electrophoretically
detectable variants. In other words, a gene mutation can be detected only when it leads
to a replacement of amino acid which causes change in electric charge of the molecule.
Not only such variants occupy a relatively small fraction of the entire variants at the
molecular level, but also they are identified only as a discrete spectrum of broad bands on
the electrophoresis gels. This means that the electrophoretic method does not have the
resolving power which the model of Kimura & Crow presupposes.

The purpose of the present note is to propose a model which may be more appropriate
to estimate the number of electrophoretically detectable alleles, allowing us to compare
theoretical predictions with actual observations. Let us assume that the entire sequence
of allelic states are expressed by integers as shown in Fig. 1, and that if an allele changes its
state by a single step mutation, the change occurs in such a way that it moves either one
step in the positive direction or one step in the negative direction. In other words, it can
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mutate only to one of the two adjacent states. In this model, one positive and one negative
changes (in charge) cancel each other, leading the allele back to the original state. An actual
example of this type of change is afforded by mutant proteins Al l and A 46 of tryptophan
synthetase of E. coli. According to Henning & Yanofsky (1963), Al l moves toward the
negative direction after electrophoresis on cellulose acetate while A 46 moves toward the
positive direction. The mobility of the double mutant A11-46 protein was found to be
identical with that of the wild-type A protein.

Consider a diploid population with the effective size Ne, and let v be the mutation rate
per locus per generation. To simplify the treatment, we shall assume that under mutation,
changes toward the positive and the negative directions occur with equal frequencies (i.e.
each with \v as shown in Fig. 1). Let xt be the frequency of the ith. allele A{ (i = integer),
and also let

Ck = E{2ctzt+J (k = 0,1,...), (1)
i

where E stands for the operator for taking expectation. The summation is over all relevant
alleles in the population. Note that Co is the expected value of the sum of squares of allelic
frequencies, so that it gives the average homozygosity under random mating. The correla-
tion between frequencies of alleles that are k steps apart may be given by CkIC0.

Fig. 1. Diagram illustrating the model of production of electrophoretically
detectable alleles.

In order to obtain a set of equations giving the rate of change in Ck, we use the basic
equation for generating the moments (Ohta & Kimura, 1971). This equation takes the
following form:

(d/dt)E(f)=E{L(f)}, (2)
where L is the differential operator of the Kolmogorov backward equation (see equation
A 5 of Ohta & Kimura, 1971) and/is an arbitrary continuous function of a '̂s. Assuming
that the alleles are selectively neutral, the mean (M), the variance (F) and the covariance
(W) of gene frequency changes per generation are

and

Le t / = x\ in formula (2), then
d

: — • ' 2N,
d „, o.

or

where T (= tj{2Ne)) is time measured in the unit of 2Ne generations. By summing up the
above equation for all i, and noting (1), we obtain

dCJdT = - (1 +<LNev) Co + iN.vCi+l, (4)
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since ^jxt = 1. Similarly, by letting/ = xtxi+k, we obtain the following equation for Gk:
i

^ = 2NevCk_1- v)Gk + 2NevCk+1 (k > 1). (5)

At equilibrium, we have dCk/dt = 0 for all k, and the appropriate equilibrium solution
for the set of equations (4) and (5) which vanishes at k = oo is given by

Ct = H0A«, (6)
where Ho = l/^J(l + 8Nev) (7)

and (8)

To check this solution, we considered a finite (n) set of allelic states arranged on a circle,
and derived a set of equations transforming Cks (k = 0,1,.. . , n) from one generation to the

1 2 3 4 5 6
AT.!,-

Fig. 2. Relationship between the effective number of alleles (ne) and Ncv under the
two models (the model of Kimura & Crow and the present model).

next. Then we multiplied the matrix corresponding to the finite set of transformations a
large number oftimes by a computer assuming n = 10,20and40allelicstatesandiVe«; = 0-5
and 2-0. It was found that formula (6) gives good approximation to the equilibrium values
of Co, G±, etc., obtained by the matrix multiplication.

The ' effective' number of alleles is given by the reciprocal of the average homozygosity
Ho. Thus, we obtain ^ = ^ +8Nev). (9)
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Monte Carlo experiments were performed to check this formula for various combinations
of values of Ne and v and the results were satisfactory. The above formula for ne should be
compared with the corresponding formula,

ne = l+4Nev, (10)

obtained by Kimura & Crow (1964). Fig. 2 illustrates the relationship between Nev and
ne for these two models.

It may be seen from the figure that for a small value of Nev these two formulae differ
rather little. For example, if 4Nev = 0-2, we have ne — 1-18 from (9) but ne = 1-20 from
(10). The former gives the average heterozygosity of 15-5 % while the latter gives 16-7 %.
However, these two formulae give very different estimates for ne when Nev is large. For
example, if Nev = 100, the present model (9) gives ne = 28-3, while the conventional
model (10) gives ne = 401. Recently, Ayala et al. (1972) in criticizing our neutral theory
of protein polymorphism (Kimura & Ohta, 1971), point out that in D. willistoni, which is
estimated to have 109 breeding flies per generation, if we take a lower estimate of 10~7 for
mutation rate, we should have 4Nev = 400, while the observed average heterozygosity per
locus is about 18 %. In other words, the theoretical value of n6 obtained from Kimura &
Crow's formula overestimates the true value by the factor of some 400. Such a marked
discrepancy is reduced, however, if we use the present formula, although the theoretical
value is still some 20 times greater. In addition, there are two possibilities which have to be
taken into account and both of which reduce our theoretical estimate based on the neutral
theory. First, as pointed out by Kimura & Ohta, the rate v = 10~7 may be appropriate
for the neutral mutation rate per year, but not per generation. This means we should take
much smaller value for the neutral mutation rate per generation for fruit flies that breed
all the year round in tropical forests. Secondly, there is possibility that Ne = 109 is an
overestimate, not as the number of breeding flies per generation, but as the number
applicable to the formula of effective allele number. Not only this number is controlled by
the minimum population size when population number fluctuates from generation to
generation, but also it takes the length of time in the order of the population size for the
equilibrium state in the distribution of allelic frequencies to be established. (Treatment of
this subject will be published elsewhere.) It is quite likely that the effect of small population
number during the last glaciation still remains in the genetic composition of tropical fruit
flies. In this connexion we would like to point out that neutral alleles behave quite
differently from lethal genes (having short life-span) and inversion polymorphisms (many
of which may be subject to ' balancing selection').
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