
A WEIGHT THEORY FOR UNITARY REPRESENTATIONS 

THOMAS SHERMAN 

Over a field of characteristic 0 certain of the simple Lie algebras have a root 
theory, namely those called ''split" in Jacobson's book (3). We shall assume 
some familiarity with the subject matter of this book. Then the finite-dimen­
sional representations of these Lie algebras have a weight theory. Our purpose 
here is to present a kind of weight theory for the representations of these Lie 
algebras when their ground field is the real numbers, and when the repre­
sentation comes from a unitary group representation. 

To summarize our results we let ® be a real simple split Lie algebra and § 
a splitting Cartan subalgebra with real dual space &. A strongly continuous 
unitary representation (of a Lie group) will go by the name "representation" 
in this paper. Let w be a representation of G, a Lie group with the Lie algebra 
®. Then for every \f/ £ § ' , irp is a "weight" of T, the "weights" have constant 
multiplicity (assuming that the identity representation does not occur in 7r), 
and the representation space may be regarded as the direct integral over § ' 
(with respect to Lebesgue measure) of the "infinitesimal weight spaces." In 
other words the representation space may be regarded as all square-integrable 
functions on & with values in some fixed Hilbert space. Then for x in § , 
dir(x) is multiplication by i(\f/, x) (\f/ £ §')• Cme biproduct of this study, 
useful for further application, is the fact that if e<j> is a root vector, then dir{e^) 
annihilates no vector. (For more discussion of dirÇe^) see §3.) 

These results were obtained in the author's doctoral dissertation at the 
Massachusetts Institute of Technology. 

1. We begin by developing the theory for three-dimensional groups with 
split simple Lie algebra. These are all locally isomorphic to SL(2, R). Groups 
of larger dimension are in a sense "pieced together" from these three-dimen­
sional ones. We obtain the general theorem by "piecing it together" from the 
three-dimensional theorem. 

Let ® denote the three-dimensional real split simple Lie algebra until 
further notice. Let G be a fixed connected Lie group corresponding to ®. 
© has a basis {e+, x, £_} such that [e+, eJ\ = x and [x, e±] — ±e±. Let © 
denote the solvable subalgebra of © spanned by x and e+. Let S denote the 
connected subgroup of G with Lie algebra ©. It is known that there is (up to 
isomorphism) only one connected Lie group with Lie algebra ©. It is (iso­
morphic to) the subgroup of SL(2, R) consisting of upper-triangular matrices 
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with positive diagonal entries. Observe that this group has trivial centre and 
is simply connected, and is thus unique with Lie algebra ©. Let E and X be 
the subgroups of S generated by e+ and x respectively. Then E is normal and 
S is the semi-direct product of E and J . The representation theory of S is 
known; see (1 or 5, p. 132, Example I) . There are two faithful irreducible 
representations a+ and <7_ of 5. All other irreducible representations of S are 
the identity on E. Every representation <r of S may be written 

a = C+ (T+ ® C- a- ® <TO, 

where C+ a+ (or C_ cr_) denotes the direct sum of o+ (or aJ) a cardinal number 
C+ (or C_) times, and O-Q is the identity on the subgroup E. a+ and o-_ act on 
1,2(R) as follows: 

(1.1) <r+(exp(tx)W) = cr_(exp(**))/(0 = f(t + t'), 

(1.2) <r+(exp(fe+))/(*') = *-(exp(-te+))f(t') = exp(itexp(t'))f(t'). 

We need some facts about the differential of a representation. So if w is a 
representation of a real Lie group L on a Hilbert space i7, let C^Or) denote 
the set of vectors v in H such that 7r( • ) v is a C° function on L. C°(w) is a linear 
subset of H. I t is dense and in fact contains the analytic vectors which are 
dense (6). For any y 6 S, the Lie algebra of L, the one-parameter unitary 
group 7r(exp(R/y)) is generated by a skew-adjoint operator, which we denote 
by dir{y), so that 

7r(exp(/y)) = exp(^7r(y)), H n R . 

For all v in C°{ir), v is in the domain of dir(y) and 

dir{y)v = dir(exp(ty))v/dt (at £ = 0). 

C°°(7r) is stable under dw(y) for all y in 8 and y —> dx (y) \ C° (ir) defines a repre­
sentation of ?. d7r(;y) is essentially skew-adjoint on C°{%) (6, Lemma 5.1). 
7̂r extends to a representation, also denoted dry of the universal enveloping 

algebra U of 8. Also if c is a central element of £/, hxed under the anti-
automorphism « —» **' of £/, where y' = — y for y Ç ?, then d?r(c) is essentially 
self-adjoint, and the spectral resolution of its self-adjoint closure commutes 
with TT(L) (7). 

For the group 5 and the representations <r+ and <J- we have 

O j = c*(R) n n L'OM"1*), 
n=0 

(1.3) da+(e+) = — do'_(e+) = multiplication by i'ef; 

(1.4) do-+(x) = d<T_{x) = d/dt. 

LEMMA 1. Let <x be an arbitrary representation of S on a Hilbert space H. Let 

H(y) = {v £ H\a(exp(y))v = v], 
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for any y in ©. Then for any t 7e 0, H(te+) reduces a and a(E)\H(te+) = I. 
If t 7* 0, H(tx) reduces a and in fact <r(S)\H(tx) = / . 

Proof. Write a = C+ c+ © C_ <r_ © c70. If t ?± 0, the representations <r+ and 
o-_ leave no vector of L2(R) fixed under expte+ by (1.2). Thus the same is 
true of C+ 0-+ and C_ o-_ and their direct sum. Hence H{te+) is exactly the 
representation subspace of a0 and thus reduces a. The same argument shows 
that 

H(tx) C the representation subspace of a0 = H(te+). 
Thus 

TT(S)|#(/X) = w(XE)\H(tx) r\H(te+) = J. 

LEMMA 2. Le2 ir be a representation of G and suppose that the identity repre­
sentation of G does not occur in r. Then for any vector v in the representation 
space H, and any t ^ 0, 7r(exp te+)v = v implies v = 0. 

Proof. In the universal enveloping algebra U of © consider the element 
c — e+ e_ + e_ e+ + x2. c is central, as a calculation easily shows. (It suffices 
to check that c commutes with e+, x, and e__.) It is fixed under the anti-
automorphism u —» w' of £/, which on @ is y = —y. Thus by Segal's theorem 
(7), the closure of dw(c) is self-adjoint and has a spectral resolution that 
commutes with w. The representation T is consequently the direct integral 
over the spectrum of dw(c) of representations wr for which dwr(c) is the real 
scalar r. If for some v 9e 0 in if and some t ^ 0 (fixed for the rest of the proof) 
we have 7r(exp te+)v = v, then writing v = / © vr, we get 

7rr(exp te+)vr — vr = 0 

for almost all r. It therefore suffices to show that for any real number r, the 
lemma holds under the added assumption that dw(c) = r. 

Let a denote the restriction of T to 5. Let 

H0 = {v e iï|ir(exp(te+)) v = v] = H(te+). 

By Lemma 1, H0 reduces o-, and ir(E)\H — I. Thus by the spectral theorem, 

Ho = \v G H\dr(e+)v = 0}. 

Here dw(e+) is regarded as a skew-adjoint operator. Also since i70 reduces o-, 
iJ0 reduces the skew-adjoint operator dir{x). In particular, dw(x) and (^7r(x))2 

are densely defined in H0. 
Now for all v € C°°(ir), 

dTr(e+)dir(eJ)v = dw(eJ)dir(e+)v + dir(x)v. 

Choose fl0 in i/o in the dense intersection of the domains of dw(x) and (dwix))2. 
Then 

(dT(eJ)dw(e+)vfVo) = (dw(e+)dw(eJ)v,Vo) — {dir(x)v,Vo) 

= {dir(e-)v, — d7r(£+)z/0) + {v,d-rr{x)vo) = {v, dir(x)vo). 
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On the other hand, 

ri = dv(c) 3 (2dic(e-)dic(e+) + dw(x) + (d7r(x))2)|C°°(7r). 

This implies t h a t 

2dir(eJ)dw(e+)v = rv — dir{x)v — (dir(x))2v. 

Hence 

(v,dT(x)vo) = §((r — dir(x) — (dir(x))2)v, VQ) 

= è(«>, (r + dir(x) — (dir(x))2)v0). 

Therefore 
{v, (r — dir(x) — (dTr(x))2)vo) = 0. 

Since v was arb i t rary in the dense set C°°(7r), we have 

(r — dw(x) — (dT(x))2)vo = 0. 

Since dnÇx) is skew-adjoint, 

(dir{x)vo, v0) = 0. 
T h u s 

0 = ((r — dir{x) — (d7r(x))2)v0jVo) = ((r — (dTr(x))2)v0, v0). 

Since Vo was chosen arbi t rar i ly from a dense set in Ho, and since r — (dir(x))2 

is self-adjoint on H0l it is 0 on H0. T h u s on H0 we have 

0 = r — (dir{x))2 — dir(x) = — dw(x). 

Hence T(X)\HO = I. 

Let ©_ denote the subalgebra of © spanned by e_ and x. Then ©_ is iso­
morphic to © by Let 5_ denote the connected subgroup 
of G with Lie algebra ©_. Then 5 _ is isomorphic to 5 and consequently has 
the same representat ion theory. We may therefore apply Lemma 1 to the 
restriction of the representat ion w to the group S_. Since 7r(exp(XR)) | i70 = I, 
we conclude t h a t ir(S-)\H0 = / . Since the subgroups S and 5 _ generate G, 
and since w(SJ)\H0 = ir(S)\H0 = I, we have ir{G)\Ho = I. This contradic ts 
our assumption t h a t the ident i ty representat ion does no t occur in 7r, unless 
Ho = 0. 

T h e significance of this lemma may be seen if we again write 

T\S = <T = C+ (7+ © C_ (7_ © (To. 

T h e lemma then s ta tes t h a t the piece a0 does no t occur, so we have simply 
<r = C+ <r+ © C_ o-_. In part icular , w\X is jus t ( C + + C-) copies of t ranslat ion 
in L 2 (R) (see 1.1), or if one wishes, of the regular representat ion of X, Le t us 
replace a+ and o-_ by their conjugates under the Fourier transform on L 2 ( R ) . 
Then f o r / in L 2 ( R ) , /, t1 in R, we have 

(1.5) (a+(exp(tx))f)(0 = (<r_(exp(/x))/)(0 = exp (itt')fXO. 
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(<r±(expte+) is difficult to describe explicitly and this is why we did not 
originally use this form.) In differential terms (1.5) reads 

(1.6) da+(x) = dcr-(x) = multiplication by it. 

$ = {Rx} is a splitting Cartan subalgebra of ®. If we identify R with $ ' , the 
real dual of § , then the representation space of TT is C+ + C_ copies of L2(lQf) 
and for / G (C+ + C_)L2(£'), <t> G $ ' we have 

(1.7) (<**(*)/)(*) =**(*)/(*)• 

Here we have regarded (C+ + C_) L2(§ ') as the set of all measurable functions 
/ from § ' to a fixed Hilbert space iJ* of dimension C+ + C_ such that the H-
norm of / as a real function on SQ' is square-integrable. This is a standard 
identification; see (4). (1.7) may be interpreted as saying that each point of 
iSfr' is an infinitesimal weight of multiplicity C+ + C_. 

Before going on to establish these results for an arbitrary real split simple 
Lie algebra we need one more observation about the representation a. Regard 
<r+ and <T_ as operating on L2(R) with (1.5) giving <r+ and <r_ on X. Let p 
denote the regular representation of R on L2(R): 

p(t)f(f) =f(f'-t) tfaJ(R);M'fR). 

The following three sets of operators act irreducibly on L2(R): o + (5), a_(5), 
and <r±(X) \J p(R). We now have 

LEMMA 3. Let a = C+ <r+ 0 C_ o-_ ô̂  a representation of S on a Hilbert space 
H. Let P be the projection-valued measure on R such that 

o-(exp t'x) = JK exp(itt')P(dt). 

Then there is a representation rof^onH such that for any real /, and measurable 
subset M of R, 

r(t)P(M)r(-t) = P(M + t) 

and T is such that if a normal operator commutes with a, then it commutes with r 
(andj of course, with P). 

Proof. Let C = C+ + C_. Then H = CL2(R) consists of all square-
integrable functions from R to a Hilbert space H- of dimension C. In this 
representation P(M) is just multiplication by the characteristic function KM 

of M, and r = Cp. So 

(r(t)P(M)r(-t)f)(tf) = (P(M)r(-t)f)(tf - t) 

= KM(t' - t)f(tf) = (P(M + t)f)(t). 

Now suppose the operator N commutes with a. Since C+ a+ and C_ <r_ are 
primary, N is completely reduced by the representation subspace of C+ a+ 

(and of C_ a J). Cp restricted to this space is C+ p (Cl p). Since a+ is irreducible, 
any operator on L2(R) may be strongly approximated by finite sums of ele-
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ments in <r+(S) and, in particular, p(t) may be so approximated. Thus if N 
commutes with C+ a+, it commutes with all finite sums in C+ o-+(S) and hence 
with all strong limits of such sums including C+p(t). Similarly N commutes 
with C_ p(t), so N commutes with Cp(t) = r(t) for all t. 

2. Now let ® denote any real simple split Lie algebra and § a splitting 
Cartan subalgebra with real dual space ^)'. Let $ be a fundamental system of 
roots for £>. Then $ is a basis of § ' . For any root yp let e$ be a root vector for 
\p. Let Xf = [e^y e-t] and assume e# and e_^ to be so normalized that ypix^) = 1. 
The set of vectors F = {x<t\<t> £ $} is a basis of § . Let i7' denote the basis of ^ 
dual to $. We shall denote the elements of F' by x\ in such a way that 
<t>i(x'<t>) = 1 if and only if <£i = <j>. Thus for all x in § , x = ^ ^ ( x ) ^ (0 G $). 

Now let G be any connected Lie group with Lie algebra ©. The connected 
subgroup corresponding to § is isomorphic as a Lie group with the additive 
vector group £> by way of the exponential map. Indeed, since § is abelian, 
exp is a locally isomorphic epimorphism. It is a monomorphism when G is the 
adjoint group, since for each x in § , ad x is diagonalizable over R. Since every 
other group G covers the adjoint group, it is a monomorphism in general. 

Now the character group of exp(§) may be identified with ^ / by 
(exp x, \fs) = exp(i\p(x)) for x £ § , ^ £ § ' . If ry is any representation of the 
group exp § , there is a projection valued measure ^3, on § ' such that 

rç(exp x) = JV exp(i0(x))^P,(d0) for all x in § . 

The following theorem asserts that when 77 is the restriction to exp(§) of a 
representation of G, then ^ is distributed over § ' as evenly as possible. 

THEOREM 1. Let T be a representation of G on the Hilbert space H. Assume 
that the identity representation does not occur in IT. Then H consists of C copies 
of L2 (§ ') for some cardinal number C, and w restricted to the subgroup exp (§) 
consists of C copies of the representation rj0 on L 2 ( § ' ) : 

(V> (exp *)/)(*) = exp(i0(*))/(0). 

Preliminaries to the proof. Let $ = $ , be the projection valued measure on 
§ ' for the representation rj = 7r|exp(§). We shall show that for every \p £ &' 
there is a unitary operator r(\p) on H such that if 2)? is a measurable subset 
of § ' , then 

T W D I D T W " 1 = $(2» + *). 

We shall do this by applying Lemmas 2 and 3 to the connected three-dimen­
sional subgroups G<t> of G which correspond to the Lie albegras ©^ spanned by 
£<£, x<t„ and £-0, $ a root. But in order to apply Lemma 2, we must show that the 
restriction of x to G^ does not contain the identity representation of G<t>. 

Now a vector */ in H is fixed under ir{G^) if and only if it is fixed under 
7r(exp(Rx)). The necessity of this condition is clear. The sufficiency follows 
from Lemma 1 applied to the subgroups S<t> and S-4 spanned by {e^ x^} and 
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{e_^, — x 0 } , showing t ha t v is fixed under 7r(5^) and 7r(5_^), which generate 
Tr(G<t>). Let ^ be another root. Then either [x^, e^\ = 0 or ^(x^) p^ 0. In the 
first case, 7r(exp(R^)) commutes with w(exp(Rfy)). In the second case, we 
may apply Lemma 1 to the connected subgroup of G whose Lie algebra is 
spanned by {x(j>/\p{x^), e+}. In either case we conclude t ha t 7 r (exp(^ ) ) maps 
the space H0 of fixed vectors of 7r(exp(Rx0)) onto itself. Since the root vectors 
generate @, we have t ha t a generating set of one-parameter subgroups of 
7r(G) leave H0 fixed. So H0 reduces w. Restrict -K to HQ. We have already 
observed t h a t TT{G^)\HO = / . Since © is simple, it follows t h a t ir(G)\H0 = / . 
Since we are assuming t ha t the identi ty representation does not occur in T, 
we have proved 

LEMMA 4. Let ir be a representation of G in which the identity representation 
does not occur. Then the identity representation does not occur in the restriction 
of ir to G $ for any root <£. 

COROLLARY 1. Let T be as in Lemma 4. Let e^ be a root vector and t 9e 0. Then 
7r(exp(/^)) leaves no non-zero vector fixed. 

Proof. Apply Lemma 2 to the restriction of ir to G4. 

COROLLARY 2. Let <j> £ $ and let ©'^ denote the subalgebra of © spanned by 
{x'^e^). Let S't be the corresponding connected subgroup of G. S'</, is isomorphic 
to the subgroup S of SL(2, R ) . If a = ir\S'<i„ then <r = C+o+ ® C- <7_, i.e., <r0 

does not occur in a. 

Proof. S'$ is isomorphic to S since © ^ is isomorphic to © by x'4 —> x, e<t> —» e+. 
So the representation theory of S'^ is identical with t ha t of S. In part icular, 
we may write a = C+ a+ ® C- o-_ 0 a0 for any representation a of S'<f>. If 
a = 7r|5r0, however, it follows immediately from Corollary 1 t h a t <r0 does not 
occur. 

Proof of Theorem 1. Throughout this proof M, Mi, etc. will denote Lebesgue 
measurable subsets of R. So for such a set M and <t>\ 6 $ we define (M, <j>i) to 
be the subset of § ' : 

{L*.*j**ta e ^ ^ e Rfor<£ ^0i}. 
So if we were to co-ordinatize § ' with the basis {<£i, . . .} = $, then 

(M, <t>i) = M X R X . . . X R. 

For the next two paragraphs fix <j> £ <ï>. Consider 7r restricted to the subgroup 
5;0 of Corollary 2. By Corollary 2 and Lemma 3, there exists a projection 
valued measure P on R such t ha t 

7r(exp(/V0)) = JR (eKp(it't)P+(dt) 
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and a representation r^ of R on H such that 

T 0 ( O P * ( M ) T 0 ( - O = P^M + /). 

Now on the other hand we have the projection valued measure $ on Q such 
that 

7T (exp x) = JV exp (i^ (x) ) $ ( # ) . 

Let P\ be defined on the measurable sets M of R by P'<t>{M) = $ ( (M, 0)). 
Thus P',(<ft) = $ ( ( * , </>)). Then 

J R expW)P'*(dt) = J R exp(;*(*V,))<P((d*, 0)) 

= J R e x p W ( / V 0 ) ) ^ ( # ) = ir(exp*V*) = J R e x p ( ^ ) ^ W , 

where in the second expression on the left we take ^ = t<t> + ^~, where 
^~(x'0) = 0 and otherwise ^~ is arbitrary. We conclude, by the uniqueness of 
the measure P0 , that P ' 0 = P0 , i.e. P0(M) = $ ( (M, <£)). So we have 

r*(*)$((M, ^ M * ) " 1 = T,(t)P+(M)T+(t)-i = P 0 ( M + 0 = $ ( (M, 0) + ty). 

Now pick ^ £ <£, ^ ^ </>. Then for x^ 6 T7' we have [x^, #'0] = 0 and 
[xff,e<i,] = 4>(x'+)e<t, = 0. So exp(Rx^) commutes with S'^ and 7r(exp(RxV)) 
commutes with the representation r0 of R by Lemma 3. Now, as with <j>, we 
define P$ and prove that P$(M) = ty((M, ^)). Then since r> commutes with 

7r(exp t'o4) = J R exp(it't)Pj, (dt), 

T<t, also commutes with P^{M) = ty((M,\[/)) for all measurable sets M in R. 
But since ^ </), we have (M, ^) = (M, \p) - t<t>. Thus 

^ ( ^ ( ( M , ^ ) ) ^ ) " 1 = $ ( (M,* ) ) = $ ( (M, *) - ty). 

Thus for all ^ G $, whether ^ = # or not, we have 

^ ( O W C M , * ) ) ^ * ) - 1 = $ ( ( M , * ) - /*) . 

The projection valued measure ty is known to be regular (2, §§38 and 39) 
and is therefore determined by its values on the rectangles (Mi, (j>i) r\ . . . O 
(Mn, <j>n), where <j>i, . . . , <j>n £ $ and Mi, . . . , Mn are measurable subsets of 
R. But 

Hm((Mi, M n . . . n (M„ «OM*)-1 

= ^ ( (Mi , 0i) A . . . H (AT,, *,) + «0). 

So for any measurable subset 99? of § ' and f real and <f> £ # we have 

T ^ O W S W M * ) - 1 = $(2K + /«). 
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Now for each \p in § ' write 

and let r(^) = r ^ ^ i ) - . . .'T<f>n(tn). r(^) is not uniquely denned and r is not 
a representation of § ' . However, it is unitary and 

= . . . = ?(2K + h *l + . . . + tn 4>n) = $(SK + *). 

We may now apply the second and third paragraphs of (4, §6). There Mackey 
proves exactly what we want. In his notation, § ' is an abelian locally compact 
group G, xp is o-, $ is P , 9JÏ is E, r(—ip) is £7,. For him, Z7 is a representation, 
but this fact is not used in the paragraphs in question or in the results invoked 
there. His conclusion stated in our notation is that H is some cardinal number 
of copies of L2(§ ') and that $($)?) is multiplication by the characteristic 
function of 3JI on each copy. Since 

?r(exp x) = f&> exp(i\l/(x))^(d\p)t 

this completes our proof. 

3. We conclude with some heuristic remarks intended to strengthen the 
impression that we have here a weight theory. H will be a fixed Hilbert space 
and T a representation of G in which the identity representation does not 
occur. Then, by Theorem 1, we may regard H as the set of all square-integrable 
functions from $£>' to some fixed Hilbert space H-, and 7r(exp x) is multiplication 
by the function (\p —> exp(i^(x)) (^ G §'))• Let 12 denote the set of all functions 
fin H (from § ' to Hm) which are the restriction to § ' of entire (vector-valued) 
functions, again denoted b y / , on the complexification of § ' ; assume further 
that the function jfy defined by /^(-) = / ( • + i\f) is in H for each ^ G § ' . 
12 may easily be seen to be dense in H. For any root <f> define the operator T^ 
on 12 by (T^f) (\f/) = f(\p + i<t>) = U (^). Now for any x in § and / in 12 we have 

[d*(x), T*W) = (dHx)T, - T,dTr(x))m 

= #(*)/(* + **) ~ *(* + **)(*)/(* + i<f>) = tWTrftt) 
or [^7r(x), r 0 ] = ^(x)!^. Thus 7̂ , interacts with dr(^) on 12 in the same way 
dir{e^) does on C°°(7r). Were 12 and C°°(7r) to coincide, this would imply that 
dir{e^) = 4̂ 7^, where A is some unbounded operator commuting with dir($£>). 
The actual situation is more complicated, but one can show that 
dir{e^) = UiT$U~x, where the unitary operator U commutes with dir(^>) and 
may therefore be regarded as a function on § ' whose values are unitary 
operators on H\ For the moment, we see little use for such a result and merely 
wish to point out the analogy with finite-dimensional representations: The 
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operator dirie^) shifts the weight spaces by an amount <j> and then operates 
on the shifted space. 

In much the same spirit, the operators ir(g) may be partially described, 
where g is a coset representation of an element of the Weyl group, i.e. 
Ad g($S) Ç | ) . Let œ(g) be defined on H by 

<•>(*)/(*) = / ( * o A d ( g ) ) . 

Since Ad(g) is of determinant 1 on ^p, co(g) is unitary. Also for any x Ç § , 

co(g)7r(exp x)f(\f/) = exp(^(Ad g(x)))/GA o Ad g) 

= 7r(exp(Adg(x)))co(g)/(^) = Tr(gexp(x)g-1œ(g)f(\p) 

= 7r(g)7r(exp x)T(g-1)o)(g)f(y//). 

So ^(^^(g"1) commutes with 7r(expx) for all x in § . Thus ir(g) = U0œ(g), 
where U0 commutes with 7r(exp § ) and may thus be considered a function 
on § ' whose values are unitary operators on H\ 
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