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ON COMPLEX HOMOGENEOUS SPACES 
WITH TOP HOMOLOGY IN CODIMENSION TWO 

D. N. AKHIEZER AND B. GILLIGAN 

ABSTRACT. Define dx to be the codimension of the top non vanishing homology 
group of the manifold X with coefficients in Z2. We investigate homogeneous spaces 
X := G/H, where G is a connected complex Lie group and H is a closed complex 
subgroup for which dx = 1,2 and 0{X) / C. There exists a fibration 7r: G/H —> G/U 
such that G/U is holomorphically separable and n*(0(G/U)) = 0(G/H), see [11]. We 
prove the following. If dx = 1, then F := U/H is compact and connected and Y :=G/U 
is an affine cone with its vertex removed. If dx = 2, then either F is connected with 
dp = 1 and Y is an affine cone with its vertex removed, or F is compact and connected 
and dy = 2, where Y is C, the affine quadric Q2, P2 — Q (with Q a quadric curve) or 
a homogeneous holomorphic C -bundle over an affine cone minus its vertex which is 
itself an algebraic principal bundle or which admits a two-to-one covering that is. 

1. Introduction. A classical approach to understanding Lie groups and homoge­
neous spaces of Lie groups is to reduce to related compact objects. The fundamental 
theorem of E. Cartan-Malcev-Iwasawa says that a connected Lie group G is homeomor-
phic to the product of a maximal compact subgroup K C G and a euclidean space. For 
coset spaces G/H with \H/H°\ < 00 one has an analogue of this theorem. Namely, G/H 
fibers as a vector bundle over a minimal ^-orbit in G/H, see [17], [15] and also [7]. 
The dimension d = dGjH of the fiber of this vector bundle is an important topological 
invariant of the space. 

In the above setting it is clear that G/H is retractable onto some compact submanifold 
of codimension exactly dGiH. Thus dGiH can also be defined as the codimension of 
the top non vanishing homology group with coefficients in Z2. This definition is then 
applicable to any homogeneous space (independent of whether \H/H°\ < 00 or not). 

H. Abels [1] introduced an invariant nc(X\k) for any locally compact topological 
space X and non-zero abelian group k. He also studied some of its properties, particularly 
in the context of proper group actions. For X a manifold it is easy to see by means of 
Poincaré duality that nc(X; Z2) = dx. 

In this paper we investigate homogeneous manifolds of complex Lie groups for 
which this invariant is small. Some cases with dGjH small have been studied earlier. 
In particular, for G and H linear algebraic groups, see [2] and [3]. It turns out that 
holomorphically separable homogeneous complex manifolds are surprisingly related to 
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the algebraic category. More generally, we consider in this paper manifolds X satisfying 

We recall that given a homogeneous complex manifold G/H then there exists a closed 
complex subgroup U of G containing H such that G/U is holomorphically separable 
and if TT: G/H -+G/U denotes the natural projection, then it*(o(G/UJ) = 0(G/H), 
see [11]. The map IT is called the holomorphic reduction ofX. If the fibers of the 
holomorphic reduction are discrete, then X is said to satisfy the maximal rank condition. 

In the sequel we make use of the following construction. Consider an equivariant 
imbedding of a homogeneous projective rational manifold in some Pm. The affine cone 
in Cm+1 over the image of such an imbedding is an almost homogeneous space with two 
orbits. The closed orbit is the origin. In this paper its complement, i.e. the open orbit, 
is called an affine cone minus its vertex. Note that this orbit is a quasi-affine algebraic 
manifold with d = 1. 

THEOREM. Suppose G is a connected complex Lie group and H is a closed complex 
subgroup such that X := G/H satisfies 0(X) ^ C and dx < 2. Let Y :=G/U be the base 
of the holomorphic reduction ofX and F := U/H be its fiber. 

a) Ifdx = 1, then F is compact and connected and Y is an affine cone minus its vertex. 
b) If dx- 2, then one of the following two cases occurs: 

b\) The fiber F is connected and satisfies dp = 1 and the base Y is an affine cone 
minus its vertex, 

bi) The fiber F is compact and connected and dy = 2; moreover, Y is one of the 
following manifolds: 

1) The complex line C; 
2) The affine quadric Q^; 
3) ^2 — Q> where Q is a quadric curve; 
4) A homogeneous holomorphic C*-bundle over an affine cone with its 

vertex removed which is either itself an algebraic principal C* -bundle 
or is covered two-to-one by such. 

A short outline of the organization of the paper is as follows. In the second section we 
define the invariant d and present some of its properties. The algebraic case is treated in 
the third section. The fourth section deals with discrete isotropy. After this the remaining 
step is to use the normalizer fibration to show that we can reduce to the algebraic category. 
This is done in the fifth section. 

We thank A. T. Huckleberry and A. G. Matveev for helpful discussions. We also thank 
the referee for suggesting Lemma 12 which allows proofs of Propositions 6 and 7 that 
are substantially simpler than the original ones. 

2. Topological preliminaries. 

DEFINITION. Given any manifold X define 

hx := min{r | Hk(X, Z2) = 0, for all k > r} 
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and set 

dx := dimX — hx. 

Any manifold has a triangulation and one can use it to compute homology. In the 
noncompact case there are no cycles in dimension k = dim X. In the compact case the 
(finite) sum of all simplices of highest dimension is a cycle (at least mod 2). Therefore 
dx > 0 for a noncompact manifold and dx = 0 for a compact manifold. 

Suppose we have a locally trivial fiber bundle X —• B, where F, X and B are 
connected manifolds. 

F 
LEMMA 1. If the fiber bundle X —> B is orientable, then 

dx =dF + dB. 

In particular, this is true if the base B is simply connected. 

PROOF. Consider the homological spectral sequence of the given fiber bundle, taking 
Z2 for the coefficient group. In the orientable case we have 

F ^ - / / r ( ^ Z 2 ) 0 / / , ( F , Z 2 ) . 

Thus 

E\ = {0} if r > hB or s > hF 

and 

El ^ {°} i f r = hs and s = hF. 

Clearly these relations remain valid for F°°, and our claim follows. • 

We also need some information in the case when it is false or unknown that the 
fiber bundle is orientable. Recall that every manifold has the homotopy type of a CW-
complex, see [16]. In the compact case the dimension of this CW-complex is equal to the 
dimension of the manifold. In the noncompact case one can always find a CW-complex 
of smaller dimension, see [19]. 

LEMMA 2. Assume that B has the homotopy type of a CW-complex of dimension q. 

Then 

dx>dF + (dim B — q). 

IfB is homotopy equivalent to a compact manifold, then 

dx > dF + dB. 
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PROOF. First we claim that 
hx <hf + q. 

In the spectral sequence we have 

El
rs~Cr(B)®Hs(F,Z2), 

where Cr{B) is a free abelian group generated by the cells of B. It follows that Ex
rs = {0} 

if r> qor s > hf. Therefore Hk(X, Z2) = {0} for all k > hf+q showing that hx <hF+q. 
Now dx = dimX — hx > dim F + dim B — (hF + q) = (dim F — hF) + (dim B — q) = 

dp + (dim B — q) and this proves the first inequality. 
In order to obtain the second one denote by M a compact manifold, which is homotopy 

equivalent to B. Since M has the homotopy type of a CW-complex of the same dimension, 
one can take q = dim M. Observe that dim M = h\f and hs = /*M- Therefore we can replace 
dimZ? — q by dimZ? — hs = d#. • 

In this paper we use the expression Y is retractable onto M instead of saying that M is 
a strong deformation retract of Y. 

LEMMA 3. Let X, Y be connected manifolds, n: X —* Y an unramified covering, and 
M G Y a compact submanifold. Assume that Y is retractable onto M. Then 

dx --dy + dn-i{M). 

In particular, dx >dyifn is infinite. 

PROOF. Since X is obviously retractable onto 7r_1 (M), we have 

Also since Y is retractable onto M and M is compact, 

hy = /IM = dimM. 

Therefore 

dx = dimX — hx = dimX — h^-\^M) 

= dimX — (dim7r~1(Àf) — ^-1^) ) 

= (dim Y — dimM) + d^-\^M) 

= dy + d^xm. m 

3. Algebraic groups. The following proposition is more or less known. 

PROPOSITION 1. Let G be a connected linear algebraic group, H C G an algebraic 
subgroup, andX := G JH. The following statements are equivalent: 

(i) X has two ends; 
(ii) dx = 1; 

(Hi) the normalizer N = N(H°) is a parabolic subgroup of G and N/H° = C*; 
(iv) H is the kernel of a nontrivial character of some parabolic subgroup of G. 
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PROOF. For (i) ^ (iv) see [2], (i) => (ii) and (iii) => (iv) are clear. In order to prove 
the remaining implication (ii) =» (iii), consider the covering manifold G/H°. Since X 
is homotopy equivalent to a compact submanifold of codimension one, the same is true 
for the finite covering. Thus dG/Ho = 1. Furthermore, since the isotropy subgroup H° is 
connected, the Mostow-Karpelevich fibering for G/H° not only has R as fiber, but also 
is topologically trivial. Therefore G///° has two ends. Applying (i) & (iv) we see that 
H° = ker cp, where (p: P —• C* is a nontrivial character of a parabolic subgroup P C G. 
It is clear that P C N = N(H°). Since the manifold N/P = (N/H°)/(P/H°) is complete, 
P/H° is a parabolic subgroup of N/H°. This subgroup is isomorphic to C*. Therefore 
N/H° is also isomorphic to C* and N = P. m 

It is convenient to recall here the definition of an observable algebraic subgroup (see 
[6]). Let G be a complex linear algebraic group. An algebraic subgroup of H C G is 
called observable if the following equivalent conditions are fulfilled: 

(i) each rational //-module is an //-submodule of a rational G-module; 
(ii) there exists a rational G-module V and a vector v € V such that 

H={geG\gv = v}; 

(iii) G JH is a quasi-affine algebraic manifold. 
If G is connected, then H is observable in G if and only if H° is observable. 

The structure of connected observable subgroups is given by the main theorem of 
[21]. The following lemma is an easy consequence of this result. 

LEMMA 4. Let G be a connected reductive linear algebraic group over C, P C G a 
parabolic subgroup, and H C G an algebraic subgroup such that P' C H C P. Then H 
is observable if and only if there exists an irreducible G-module V and a vector v G V 
such that P = {g €E G | gv E C • v} and H C ker </?, where ip: P —• C* is the character 
defined by 

pv = tp(p) -v, p E P. 

PROOF. Since Gj ker ip is the orbit of the highest weight vector, the subgroup / := 
ker (p is observable. Assume that H C /. Then / / / / is the product of an algebraic torus 
with a finite group. In particular, I JH is an affine manifold. Now, since / is observable in 
G and H is observable in /, it follows from (i) of the definition that H is observable in G. 

We now prove the converse. It is enough to consider the case of H connected. For, 
along with //, the connected component H° is also observable. On the other hand, if it is 
known that H° C ker ip with tp of the above type, then H C ker(<^) for some positive 
integer k. Thus, it remains to replace V by the irreducible component of V® k containing 
v(g)- • -<g)v. 

For H connected one can apply the main result of [21]. Denote by Radw(//) the 
unipotent radical of an algebraic group //. According to [21], there exists a parabolic 
subgroup Q C G and a character xf;:Q—^C* such that: 

(a) ken/; is the isotropy subgroup of the highest weight vector in an irreducible 
representation space of G; 
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(b) H Cken/>; 
(c) RadM(P) = Rad„(/f) C RadM(<2). 

We only have to show that P = Q. For this it suffices to prove the following: 
(*) if P and Q are two parabolic subgroups in G and P' C <2, then P C Q\ if, in 

addition, Radw(P) C RadM(0 then P = Q. 
In order to prove (*) pick a Borel subgroup B C P. Then Bf C Pf C Q. Thus, there 

exists a Borel subgroup Z?i C 2, which contains B'. But then B\ = N(B') = B so that 
5 C G- In this situation the description of parabolic subalgebras in terms of roots shows 
that RadM(P) D RadM(<2). Since B is an arbitrary Borel subgroup in P, it follows that 
P C Q. The opposite inclusion is possible only if P = Q. m 

Our next lemma is certainly known. 

LEMMA 5. Let G be a connected reductive linear algebraic group over C and H G G 
an algebraic subgroup containing a maximal torus T C G. Then the following statements 
are equivalent: 

(i) H is an observable subgroup; 
(ii) the root system of H is symmetric; 

(iii) H is reductive. 

PROOF. By the Matsushima-Onishchik theorem (iii) implies that G JH is an affine 
manifold. In particular, (iii) implies (i). The equivalence of (ii) and (iii) is known and 
easily seen. It remains to prove (i) =^ (ii). Let tj (resp. t) be the Lie algebra of// (resp. 
T). Assume that Ea 6 Ij but E_a £ Ij for some root a, where Ea denotes the root vector 
corresponding to a. Let Sa be the simple three-dimensional subgroup with Lie algebra 

Sa = C • Ea + C • E_a + C • [Ea, E_ t t]. 

Since [Ea,E_a] E t C l), the intersection Sa H H is a Borel subgroup in Sa. Thus the 
orbit Sa • (e/Z) C G// / is a complete curve, contradicting (i). • 

PROPOSITION 2. L f̂ G be a connected linear algebraic group and H C G an algebraic 
subgroup such that X := G/H satisfies the maximal rank condition and dx = 2. Then X 
is one of the following manifolds: 

1) The complex line C; 
2) The affine quadric Q2; 
3) P2 — Q, where Q is a quadric curve; 
4) A homogeneous algebraic principal C*-bundle over Y, where Y is an affine cone 

with its vertex removed. 
Any Xfrom this list is in fact a quasi-affine algebraic manifold with dx = 2. 

PROOF. We start by proving the last assertion, which is non-trivial only in Case 4). 
Here we a have a triple of algebraic groups H <\I C G such that X = G/H, Y = G/I, 
and / / / / = C*. Since H is observable in / and / is observable in G, we conclude that H 
is observable in G and X is quasi-affine (we use the equivalent definitions (i) and (iii) of 
an observable subgroup). 
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To see that dx = 2 it suffices to represent X as a C* x C*-principal bundle over 
a homogeneous projective rational manifold and then apply Lemma 1. The following 
argument shows that such a representation is possible. 

Since Fis an affine cone minus its vertex, there exists a (connected) algebraic subgroup 
J CG such that / <7, J/I = C*, and G/J is projective rational. It is enough to show that 
H < / . Now, H = kerr, where r: / —• C* is some character. Since the character group of 
/ is discrete, the connected group J acts on it trivially. In other words, 

r(xyx~l ) = r(y) for all x E J, y E I. 

It follows that H< J. 
We now turn to the proof of completeness of our list. For this we need the following 

result (see [3]): 
Any X subject to our assumptions can be represented as a homogeneous bundle 

X = LXpF, where L is a maximal reductive subgroup of G, P C L a parabolic subgroup, 
and F is one of the following algebraic P-manifolds: 

a) F = C, P acts by affine transforms; 
b) F = ¥2 — Q, P acts via a homomorphism P —• SO(3, C); 
c) F = C* xC*,P acts by group translations. 
Note that a proper subgroup of SO(3, C) cannot be transitive on F = P2 — Q. The 

homomorphism in b) is in fact defined on a possibly bigger group P, on which it is 
surjective by the construction of [3]. Namely, P (resp. P) is the isotropy subgroup in G 
(resp. in L) of some point of the base of the bundle. Since any Levi subgroup of P is a 
Levi subgroup of P, it follows that the homomorphism in b) is surjective. 

Let us now see what happens if X satisfies the maximal rank condition. 
a) If P acts on F trivially then we have an imbedding L/P <—+ X, showing that in fact 

P = L and X = F = C. Otherwise, P acts on F transitively so that X is L-homogeneous. In 
particular, X = L/(HDL) is a quasi-affine manifold by [5]. The isotropy subgroup HHL is 
contained in P and has codimension one in P. Since a torus acting on C always has a fixed 
point, HDL is a subgroup of full rank. We are in a position to apply Lemma 5. This lemma 
shows that HDL is reductive. Since this subgroup at the same time has codimension one 
in a parabolic subgroup, it follows that L/P = Pi and X = L/(HC\L) = Qi. 

b) We know already that P acts transitively on F so that X is L-homogeneous and, 
in particular, quasi-affine. Now, H n L is a subgroup of P (of codimension two). Since 
a torus in SO(3, C) has a fixed point in P2 — Q, the subgroup H D L is of full rank. By 
Lemma 5 we see that H n L is reductive. On the other hand, the image of the unipotent 
radical Radw(P) in SO(3, C) must be trivial. Therefore RadM(P) is contained in H n L. It 
follows that P is reductive. But then P = L and X = F = P2 - Q. 

c) We can replace G by G x (C* x C*), where the second factor acts on X as the 
structure group of the principal bundle. After this the homomorphism P —• C* x C* 
defining the action of P on F becomes surjective. Therefore we may assume that P is 
transitive on F and, correspondingly, L is transitive on X. In particular, X is quasi-affine. 
Since P' C H H L C P, we are in a position to apply Lemma 4. As a result we obtain 
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an algebraic subgroup / such that / / H L C / C P , P/l - C*, and Y := L/l is an affine 
cone with its vertex removed. Replacing /, if necessary, by a subgroup of finite index, 
we may assume that l/(H n L) is connected. By a dimension argument we then have 
/ / ( / / H L) = C*. The fibering 

X = L/(HC[L)-*Y = L/I 

is the desired one. • 

4. Parallelizable manifolds. The aim of this section is to present the classification 
in the case of discrete isotropy and in order to do this we will reduce to the setting where 
we have a solvable group acting transitively. It was observed in [10] that if X = G JH, 
where G is a connected solvable complex Lie group and H is a closed complex subgroup, 
with dx < 2 and 0(X) having maximal rank, then dimX < 2. Note that there is one 
nontrivial C*-bundle over C* which is a homogeneous Stein surface and we will call this 
the complex Klein bottle, see [13]. Using the above remark about the dimension a check 
of homogeneous spaces of dimension one and two which satisfy the required conditions 
leads to the observation: 

IfX = G/H, where G is a connected solvable complex Lie group and H is a 
closed complex subgroup, with dx < 2 and 0(X) having maximal rank, then 
X is biholomorphic to C, C*, C* x C* or the complex Klein bottle. 

In order to handle the situation with discrete subgroups we will need a couple of 
preliminary results. These are of a somewhat technical nature. The first allows us to 
handle the situation when the group is a product of its radical with a maximal semisimple 
subgroup. The second is useful when the group is a nontrivial semidirect product. 

LEMMA 6. Suppose G is a complex Lie group whose Levi decomposition is a direct 
product S x R. Let T be a discrete subgroup of G such that S HT is finite. Then T is 
contained in a subgroup of the form A x R, where A is an algebraic subgroup of S such 
that its connected component A° is solvable. 

PROOF. Call i\\ and T\2 the projections from G to S and R respectively. By a theorem 
of Tits [22, Theorem 1] the linear group 7Ti(r) contains either a solvable subgroup of 
finite index or a free subgroup with (at least) two generators. The second case cannot 
occur for the following reason. Pick any two generators for such a subgroup and let a 
and b denote their preimages in T. Then a and b generate a free subgroup. Now 7r2(fl) 
and 7T2(b) are in a solvable group and so there is a word on 7:2(0) and ^(b) equal to one 
in R. Therefore there is a word on a and b in G which belongs to the kernel of 1x2 and so 
belongs to S n T. Since this group is finite, some power of this word is equal to one in G. 

Let A be the Zariski closure of 1T\ (T) in S. Since ix\ (F) contains a solvable subgroup 
of finite index, A has the same property. • 

LEMMA 7. Let G = S\xR, where R is a vector group and the action of S on R is given 
by a linear representation. Assume that a generic element of S has no nonzero invariant 
vector in R. Then the union of all conjugates to S in G contains a Zariski open set of 
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the form nl
l(S — Z), where ir\:G —> S is the projection mapping and Z^ S is a Zariski 

closed subset in S. 

PROOF. The elements of G are pairs 0, V) and the multiplication is given by(s\,V\)-
O2, V2) = (s\S2, P(si)~l V\ + Vi), where st G S, Vt e R and p is the representation. Given 
a pair (so, Vo), let's try to find an element VE/? such that the following holds: 

(l ,V).(so,Vo)-(l ,-V) = (so,0). 

Using the multiplication law we rewrite this as pOo)-1 V+Vo — V = Q. If the eigenvalues 
of the operator p(so) are all different from one, then this equation has a unique solution. 
Let 

Z := [s € S I det(p(s) - I d* ) = 0}. 

According to the assumption, Z ^ S and our claim follows. • 

Next we describe the holomorphic reduction and set up some notation. Suppose we 
are given a complex Lie group G and a closed complex subgroup H. Let X- G/H and 
assume 0(X) / C. Then there exists a closed complex subgroup U of G containing H 
such that G/U is holomorphically separable and if 7r: G// / —• G/U is the natural map, 
then 7T* (p(G/ £/)) = 0(G/H). The map 7r is called the holomorphic reduction ofX. Let & 
be the union of the connected components of U which meet H,i.e.,U = H U°. Then the 
fibration G/H —> G/Û has connected fiber Û/H and its base Gj Û satisfies the maximal 
rank condition. Let N := NG(U°\ N := Û • N°, and denote by 

TI:N-+N/U° 

the canonical map. We put F := 7j(L0 = Û JU°. 
Suppose Q is any closed complex subgroup of N which contains Û. Let Q := Û - Q° 

and L=Q/U°=T](Q). Then 

G / ^ = L / r = L 0 / r n L ° . 

We now have the double fibration with connected fibers 

X = G/H —• G/U ^ G/Q. 

Before proving that, if in this setting one also has dGtH < 2, then L is solvable, we 
first use the previous two lemmas to show that the part of the discrete subgroup T lying 
in L° is contained in a proper closed complex subgroup A of a very special form. 

LEMMA 8. Let G be a complex Lie group and H a closed complex subgroup of G 
such that X := G JH satisfies dx < 2 and 0(X) ^ C. Suppose Q is any closed complex 
subgroup ofN containing Û with dim Q > dim U. Construct L and T as above. Assume 
also that the radical R of L has dimension at most 2. Let a:L —• L° be the universal 
covering, fix a Levi decomposition L = S K R and set T := a~l (T D L°). Then there is a 
proper algebraic subgroup A oft containing T. In particular, if we set A := a(A), then 
TnL° CAand 

L°/A=L/A 

is the quotient of algebraic groups. 
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PROOF. The proof splits into two cases, depending on whether the adjoint action of 
S := a(S) on the radical R is trivial or not. 

CASE 1: THE ADJOINT ACTION OF S ON R IS NONTRIVIAL. Assume that R is not 
abelian. Then the commutator subgroup ofR is invariant under S and one-dimensional. 
Therefore the semisimple group S acts on it trivially and since the action of S on the Lie 
algebra of R is completely reducible and dim R < 2, this shows that the action on R is 
trivial. This is a contradiction. Therefore R is abelian. Note also that the action of S on 
R is irreducible, since otherwise by the complete reducibility it would follow that the 
action is trivial. 

A semisimple group having an irreducible two-dimensional representation decom­
poses as a locally direct product S\ • 52, where S2 is acting trivially and S\ is isomorphic 
to SL(2, C), with the action of Si being (isomorphic to) the usual action of SL(2, C) on 
C2. Any element of the form s\ • s2, where 5*1 has different eigenvalues, has no nonzero 
invariant vector in the representation space. Therefore, Lemma 7 applies to L. 

Note that L has the unique structure of a linear algebraic group. We claim that F is 
contained in a proper algebraic subgroup A of L. Assume the contrary and consider the 
projection n\ : L —• S. Then n\(F) is Zariski dense in S. By using a theorem of Tits [22, 
Theorem 3] we see that TT\ (F) contains a free subgroup with two generators which is 
also Zariski dense in S. Pick the TT\ -preimages of any two of these generators in F and 
let F\ denote the (free) subgroup of F generated by the chosen elements. By a theorem 
of Selberg, see [20, Corollary 6.13], there is a subgroup of finite index F2 C F\ which 
is without torsion. Clearly 7Ti(r2) is also Zariski dense in S. The intersection of f̂  with 
any conjugate subgroup gSg~l is a finite group. (Since L/F = L°/FDL° = L/F satisfies 
the maximal rank condition, this is even true for the bigger group f [5].) It follows that 
f2 ngSg~l = {e}. Therefore 

t2-{e}cL-[j gSg~l CL-7T^(S-Z) = i^\Z), 
gel 

where Z is defined as in Lemma 7. It follows that 7ri(l2) C Z contradicting the density 
of 7ri(l2) in S. Thus r C Â, where A is a proper algebraic subgroup of L. Let A := a(A). 
Since ker a is contained in F C A, we see that A is closed in L° and 

L°/A=L/A. 

Thus L° IA may be written as the quotient of algebraic groups. 

CASE 2: THE ADJOINT ACTION OF S ON R IS TRIVIAL. In this case L = S x R. By 
Lemma 6 we have that F is contained in a subgroup of the form A := C x R, where C is 
a proper algebraic subgroup of S with solvable C°. Let A := a(A). Then, as in Case 1, 

L°/A = L/Â = (Sx R)/(C xR) = S/C, 

so again L° /A may be written as the quotient of algebraic groups. • 
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PROPOSITION 3. Let G be a complex Lie group and H a closed complex subgroup of 
G such that X := G JH satisfies dx < 2 and 0(X) ^ C. Suppose Q is any closed complex 
subgroup ofN containing Û with dim Q > dim U. Construct L and T as above. Then L° 
is solvable and L/T is biholomorphic to C*, C, C* x C* or the complex Klein bottle. In 
particular, dim L < 2. 

PROOF. The case when L° is solvable is handled in the following way. Applying 
Lemma 2 to the fibration G/H —> G/Q we get dQ,H < dx < 2. Now since L/T is a 
solv-manifold, it admits a fibering as a vector bundle over a compact manifold, see [4] or 
[18]. Applying the second inequality of Lemma 2 to the fibration Q/H —+ Q/Û yields 
dLjT = dQijj < dQiH. Thus dLjT < 2. Because L/T satisfies the maximal rank condition 
the classification follows from the observation at the beginning of this section. 

We will prove by induction on dim Q that L° is solvable. Assume that the assertion is 
true for any closed complex subgroup Q of N of smaller dimension which contains Û. 
First we claim that it is not possible for L° to be semisimple. For, in this case the fact 
that L ° / r H L° satisfies the maximal rank condition implies that r (1 L° is algebraic, see 
[5]. Thus FOL0 is finite and so L°jTDL° is retractable onto a compact submanifold 
of half the dimension (the minimal orbit of a maximal compact subgroup of L°). Again 
from the second inequality of Lemma 2 one has 3 < dime L° = dLiT < dx, which is a 
contradiction. 

Assume now that L° is mixed, i.e., its Levi decomposition is of the form L° = SR with 
S and R both not trivial. We first show that dim/? < 2 and then derive a contradiction. 
In order to do this we note that there exists a proper closed complex subgroup J of L 
which contains both T and R. In the connected case this follows from a result in [9]. If 
L is not connected, we can find a proper closed complex subgroup J\ C L° containing 
both T Pi L° and R. Taking J\ minimal with these properties we see that 

Thus we may take J := T • J\ in L. The only property that one has to check is the 
closedness of 7, but this follows immediately from J H L° = J\. Let J := T • 7° and 
M := T)-\J). Then M/U° = J and M/Û = M/U°/Û/U° = J/T. Consider the double 
fibration 

G/H—>G/U^G/M. 

Now dim J < dimL, by construction, i.e., dim M < dim Q. It follows by induction that 
J° is solvable and the fiber J/T belongs to the list given above. In particular, dim 7° < 2 
and since 7° D R, we obtain that dim/? < 2. 

As in Lemma 8 we denote by a: L —> L° the universal covering, fix a Levi decompo­
sition L = S K R so that a(S) = S, and set f := a~l (T H L°). 

In both of the cases in Lemma 8 we have the following inclusions 

rnL° CA CL°. 
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Observe that these inclusions imply T n A = T H L°. Replacing A if necessary by 

H 7A7"1 

we may assume that F normalizes A. Since the union of all connected components of A 
which meet r n L ° is also T-invariant, we may replaced by this union and reduce to the 
case when A/TC\A is connected. Assume that this has been done and observe that the 
changes we have made do not violate the algebraicity of A = <T_1(A) in Case 1 and of C 
in Case 2 of Lemma 8. Therefore, L° /A = L/A is a quotient of algebraic groups. Now 
let B := A • T C L. Since THA = THL0, one has B/T = A/THA = A/Tr\L°. Note also 
that B C\L° = A showing that B is closed and LJB = L° / A. Let / := r)~x(B) soB = l/U°. 
Then B /T = I / U° / Û / U° = I / Û and we have the double fibration with connected fibers 

G/H-^G/U^G/I. 

Note that dim B < dim L, so dim / < dim Q. As above it follows by induction that B° is 
solvable and dim B < 2. 

Now we have the sequence of fibrations 

G/7/-+ G/£/-> G/7—• G/g . 

Applying Lemma 2 to the fibration G JH —• G/Q we get dG/H > dQ/H. Next consider 
the fibration Q/H -> Q/I. Since Q/I = (Q/U°)/(l/U°) = LJB = L/Â with the latter 
being a quotient of algebraic groups, the base of this bundle is retractable onto a compact 
submanifold (see [17]) and from Lemma 2 one has dg ,H > dj/H+dL/B. Finally the bundle 
I/H -» I/Û has base I/Û = (l/U°)/(Û/U°) = B/T which, as a solv-manifold, is also 
retractable onto a compact submanifold. By Lemma 2 again one has dj/H > dy/H+dB/r. 
Putting these inequalities together one gets 

dG/H ^ dÙ/H + dB/T + dL/B-

Now if dLiB = 0, i.e., if L/B = L/A were compact, then A would be parabolic. But 
A° = B° is solvable. Since A is connected, A is also solvable. Thus A is a Borel subgroup 
in L and dim A < 2. But this is a contradiction if dim R > 0, because then dim(A OS) < 2, 
i.e., A cannot be a Borel subgroup in L. It follows that L° cannot be mixed. 

Next assume dLiB = 1. Then the above inequality implies dBiT < 1. Note that 
B/T CG/Û and therefore B/T satisfies the maximal rank condition. Since B is solvable, 
it is clear that dim/? < 1. Because L/B = L/A is the quotient of algebraic groups, it 
follows from Proposition 1 that L/A has two ends. By [2] there exists a parabolic 
subgroup P in L containing A with P/A = C*. Thus dim P = dim A + 1 = dim B + 1 < 2 
and L° cannot be mixed by the arguments of the previous paragraph. 

Finally assume that dLiB = 2. Again by using the above inequality we have dBiT = 0, 
i.e., B/T is compact. Since B/T satisfies the maximal rank condition, this means that 
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B is discrete. But then A and also A are discrete. In Case 2 this is impossible because 
ADR and A is finite in Case 1. Then Lemma 3 implies d-L - d^^ = dLjB < 2. Hence L 
is abelian by [10] and this contradicts the assumption that L° is mixed. 

Thus the assumption that L° is mixed leads to a contradiction and the assertions of 
the proposition are proved. • 

COROLLARY 1. With the above notation assume again that dx < 2 and 0(X) / C. 
Then N°/U° is solvable andN°/ÛnN° is biholomorphic to a point, C, C*, C* x C* or 
the complex Klein bottle. In particular, dim N°/U° < 2. 

PROOF. It is enough to apply the proposition to the case Q = N. m 

COROLLARY 2. Suppose G is a connected complex Lie group and T is a discrete 
subgroup such that the coset space X := G/T satisfies the maximal rank condition and 
dG/r < 2. Then G is solvable and X is biholomorphic to a point, C, C*, C* x C* or the 
complex Klein bottle. 

PROOF. In this situation Û = H = r , N = N = G and for Q := G one has L = Q = G. m 

5. Reduction to the algebraic category. Given a connected complex Lie group G 
and a closed complex subgroup H, we let G JH —• G/Ube the holomorphic reduction 
of G JH. As in the previous section, let U:=HU°,N:= NG(U°) and N :=U-N°. Now, 
G/N is an orbit in some Pm of a connected Lie subgroup of GL(m + 1, C). Therefore, 
by Chevalley's Theorem [8], the commutator subgroup G' acts on G/N as an algebraic 
subgroup of GL(m + 1, C) and thus the orbits of G' are closed in G/N. Because G/N —• 
G/N is a covering, the orbits of G' are closed in G/N as well. Therefore, we may consider 
the commutator fibrations G/N —> G/NG' and G/N —• G/NG'. Note that their bases 
are Stein abelian groups, see [12, p. 168]. We display this in the diagram 

G/H — • G/Û — • G/N — • G/N 

I I 
G/NG' — v G/NG' 

The radical of any connected Lie group L is now denoted by RL. We let S denote a 
maximal semisimple subgroup of G. 

LEMMA 9. With the above notation assume further that N/Û has the homotopy type 
of a CW -complex of dimension q. Then 

dG/H > dv/H + (àimN/Û - q) + dR^/R&r^ + ds/snùRc, + dGj~m. 

Moreover, ifdG/H < 2 and 0(G/H) ^ C, then 

0 ) dG/H > dÛ/H + dN/V + dRG,/RG,nN + dS/SHNRG, + dG/NG"> 

where N/Û is a point, C, C*, C* x C*, or the complex Klein bottle. Furthermore, 
dRG,/RG,nN = 0 o r 2 -
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PROOF. Since G/NG' is a connected Lie group, it is retractable onto its maximal 

compact subgroup, and so by Lemma 2 one has 

dG/H > dNG'/H + dG/NG'' 

Since G' acts algebraically on G/N, the /?G'-orbits are closed in G'/G' ON and so 

consequently in G'/G'HN. One has the following diagram 

G'/G'HN — • G' /G'HN 

(2) RG,/RG,nN[ J i W * c ™ 

S/SnNRG> —> S/SDNRG* 

The subgroup M := SONR& C S is algebraic. Since M := 5PIN/fc' consists of some 

of the connected components of M, it follows that M is also algebraic. Now consider the 

fibrationNG'/// —• NG' /NRGr = S/M. Since the base is the quotient of algebraic groups, 

it is retractable onto a compact submanifold [17]. Thus by Lemma 2 one has d^G,,H > 
dNRG,/H + ds/M- N e x t w e l o o k a t t h e fibration NRG>/H —• NRG>/N = RG>/RG> H N. The 
base, being a solv-manifold, is retractable onto a compact submanifold ([4] or [18]) and 
by Lemma 2 one has d ^ ^ > d~NjE + dR&/R^. 

Finally consider the fibration 

N/H—>N/0, 

where N/Û = (N/ U°)/(Û/ U°) is parallelizable. Assume N/ Û is homotopy equivalent 

to a CW-complex of dimension q. Then by Lemma 2 we have 

dft/H > dD/H + (dimN/U - q). 

Combining the previous inequalities we arrive at 

dG/H > dfjjH + {dimN/Û - q) + dR^/R&nff + ds/snFfRct + dGj~NG,. 

Now assume that dG/H < 2 and 0(G/H) ^ C. Then we obtain from Corollary 1 to 

Proposition 3 that N/ Û is of dimension less than or equal to two and is biholomorphic 

to a point, C, C*, C* x C* or the complex Klein bottle. Thus we can replace dim N/Û — q 

by dfj/fj. Therefore, we have 

dG/H > djJiH + dfijjj + dR^iR^ + dsisnftRct + dG/ftG,. 

The last observation follows from the fact that the /?G'-orbits, as the orbits of a unipotent 

group, are biholomorphic to C* and thus k = 0 or 1 in this setting. • 

LEMMA 10. Suppose G is a connected complex Lie group and H is a closed complex 

subgroup of G such thatX := G /Hsatisfies the maximal rank condition. LetN := NG(H°), 

N :=HN° and w. G JH - • G/N be the natural map. Assume further that 

(3) 1 = dffjfj + dRctiRcfrfc + ds/snùRcf. 

Then N/H = C* and G'/G' C\N is compact and thus is a projective rational manifold. 

In particular, Z := 7r_1 (G1 /G' H N) C G/H has two ends. 
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PROOF. The group NG' leaves Z invariant and acts transitively on Z. Moreover, Z 
fibers in the following way 

- . . N/H ~ , ,~ , , , ~ Rr,/RrfnN , 
Z = NG'/H-^NG'/N = G'/G'nN G ^ S/SnNRG>. 

We will show N/H = C* and G*/G' DN is a homogeneous projective rational manifold. 
Assume first d^jH - 0. Since G/H satisfies the maximal rank condition and N/H is 

compact, N = H and so we have a fibration 

Z = NG'/H = NG'/N = G'/NHG' V ^ i ™ S / S n N R G , . 

Note that RG//RGr HN, as the orbit of a unipotent group, is biholomorphic to C* and so 
dR ,R fnN = 2k. From (3) it follows that k = 0 and S is transitive on Z. Thus S is also 
transitive on the base of the holomorphic reduction of Z. This space is holomorphically 
separable and so its isotropy subgroup is algebraic [5]. Therefore the isotropy for the 
S-action on Z is also algebraic. Hence Z has two ends by Proposition 1. But any ho­
mogeneous space which has more than one end has a normalizer fibration with positive 
dimensional fiber, see [14, Corollary 9, p. 78]. This contradiction shows that this case is 
not possible. 

It follows that dNiH = 1 and the other two terms in (3) are zero. Then G'/G'HN 
is compact, and thus is a projective rational manifold. Since dN,H = 1, we obtain from 
Corollary 1 to Proposition 3 that N/H = C* as a complex manifold. A well-known 
argument shows that Z has two ends, e.g., see the proof of [9, Lemma 2, p. 549]. • 

In the next proposition we are interested in the case when G/H satisfies the maximal 
rank condition, i.e., H = Û, and the following condition holds: 

(4) 1 = d-N/H + dRG,/RG,nN + "s/snNRG, + ^G/NC 

PROPOSITION 4. Suppose G is a connected complex Lie group and H G G a closed 
complex subgroup such that X := G/H satisfies the maximal rank condition and equation 
(4) is fulfilled. Then G/H has two ends. 

PROOF. Since G/NG' is a Stein abelian group, it is of the form G/NG' = Ck x (C*)z 

and dGiùG, -2k + l. Therefore, we see from (4) that if dim G/NG' is positive, then k = 0, 
/ = 1 and this group is C* and we have the three equalities d^,H = 0, dR iR /n# = 0 and 
ds/snNR , = 0- The first implies that N/H is compact. Since G/H satisfies the maximal 
rank condition, N = H and G/N = G/H. The second implies that the /?G'-orbits in G/N 
are compact. Thus these orbits are points and RQ' C N. Hence S is transitive on the 
G'-orbit in G/N and since G/N satisfies the maximal rank condition, the third of these 
equalities implies S C NR&- These two inclusions yield G' C N = H and so G1 C H°. 
Thus N = G which is a contradiction. 

In fact, the above argument shows G - NG1 and thus G/N = G'/N D Gf. Hence 
the term dGi^G, in (4) does not appear and this equation becomes (3). Since G/H = 
7T_1 (G'/N n G7), the assertion is now a consequence of Lemma 10. • 
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SPECIAL ASSUMPTIONS. G is a connected complex Lie group, H is a closed complex 
subgroup such that the quotient X := G/H satisfies 0(X) ^ C and 

(5) 2 = dftjjj + dR^iRc/rôj + ds/snûRcf + dGjùGi 

REMARK. For technical reasons it is inconvenient to replace (5) by the equation 
dG/D = 2 (resp. (4) by dG/H = 1, etc.). 

The proof of the theorem stated in the introduction will follow from a number of 
propositions. Note that if y is a homogeneous space of a reductive algebraic group which 
satisfies the maximal rank condition, then the isotropy subgroup for this action is also 
algebraic. (Since the holomorphic reduction has discrete fibers and the isotropy for the 
base is algebraic by [5], the isotropy for the total space is also algebraic.) This means 
that Proposition 2 applies and Y belongs to the list given in part b2) of the theorem. 
Thus, under the special assumptions stated above, we would like to show that, with some 
obvious exceptions, there is a reductive algebraic group which is acting transitively either 
on G J Û or on a two-to-one covering Gj Û of Gj Û. 

Before we look at the case when G/N is compact, we prove the following lemma. 

LEMMA 11. Let L be a connected two-dimensional complex Lie group and T C L a 
discrete subgroup such that Z := L/T is biholomorphic to C* x C*. Assume that C* acts 
on Z via an imbedding C* c—* L. Then this action extends to a transitive action ofC* x C* 
on Z whose restriction to the first factor is the given action. 

PROOF. If L is abelian, then Z is a group isomorphic C* x C*. The imbedding 
C* c—> L gives rise to a homomorphism C* —• Z with finite kernel. It is clear that this 
homomorphism extends to an epimorphism C*xC* —• Z. 

Assume now that L is non-abelian. Then L = C* K C, with the C*-action on C given 

by 
w — • zm • w, where w E C , Z € C*, m is a fixed positive integer. 

The multiplication in L is given by 

fe,wi) • (Z2,H>2) = (z\Z2,Z2mw\ + vv2), wherezb zi E C*, w\,w2 E C. 

The imbedding C* t—• L is unique up to conjugation. (In fact, L is linear algebraic and 
such an imbedding defines a maximal torus in L.) We may assume that the imbedding 
C* «—> L coincides with the identity isomorphism onto the first factor of the semidirect 
decomposition. 

Let a E C*, b G C. Suppose that (a, b) is an element of infinite order contained in T. 
We claim that am = 1. 

Assume the contrary. Then one can determine w from the equation 

(\-arm)-w = b. 

Consequently 
( l , w ) - ( a , 6 ) . ( l , - w ) = (fl,0). 
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Since T is discrete and (#, 0) generates an infinite group, we have \a\ ^ 1. But then we 
obtain an elliptic curve C*/(a), admitting a nontrivial holomorphic mapping 

C*/(a) — L/((a,0)) ~ L/((a,b)) — L / r . 

The contradiction thus obtained shows that am = 1. 
It is clear that b ^ 0. A straightforward calculation shows that an element (z, w) £ L 

commutes with (#, b) if and only if zm = 1. Since T is abelian, it follows that 

rcrmxc~zmxc, 

where 
rm-.= {zec*\f = i}. 

Therefore we have a principal fibering 

z = L / r - + L / ( r m K C ) . 

The action of its structure group A = (rm ix C)/T commutes with the given action of C*. 
Since the identity component of A is isomorphic to C*, we obtain the required action of 
C* x C*. • 

PROPOSITION 5. Under the special assumptions, assume further that the base G/N 
of the normalizer fibration is a projective rational manifold. Let Y = G/U be the base 
of the holomorphic reduction ofX and set Y := G/ Û. Then Y=Y=C, Y=Y=C*xC* 
or Y = Y is the complex Klein bottle or else one can define a transitive holomorphic 
action of S x C*, where S is a maximal semisimple subgroup ofG, on Y and Y or on a 
two-to-one covering Y = G/UofY. 

PROOF. By our assumption P := S fï N is a parabolic subgroup in S and G/N = S/P. 
Note that, since m(S/P) = 1, AT = N. Let L := N/U°,T := Û/U°, and F = N/Û = L / r . 
Since G/N = G/N is a projective rational manifold, the last three terms in (5) vanish 
and we have dF = 2. Hence Proposition 3 implies that F is biholomorphic to C, C* x C* 
or the complex Klein bottle. 

a) F = C. 
If P is not transitive on F, then P has a fixed point in F and S/P can be imbedded 

in Y. Since Y satifies the maximal rank condition, it follows that S = P and Y = F = C. 
Then, of course, we also have Y = C. If P is transitive on F, then S is transitive on y and 
Y and our assertion is clear. 

b) F = C*xC* or the complex Klein bottle. 
Consider the quotient group P/(P D U°) and denote its dimension by k. If k = 0, then 

P has a fixed point in F and the same argument as above shows that Y = F = C* x C* or 
the complex Klein bottle and Y = Y. If k = 2, then P is transitive on F and 5 is transitive 
on Y. In this case the assertion is clear by Proposition 2. Finally, if k = 1, then P/(PC\ U°) 
is isomorphic to C* (note that P/P' is an algebraic torus) and so we can apply Lemma 11 
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to F or a two-to-one covering F of F. As a result there exists a transitive action of P x C* 
on F or on F, extending the initial action of P. Therefore there exists a transitive action 
of S x C* either on Y = S Xp F and, as a consequence, on F, or else on the two-to-one 
covering Y := S xP F of Y. 

If F is the complex Klein bottle, then the two-to-one covering F = C* x C* —• F is 
equivariant with respect to any two-dimensional group transitive on F. Therefore L and, 
as a consequence, N acts on F and one can write Y = G x# F in the form Y = G/U. m 

The next observation is very useful. Recall N := NG(U°) and N := Û • 7V°. 

LEMMA 12. Suppose the fibration 

(6) G/Û—+ G/N satisfies N/Û = C*, G/N has two ends and dim G/N > 1. 

77ie/2 a group of the form S x C*, where S is a maximal semisimple subgroup ofG, acts 
transitively either on G / U or on a two-to-one covering Gj U ofGJ U. 

PROOF. We distinguish two cases depending on whether S acts transitively on G/N 
(Case A) or not (Case B). 

CASE A. The bundle in (6) is defined by a representation p:N —• Aut(C*). Let 
N :={nEN\ p(n) € Aut(C*)°} and set Û:=ÛC\N. Then the bundle G/Û-* G/N is 
principal. Since Aut(C*) consists of two components, it follows that either U = U and this 
bundle is the original one or U is a subgroup of index two in U and the map G/U —• G/U 
is a two-to-one covering. Now since S is transitive on G/N, by assumption, and therefore 
also on G/N, we can just add the right C*-action to obtain a transitive action of S x C* 
onG/Û. 

CASE B. Recall that G/N and, as a consequence G/N, admits a G-equivariant 

fibration G/N —• G/P =: D, where D is a homogeneous projective rational manifold 
and P/N = C*; see [14, Proposition 8, pp. 75-7]. Now, since S is transitive on D, but 
not on G/N, it follows that G/N is isomorphic to D x C*. In particular, the holomorphic 
reduction of G/N is given by G/N —• G/l = C*. Since / is a one-codimensional normal 
subgroup of G containing S, there is a one-dimensional S-stable subgroup of G acting 
transitively on G/l. This gives us an action of S x C on G/N which lifts to G/Û. The 
5-orbits inG/Û are one-codimensional, because these orbits lie over the S-orbits in G/N 
and G/Û satisfies the maximal rank condition. It follows from this that the above action 
of S x C is transitive on G/JJ. 

Let Y - G/Û and Z = G/N. We now change groups and let G\ := S x C, so that 
the radical R\ of G\ is isomorphic to C. Since S is not transitive on Z and thus is not 
transitive on Y = G\ /H\, it follows that R\ f£H\. Now let N\ := 7VGl (#?)• Because R\ 
is central in G\, it follows that R\ CN\. In particular, dim N\ > dim H\ + 1. 

If dim Â i = dim H\ +1, then for dimension reasons, N2 := /?i • /^i is an open subgroup 
in Ni and thus is a closed subgroup of G\. Hence R\ /H\ DR\ = N2/H\, as the fiber of 
the map G\ /H\ —• G\ /N2, is closed. Because Y satisfies the maximal rank condition, 
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Ni/Hx = C or C*. First assume N2/H1 = C. Since P/Û fibers as a C*-bundle over 
C*, it follows that dp,Q = 2. Because D is compact and simply connected, it follows 
from Lemma 1 that dy = 2. Hence G\ /Nj is compact, since G\ /N2 cannot have the 
homotopy type of a CW-complex of dimension smaller than its dimension by Lemma 2. 
As in the proof of Proposition 5, part a), it follows that S is transitive on ?, contrary to 
the initial assumption in Case B. Otherwise, N2/H1 = R\/R\ (1H\ = C* and since the 
subgroup Ri PI H\ is central, the action of G\ = S x C factors to an action of the group 
Gx/RxHHx = S x C * o n F . 

c* 
Now assume dimA î > dim//i + 2. Because there is a fibration S/S (1 H\ —> D 

with D compact and simply connected, we have ds/snHl = 1 by Lemma 1. Hence 

Q := Ns((SnH\)°) is a parabolic subgroup of Sand<2/(Sn//i)° = C* by Proposition 1. 
The same fibration also shows that S H P normalizes SC\H\. Thus S H P C Q and, for 
dimension reasons, S fï P = Q so that D = S/Q. Note that N\(1S CQ. Consequently, 

dim//! + 1 < dimA î - 1 = dim N\ H S < dim Q = dim H\ D 5 + 1 <dim// i +1 , 

showing that H\ C 5 and iVi = Ô • /?i. Therefore, G1/N1 = 5 / g = D = G/P and 
N\ jH\ = P/Û. As noted above, P/Û fibers as a C*-bundle over C*. Since dim Y > 2, 
the proof of Proposition 5, part b), yields a transitive action of S x C* on Y or on a 
two-to-one covering of Y. m 

We now consider the situation when G/N is not compact. There are two cases 
depending on whether G1 is transitive on G/N or not, with the latter case being handled 
first. 

PROPOSITION 6. Under the special assumptions, assume further that G' is not transi­
tive on G/N. Then a group of the form S x C*, where S is a maximal semisimple subgroup 
ofG, acts transitively on G/Û or on a two-to-one covering G/UofG/Û or else G/Û 
is biholomorphic to C* x C* or to the complex Klein bottle. 

PROOF. Consider the fibration 

G/U —U G/NG'. 

Its base G/NG' is a group isomorphic to C* x (C*)z, where k + / > 0, and the fiber 
F := NG'/Û is connected. Moreover, F fibers in the following way 

~ . . ~ N/Û ~ , , ~ . , , ~ Rr,/RG,nN . 
F = NGf/U -^NG'/N^G'/G'nN G-^ S/SnNRG>. 

We claim that we can use Lemma 10 in order to show N/t/is biholomorphic to C* and 
G'/G' H N is a projective rational manifold. From (5) we have 

2 = dft/jj + d/?G,//?G,nÂr + ds/snùR(jf + dGjùG,, 

where dGi^G, =2k + l. Observe that the sum of the first three terms on the right hand 
side of this equation cannot be equal to zero. For, if this were so, then repeating the 
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argument in the first paragraph of Proposition 4 would yield G' C U° and N = G. Since 
this contradicts the assumption that G' is not transitive on G/N, the sum of these three 
terms must be positive. Then k = 0, / = 1 and 

* = "N/Û + "RG,/RG,nN + "S/SfW/?G, * 

This is condition (3) with H replaced by Û. Hence from Lemma 10 it follows that 
N/U = C* and G'/G'HNis compact. 

Now consider the fibration G/N —• G/NG' = C*. Since the base C* is homeomorphic 
to Sl x R and the fiber NGf/N = G'/G' HN is compact, it follows from the general 
theory of fiber bundles that G/N is homeomorphic to M x R, where M is a connected 
compact manifold. Hence G/N has two ends. 

The result follows from Lemma 12, provided dim G/N > 1. If dim G/N = 1, then 
G/Û fibers as a C*-bundle over C*. In this case G/Û is biholomorphic to the direct 
product C* x C* or to the complex Klein bottle. • 

PROPOSITION 7. Under the special assumptions, suppose further that G' is transitive 
on G/N and G/N is not compact. Then either there is a group of the form S X C*, 
where S is a maximal semisimple subgroup of G, acting transitively on Y = G/U or 
on a two-to-one covering Y of Y or else Y = G/Û is one of the manifolds l)-4) in 
Proposition 2. 

PROOF. Since G' is transitive on G/N, and thus also on G/N, one has dG,^G, = 0. 
Substitution into (5) yields 

0) 2 = dff/fr + ^RG,/RG,nN + ds/snNRG, • 

Since G/N is not compact, by assumption, G/N is also not compact and thus 

* : = dRG,/RG,nN + ds/snNRG, r °-

Hence 6 = 1 or 2. We look at these two cases separately. 
First assume 8 = 1. It then follows from equation (7) that d^m = 1. Thus by Corollary 1 

of Proposition 3 one has 

N/U = N°/ÛnN° = (N0/U°)/(ÛnN0/U°) = C*, 

as a complex manifold. We also claim that in this situation G/N has two ends. Since 
RGi is a unipotent group, the orbits of RQI in G/N are biholomorphic to C*. Thus 
dR ,R /njy = 2k. By assumption 5=1 and so k = 0, i.e., RG> acts trivially on G/N. Thus 
S is transitive on G/N and dG^ = dsisr^ = 1. Since S D N is an algebraic subgroup of 
S, by Proposition 1 we see that G/N has two ends. Note that if dim G/N = 1, then this 
would imply G/N = C*. But this would contradict the fact that S is transitive on G/N. 
Hence dim G/N > 1. It now follows from Lemma 12 that a group of the form S x C* is 
transitive on F or on a two-to-one covering Y of Y. 
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Next assume S = 2. Then d^m = 0, so that N/0 is compact. Since G/U satisfies 
the maximal rank condition, this implies N = Û. Now we claim that the covering 
G/N = G'/G' PI N —• G1 JG' (IN = G/N is finite. (We keep the same notation as in 
the proof of Lemma 9; in particular, see (2).) The /?G/-orbits in G/N and G/N are the 
orbits of a unipotent group. Hence RG>/RG> ON = RG> /RG'C\N = C*. Also the covering 
S/M —• S/M is finite, since M C M are algebraic subgroups of S. It follows that the 
covering G/N —• G/N is also finite and so its fiber N/N is finite. Since TV D U D Û, 
the map G/U —• G/N is also a finite covering. By definition, G/U is holomorphically 
separable. It is easy to see that the base of a finite covering is holomorphically separable 
if its total space has this property. Therefore G/N = G'/G1 (IN is one of the manifolds 
of Proposition 2. In Case 1) there are no coverings and so Y = G/U - G/N. In the 
remaining cases one can find a reductive algebraic group acting transitively on G/N. 
Since we can easily show that a reductive algebraic group also acts on a finite covering 
space of G/N, it follows from the result of [5] and from Proposition 2 that Y = G/Û is 
one of the manifolds 2)-4) in the list. • 

PROOF OF THE THEOREM. Assume X = G/H is given with 0(X) ^ C and let G/H —• 
G/U be the holomorphic reduction of X. Recall equation (1) from Lemma 9 

dG/H > do/H + dff/o + /̂?G,//?G,rw + ds/snNRG, + ^G/JVG" 

First note that 

(8) ŷv/(> + dRG,/RG,nN + ds/snNRGf + ^G/M? > °-

For, if this sum were zero, then G/ & would be compact and thus G/ U would be a point. 
But then 0(G/H) = C, contrary to our assumptions. 

Now assume dGjH = 1. From (8) it is clear that dy,H = 0 and thus 

^ = dff/o + ̂ /?G,//?G/rw + ds/spNRG, + dG/f/Gf 

This is (4), with / / replaced by Û. It follows from Proposition 4 that G/Ê/ has two 
ends. Since Û JH is compact and connected, G/H also has two ends. The base of the 
holomorphic reduction of G/H is an affine cone minus its vertex, see [9] or [14] and the 
fiber is compact and connected. This is the situation described in part a) of the theorem. 

In the rest of the proof we suppose dG/H = 2. Assume first d^/H = 1. Hence the sum 
on the left hand side of (8) is equal to one, i.e., (4) holds with H replaced by U. Then 
G/U has two ends by Proposition 4 and is thus an affine cone minus its vertex. Since 
such a manifold is holomorphically separable, U = Û and the fiber of the holomorphic 
reduction of G/H is connected. This is the situation described in part b\ ) of the theorem. 

We claim that it is not possible that dy/H = 0 and the sum in (8) is equal to one. 
For, if it were so, then Û/H would be compact and connected and G/U would be an 
affine cone minus its vertex, again by Proposition 4. Therefore G/Û is homeomorphic 
to M x I , where M is a connected compact manifold. From the general theory of fiber 
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bundles it is clear that the total space G/H is homeomorphic to M1 x IR, where M' is 
another connected compact manifold. Thus dGiH = 1, contrary to our assumptions. 

The remaining case occurs when dfj,H = 0 and the sum in (8) equals two. This is 
equation (5) and the conditions of the special assumptions hold. Then Propositions 5, 
6 and 7 imply that either the base Y := G/Û of the map G JH —• G/Û is one of the 
manifolds in b2) or a group of the form S x C* acts transitively on Y (resp. on a two-to-one 
covering Y = G/Û of Y). In the latter case Proposition 2 along with [5] shows that Y 
(resp. Y) is in the list. In this situation the fiber of the holomorphic reduction of G/H 
is compact and connected and its base is one of the manifolds described in part b2) of 
the theorem. By Proposition 2 every manifold listed in b2) is a quasi-affine algebraic 
manifold with d = 2 or is covered two-to-one by such. Thus the proof is complete. • 

6. Concluding remarks. 1) The proof of the theorem shows that the inequality in 
(1) is, in fact, an equality. 

2) Lemma 3 generalizes to all locally trivial fiber bundles and the proof is essentially 
the same. Since the fiber F of the holomorphic reduction in Case a) (resp. b2)) is compact 
and the base Y is retractable onto a compact submanifold, the equality dx = 1 (resp. 
dx = 2) follows from the description of Y, given in the theorem. 

3) In b2) we have 0(F) = C, because of the compactness of F. This is generally no 
longer true in the setting of bi), for here the fiber can even be Stein. A simple example 
can be found in [5]. Namely, let 

G:=SL(2,C), « : - { ( J - ) | „ 6 2 } , U := { ( J j ) | z € c ) , 

where U = H is the Zariski closure of H in G. Then G/U = C2 — {0} is the base of the 
holomorphic reduction of X := G/H and its fiber U/H is biholomorphic to C*. 
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