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§1. Introduction.

A common method of solving a linear differential equation
consists in expressing the differential operator as a product of factors.
The possibility of doing so has been studied extensively by Vessiot!,
following the work of Picard and Drach, on the lines of the Galois
theory of algebraic equations. The analogous process of resolving
a linear differential system, consisting of an equation together with
boundary conditions, into two or more systems of lower order does
not seem to have been investigated. Such a resolution is not always
possible, even in cases where the differential equation can be factorised.

Thus the system
4>
T =i
y(0)=a  y'()=48

is equivalent to the systems

dz dy

Co=iw, | =

z(l) =8 [y(0)=a
but the system

dy  _

dz? = f ()

y(0) = a, y(h)=v
cannot be so resolved.

The present paper is a contribution to this problem. The
product of two operator systems is defined and it is shown that
the Green’s function of the product system is the product (by
composition of the second kind) of the Green’s functions of the
component systems. The two products of a system with the adjoint
system are shown to be self-adjoint, and their eigenfunctions to
be useful in solving the original system.

1 See the account in Picard’s Traité d' Analyse, 3 (1928), chap. 17.
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Ordinary differential systems only are discussed, but it will
be evident that the definition of the product of two systems can
be extended to partial differential systems.

§2. Resolution of a differential system.

Let
-1

P = +p1(x)dp1+....+pp(x)

Q_ +q1(x)dql+""+q(l(x)
be two differential operators. It is assumed that p, (z), ...., p, (x)
are continuous in (@, b); and that ¢,(z), ...., ¢,(z), together with
their first p derivatives, are continuous in (a, 6). Consider the
system

e PQy = (=)
(2) Wiyl +Vigh=v;, i=1,2,....,p+¢

where U;, V; are differential operators of orders {p + ¢ — 1.
If there exist p linearly independent combinations of (2) of
the form
(3) [AzQy]a+ [BzQy]b=8u 1= 1: 2’ ceees P
where A;, B; are differential operators of order {p—1, (ny) can
be resolved as follows. Write

4) Qy ==
so that (1), (3) give
(p2) f Pz = f(x)
¥ \e) [l (Bd=5,  i=12 ....p.

There are g linear combinations of (2) which, together with (3).
form a linearly independent set. In general these will involve
derivatives of orders up to p + ¢ —1. By use of (4), and the equations
obtained by differentiating it, the derivatives of order > ¢ can be
eliminated. In this way ¢ linearly independent boundary conditions
are obtained,

(1) [Ciyla + [Diylh = &, t=1,2,...., ¢

the constants ¢; depending on z (a), z(b), 2’ (@), ...., 2®"V(b). (my) is
then equivalent to (pz) combined with the system (oy) consisting of
(4) and (7). In (oy), z () is regarded as a known function, having been
determined by (pz).
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Thus the system

d? Y .
{d—;;m—et)d—;’ (- wer )y = f@)
YO +yD) =7 v =7,
is equivalent to the systems
dz , d
{‘E_——Nz = f(x) and ‘{-a—z +ay =z (x)
2(0) +2(D) =71+ 7. Yy =2(1)— 72

§3. The product of two operator systems.

The foregoing work suggests a definition of the product of two
operator systems.

A system
(8 Qy=0
(By) { ) y .
(9) [Ciyl. +[Diyl =0, i=1,2...., ¢
being given, the system obtained by multiplying it by the operator system
(10) P
@ | |
(11) [Ai]a + [Bile t=1,2,....,p
18 the system
(12) PQy =0

(Bay) {(13) [4:Qyl.+[B:iQyl=0, =12, .....,p
(14) [Ciyls + Dyl =0, +=1,2,....,4q.
The notation (Bay), rather than (aBy), is suggested by the order
of the Green’s functions in the integral of Theorem 1.

Now assume that (ay), (By), are incompatible, so that their
Green’s functions K (z, {), L {, {) exist and are unique. K (,{) has
the properties?

(i) it is continuous and possesses continuous derivatives of
orders up to and including p — 2, when a z <b.

(ii) its derivative of order p — 1 is discontinuous at a point {
in (@, b), having an upward jump of amount unity.

(iii) it satisfies the system (ay) at all points of (a,b) except {.

It is found that the Green’s function of (Bay) is the product
by composition of the second kind? of those of (By), (ay).

1 ¢f. Ince, Ordinary Differential Equations (1927), 254.
2 Of. Volterra, Theory of Functionals (1930), 99.
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TaEorEM 1. The Green’s function of (Bay) is

IZL (, ) K (1, {) dn

when K (z,0) is the Green’s function of (ay) and L (z, {) that of (By).
Denote the integral by M (z, ().

Then, using the properties
of L (z, ) corresponding to (i), (ii), (iii),

oM _.“” oL .
(15) Pl P K(n Qdg, s=1,2,....,9—-1
oM jb oL
6 = -
ae o= =] G Em Ddn K

so that

(17) QM (s, )= [ QL@ 7} K (1 Ddn + K @, 1)

since L (z, {) satisfies (8). Again, (16) can be written

ZZI =£{ — () Z;;q]—%— —qq(x)L}K(n, {)dn + K (, )

so that
s M oL, el
W:ja{—ql(x)% — (Z)EF —....}K(n,g)dn

—a @K@+ &
X

@ T K D —n @K@ )+ o

and so on, the derivative of L of order ¢ under the integral sign being
always replaced by derivatives of lower order.

In this way it is found
that )
gp+a-1 p-1
U——M = a continuous function -+ ?—«]E
axp+(1_1 gxp'l

These equations show that M and its first p + ¢ — 2 derivatives
are continuous and that the derivative of order p + ¢ — 1 has an
upward jump at { of amount unity. (17) shows that

PQM = PK =0

and it is easy to see from (15), (17), that M (z, () satisfies (13), (14).
Thus M (z,{) must be the Green’s function of (Bay).
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It follows that the multiplication of systems is associative
but in general not commutative.

§4. Adjoint systems.
It is known that the Green’s function of the system (oa'y) adjoint
to (ay) is!
(=) K ().
It follows that if (a), (B), ...., (x), (A) are any operator systems
and (a’), ...., (') their adjoints, then

@B ....kA) = (N« ....Bd)

and in particular if (a) is any system, the systems (ac’), (a’a) are self-
adjoint. The Green’s function of (aa'y) is

(/]
(- )”,[ K (x,m) K (¢, n)dyg=(—) K ()
in the notation of Schmidt?, while that of (a'ay) is
(—r [ K2 Kin dn= (K (@0,

Let i, (x) be an eigenfunction® of K (z, {) corresponding to an

eigenvalue A2, so that
b
be (@)= | K (@0 Q)L

is an eigenfunction of K (x, {) for the same eigenvalue. ¢, (), ¥, (z)
are thus eigenfunctions of the systems (aa’y), (a’ay) respectively. The
solution of the non-homogeneous system corresponding to (ay) can
frequently be found in terms of these functions.

TaEOREM 2. The solution of the system
{ Py =f(2)

[4:yl. + [Biyl, =0, 1=1,2,....,p
where

@) = Z a.fu (@),

1 Bocher, Annals of Mathematics, 13 (1911), 71-88. Not K((, x) as sometimes
stated.

2 Math. Ann., 63 (1907), 433-476. p. 461.

3 ¢f. Schmidt, loc. cit., or Courant-Hilbert, Methoden der Mathematischen Physik,
1 (1924), 137.
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the series being uniformly convergent in (a, b), ts

Y= s &g, ().

n=1"%n

For the solution is known to be!
b
y=| K@ oroa

and the series for f(z) can be integrated term by term.

Two operator systems (a), (8) may be said to be permutable
if (ap) is the same as (Ba). For this it is necessary but not sufficient
that PQ=@QP. 1If P,Q are any two operators satisfying this
condition the systems

[P [ e
[[Dey §=0,1,....,p—1 and [[D)y, §=0,1,....,¢g—1
are permutable, both products being equivalent to the system

| re

[D)e, 8=0,1,....,p+q—1.

D denotes d/dx. Again, Theorem 1 shows that a system is permutable
with any power of itself, so that permutable systems involving two-
point boundary conditions exist.

It may be added in conclusion that if (a), (8) are self-adjoint
operator systems, (af) is not self-adjoint unless (a), (8) are permutable.
This corresponds to the fact that the product of two symmetrical
matrices is not symmetrical unless the matrices commute.

1 Ince, op. cit., 256. (ay) is assumed to be incompatible.
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