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ON SEMIGROUPS WITH INVOLUTION

D. EASDOWN AND W.D. MUNN

A semigroup 5 with an involution * is called a special involution semigroup if and
only if, for every finite nonempty subset T of S,

(3t G T)(Vu, v 6 T) tt* = uv' => u = v.

It is shown that a semigroup is inverse if and only if it is a special involution semi-
group in which every element invariant under the involution is periodic. Other
examples of special involution semigroups are discussed; these include free semi-
groups, totally ordered cancellative commutative semigroups and certain semi-
groups of matrices. Some properties of the semigroup algebras of special involution
semigroups are also derived. In particular, it is shown that their real and complex
semigroup algebras are semiprimitive.

1. DEFINITIONS

The notation and terminology is that of [1] throughout.
Let S be a semigroup, written multiplicatively. An involution on 5 is an anti-

isomorphism of period two; that is, a mapping *: S —• S, x t—> x* such that, for all
x,yeS,

(xy)* = y*x* and x" — x.

Now suppose that S admits an involution *. We call 5 an involution semigroup. An
element x £ S is termed hermitian if and only if x* = x. Note that, for all x (E S, the
elements xx* and x*x are hermitian; moreover, every power of a hermitian element is
again hermitian. We call 5 hermitian-periodic if and only if every hermitian element
of 5 is periodic; and we call S a special involution semigroup if and only if, for every
finite nonempty subset T of 5 ,

(3i 6 T)(Vu,t) g T) tt* = uv* => u = v.

A condition similar to but apparently weaker than this second condition was recently
introduced by Shehadah [7].
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94 D. Easdown and W.D. Munn [2]

2. INVERSE SEMIGROUPS

In this section we give a new characterisation of inverse semigroups. Our starting-
point is the following result [1, Section 2.3, Exercise 7(a)]. A proof is provided for
convenience.

LEMMA 1. Let S be a semigroup. Then S is inverse if and only if S is a regular
involution semigroup in which every idempotent is hermitian.

PROOF: If S is inverse then it has the stated properties with inversion (z ^ a;"1)
as involution. Assume, conversely, that S is a regular semigroup with an involution *
such that, for all e = e2 £ S, e* — e. Let a £ S and let axa = a, xax = x, aya = a,
yay = y for some x,y £ S. To show that S is inverse it is enough to show that x — y.
By hypothesis, (ax)* = ax and (ay)* = ay. Hence

x = xax = x(ax) = xx*a* = xx*a*y*a* = xy*a* = x(ay) = xay.

Similarly, since (xa)* = xa and (ya)* = ya, we have that y = xay. The result

follows. U

REMARK. The argument above is essentially due to Penrose [6]. It should be noted that
on an inverse semigroup there may exist involutions other than inversion with respect
to which every idempotent is hermitian: for example, if 5 is the group of invertible
n X n matrices over a field, where n ^ 2, then the transpose mapping (A *-* A1) is
an involution on 5 and preserves the identity matrix; but there exists A £ 5 with
A1 ± A-1.

We now come to the main result. For the sake of completeness, we include a proof
of the first part, which effectively comprises [3, Lemma 2.1].

THEOREM 1.

(i) If S is an inverse semigroup then S is a hermitian-periodic special invo-

lution semigroup with respect to inversion.

(ii) If S is a hermitian-periodic special involution semigroup then S is inverse

and the given involution coincides with inversion.

PROOF: (i) Let S be an inverse semigroup and consider the involution defined
by i H x~x (x e S). If x G 5 is such that x — x'1 then x3 — x. Thus 5 is
hermitian-periodic. Now let T be a finite nonempty subset of S and let t £ T be
chosen so that tt~* is maximal in {xa:"1: x £ T}, under the natural partial ordering
of the idempotents of 5 . Suppose that x,y £ T are such that tt~x = xy-1. Then
xx-^tt-1 = xy'1 = tt'1; that is, it'1 ^ zaT1. Hence tt"1 = xx"1, by the choice
of t. Further, since tt'1 — (tt"1) = (xy"1) = yx~x, a similar argument yields
tt~x = yy~x. Thus zz" 1 = xy~x — yy~l. Consequently, xy~xx = xx~*x = z and
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y~1xy~1 — y~1yy~1 = y~*, from which we see that x = (y~1) = y- Thus 5 is a

special involution semigroup.

(ii) Let S be a hermitian-periodic special involution semigroup, with respect to

the involution *. First, we show that

(2.1) (V/i = h* e S) h = h3.

Let h = h* G. S. By hypothesis, (h) is finite. Hence there exist positive integers
TO and n such that hm = hm+n. Choose TO to be minimal with this property. Write
T: = {fe*: t ^ m - 1} if m ^ 2 and T: = (h) if TO = 1. Then, since T is finite and
every power of h is hermitian,

(2.2) (3tGT)(Vp,q€T) t2=pq^p=q.

Suppose that TO ̂  2. Then t — hx for some i ^ TO — 1. Since 2t ^ 2(TO — 1) ^ TO,
we have that h2i = h2i+n = ft2(m-i)+*) w h e r e jfc = 2 i - 2(TO - 1) + n ( ^ 1 ) . Thus
f2 = h2i = hm-1hm-1+k and so, by (2.2), hm~1 = hm-1+k. But this contradicts
the choice of TO. Thus m = 1. Hence /i = hn+1, T = (h) and t = hx for some
i e {1, 2, . . . , n } . Then t2 = ftn+2i = / i n + i - : / i ' + 1 and so, by (2.2), h"*1'-1 = hi+1.
Consequently,

fc = h2n+1 = fc»+«-^»-*+» = /l<+1An-'+2 = fe"+3 = fc3.

This establishes (2.1).

We now prove that 5 is regular. Let x € 5 . Then, by (2.1),

xx* =(xx*)s.

Write U: = {x, xx*, xx*x, (xx*) }. Since U is finite,

(2.3) (3tt G U)(Vp, q&U) itu* = pq" => p = q.

If u = xx* or u = (xx*) then uw* = (asz*) = x(xx*x)* and so, by (2.3), x = xx*x.
On the other hand, if u = x or u = xx*x then utt* = ( M * ) = ( Z I " ) ( Z I * ) and so, by
(2.3), xx* = (xx*)2, from which it follows that utt* = (xx*) and therefore (as before)
that x = xx*x. Thus

(2.4) (Vx eS) SB = xx*x.

Next, we show that every idempotent in S is hermitian. Let e = e2 6 S and write
V: ={e,ee*}. Then

(3w G V)(Vp, q € V) «w* = pg* =• p = 9-
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If v — e then vv* = ee* — e(ee*)* and so e = ee* = e* . Alternatively, if v — ee* then
vv* = (ee*) = ee*, by (2.4), and so e = e*, as before.

It now follows from Lemma 1 that 5 is inverse.

To complete the proof, we note that if x G S, then, by (2.4), x = xx*x and so also

x* = x*xx* , from which we see that x* = x"1 . u

COROLLARY. Every periodic (in particular, finite) special involution semigroup

is inverse.

3. FURTHER EXAMPLES

In this section we give examples of special involution semigroups that are not
inverse.

EXAMPLE 1: Let S denote the Rees matrix semigroup M(G;2, 2;P), where G is
r

e a
an infinite cyclic group, with generator a and identity e, and P is the matrix

[a e
Then S is completely simple (and so regular) [1, Chapter 3]. Define * on 5 by the
rule that

(ar;i,j)*=(ar;j,i) (i,j G (1, 2);r G Z).

It is routine to verify that * is an involution on 5 .

Let T be a finite nonempty subset of S and let r £ Z be defined by

r: — min{5 : (a';i, j) G T for some i, j}.

Choose i,j € {1, 2} such that (ar;i, j) G T and suppose that (a';k, 1), (a'jm, n) G T

are such that

(ar;i , » ( a V , j ) ' = (a ' ;M)(a ' ;m, n ) \

Then (a2r; i, i) = (a'+t+u; k, m), where u = 1 if / ^ n and u = 0 if / = n. Hence

(3.1) i = k = m,

and s + t — 2r = — u. Now a + t — 2r ^ 0 , since r ^ a and r ^ t; also —u ^ 0. Thus

8 + t -2r = 0 = u; that is,

(3.2) r = s = t and i = n.

Hence, from (3.1) and (3.2), (a';k, 1) = (o'jm, ra). This shows that 5 is special with

respect to *.

EXAMPLE 2: Let X be a nonempty set and let Tx denote the free semigroup on

X. An arbitrary element w G Tx can be written uniquely in the form w = X\Xi...xn
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for some positive integer n and some xi, x2, ..., xn £ X. We denote n by |io|.
Further, we define w* G Tx by w* : = xnxn-i • • • Xi. It is easy to see that * : Tx —*
Tx > given by w i—» u>* , is an involution on Tx •

Let T be a nonempty subset of Tx ( n° t necessarily finite) and let t E T be such
that

\t\ = m i n { H : w G T} .

Suppose that tt* = uv* for some u,v G T. Then 2 |t| = |u| + |v| and so, since \i\ ^ \u\

and |£| ^ \v\, we have that |f| = |u| = |v|. It follows that t — u = v. Thus Tx is a
special involution semigroup.

EXAMPLE 3: A cancellative commutative semigroup 5 is said to be totally ordered
if and only if, as a set, it admits a total ordering ^ and the multiplication is such that

(3.3) (Va, b,c£ S) a < b => ac < be.

Let S be a totally ordered cancellative commutative semigroup and let T be a finite
nonempty subset of S. Choose t to be the least element of T under the ordering.
Suppose that t2 = uv for some u,v G T. Then t ^ u and t ^ v. But if either t < u
or t < v then, from (3.3) and transitivity, t2 < uv, which is false. Hence t = u — v.
This shows that 5 is special with respect to the identity automorphism.

The free commutative semigroup TCx on a nonempty set X is a particular case:
for we may assume that X is totally ordered and the order on X can be extended
(lexicographically) to a total ordering on TCx with respect to which (3.3) holds.

EXAMPLE 4: (T. Lavers). Let M denote the division ring of all real quaternions.
Thus M is a four-dimensional algebra over the real field, with basis {1, i, j , k}, where
i2 — j 2 = k2 = — 1 and ij = —ji = k, jk = —kj — i, ki = —ik = j . For an arbitrary
element x = a + bi + cj + dk £ H (a, b, c, d real) we define x to be a — bi — cj — dk.
Then xx = a2 + b2 + c2 + d2 , a non-negative real number, and so

(3.4) xx = 0 <=> x - 0.

Moreover, the following hold:

(3.5) (Vx,yeW) x-W, x + y = x + y, xy = yx.

Clearly, we may regard the complex field C as the subalgebra of H spanned by {1, t } ;
and the operation x >—> x restricted to C is then just complex conjugation.

Let Mn denote the ring of all n x n matrices over H. For X = [xr,] G Mn we
define X* G Mn by taking the (r, s)th entry of X* to be i7^. From (3.5) it follows
that, for a l l X . y G M n ,

x**=x, (x + yy =X* + Y*,
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Now let 5 be a subsemigroup of the multiplicative semigroup of Mn that is closed
under the unary operation * : X *—» X*. Then * is an involution on S. We prove that
it is special.

n
First, we note that, for all X = [xrl] £ Mn, trace[XX*) — £) zr,av7, a non-

r,i=l

negative real number; and, by (3.4),

(3.6) trace (XX*) = 0 <=> X = 0.

Consider a finite nonempty subset T of 5. Choose A 6 T such that

trace (AA*) = max{trace(BB*): B € T).

Suppose that AA* = BC* for some B,C €T. Then AA* = (AA*)* = CB* and so,
in Mn, (B - C)(B - C)* = BB* + CC - 1AA* . Hence

0 ^ trace ((B - C)(B - C)*) = trace (BB*) + trace (CC*) -2tra.ce(AA*) < 0.

Thus trace ((B - C)(B - C)*) = 0 and so, from (3.6), B -C.
The following are therefore special involution semigroups: the multiplicative semi-

groups of all n x n matrices over

(a) the semiring of all positive integers,
(b) the ring of all integers,
(c) the rational, real and complex fields,
(d) the division ring of all real quaternions.

Yet another case is the multiplicative semigroup of all nxn doubly stochastic matrices.
(A real square matrix A is doubly stochastic if and only if (i) each entry is non-negative,
(ii) the sum of the entries in each row is 1, (iii) the sum of the entries in each column
is 1.)

4. SEMIGROUP ALGEBRAS

Let F be a field and let S be a semigroup. We denote the semigroup algebra of
5 over F by F[S) [1, Section 5.2].

The next result provides some motivation for the study of special involution semi-
groups. It is a direct generalisation of [3, Lemma 2.3], which, in turn, extends [5,
Theorem 3.2].

LEMMA 2 . Let S be a special involution semigroup and let F be a subfieid of

the complex field that is closed under complex conjugation. Then F[S] has no nonzero

nil right ideals.
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PROOF: Let * denote the involution on 5 and let a denote the complex conjugate
of a 6 F. Then ]: F[S\ -» F[S] defined by

o.iXi j = X) aix,- (a* ef .Xie 5)

is an (algebra) involution. We show that

(4.1) (Va £ F[5]) aat = 0 => a = 0.

n

Let a 6 .F[S] \ {0}. Then a = ]T) ajZj for some positive integer n, some distinct

xi> *2, • • •, xn G S and some nonzero ai, 02, .. •, otn £ F. Hence
n

(4.2) aJ

Since 5 is a special involution semigroup, we can assume without loss of generality that

(4.3) (Vz , i e{ l ,2 , . . . , n} ) x1x*1=xix*j^i=j.

Assume further that the x< are numbered so that, for some r such that 1 ^ r ^ n,

x1x{ = x2x\ = ... — xrx* ^ xtXi if i > T.

Then, from (4.2) and (4.3), the coefficient of XjiJ in aa! is £} la«|2- ^ u t t n i s *s

nonzero and so aa' ^ 0. Thus (4.1) holds.
Now suppose that A is a nonzero nil right ideal of F[S]. Let a £ A \ {0}.

Then acfi £ A and so there exists a positive integer k such that (aa^) = 0. Write

m: = min{A;: (00+)* = 0 } . By (4.1), m ^ 2. Now put 6: = (aat)"1"1. Then 6 = 6f

and so 66* = b2 = (oo1)2"*"2 = 0, since 2m - 2 ^ m. Thus, by (4.1), 6 = 0, contrary

to the choice of m. Hence no such right ideal A exists. D

In particular, for 5 as above, C[5] is semiprime and so from [3, Lemma 1.1] we
can deduce the following theorem.

THEOREM 2 . Let S be a special involution semigroup and let F be a Held of
characteristic zero. Then F[S] is semiprime.

Again, for S as above, we note that S 1 is also a special involution semigroup. (If
S ^ S1 we extend the involution * on S by taking 1* = 1.) Hence, by Lemma 2, QfS1]
has no nonzero nil ideals. But i r[51] is semiprime for all fields F of characteristic zero,
by Theorem 2. Thus, from [3, Lemma 1.2] we obtain Theorem 3 below.
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THEOREM 3 . Let S be a special involution semigroup and let F be a Held of

characteristic zero that is not algebraic over its prime subReld. Then F[S] is semiprim-

itive (that is, has zero Jacobson radical).

In particular, R[5] and C[5] are semiprimitive.

For S an inverse semigroup, this result is due to Domanov [2]. On the other hand,
for 5 the multiplicative semigroup o f n x n matrices over a subfield of C closed under
complex conjugation (see Example 4), the result is a special case of [4, Theorem 3.6],
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