
ON BINOMIAL COEFFICIENT RESIDUES 

j . B. ROBERTS 

: ) • • 
The number of binomial coefficients! ), 0 < v < u < n, which are congruent 

to j , 0 < j < p — 1, modulo the prime number p is denoted by 6j(n). In this 
paper we give systems of simultaneous linear difference equations with cons tant 
coefficients whose solutions would yield the quanti t ies 6j(n) explicitly. In this 
direction we compute 9j(n) in all cases for p — 2 and dj(pk), k > 0, in all 
cases for p = 3 or 5. The complete explicit determination of 6:j(n) for arbi­
t rary n is quite tedious for p > 2. 

We also include various special results in the case p = 2 and prove t h a t 
every prime divides " m o s t " binomial coefficients in the sense t h a t 

where 

l\md(n)/6o(n) = 0 

Hn) =T,0j(n). 

1. Def in i t ions . If c, a, s, k are constants satisfying 0 < < z < c < / > — 1, 

1 < s < p*, k > 0, then the collection of all( Isatisfying 

cpk < u < cph + s, apk < v < u + (a — c)pk, 

will be denoted by (c, s, a)k. When we write (c, s, a)lz we will assume tha t 
e, a, s, k satisfy the specified conditions unless s ta ted explicitly to the contrary. 
For instance if we write (0, s, a)k this implies 0 < a < p — 1, 1 < s < pk, 
k > 0. Any collection (c, s, a)k will be called a k-triangle. 

The ^-triangle (c, s, a)k can be pu t into 1-1 correspondence with the k-
triangle (0, s, 0)k by the mapping 

•«) ^ (u-cK 
w/ \v — ap 

Hence any two ^-triangles can be pu t into 1 — 1 correspondence. Corresponding 
elements will be called homologous. 

If Ki and K2 are two ^-triangles and a is an integer such tha t k\ = ak2 

(mod p) whenever k\ G Kx and k2 € K2 are homologous we will write Kx = 
a i^2 (mod p). 
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2. A lemma of Lucas and applications. Our first lemma is a result of 
Lucas (1, p. 271). A simple proof may be found in Glaisher (2). We use p 
for a prime throughout. 

LEMMA 1. If in the scale of radix p, 

m = Jo + bip + . . . + bkp
k 

n = a0 + aip + . . . + akp
k\ 

then 

(;)•(::)•••(;:) <*«*»• 

(The quantity ( J = 0 when s > r.) 

Before making use of this lemma we observe that by repeated use of the 
identity 

CK:.)-(;:i) 
and the almost obvious fact that 

(mod p) (1 < m < pk - 1, k > 0) 

we are able to prove 

LEMMA 2. If n - pk + 1 < m < pk < n < 2pk - 1, k > 0, then 

0 (mod/?). 

We come now to our first application of Lemma 1. 

LEMMA 3. / / 0 < v < u, cpk < u < (c + l)£fc, 1 < c < £ — 1 and if 

f ] is in none of the k-triangles (c, pk, a)k, 0 < a < c, then 

( " ) - 0 ( m o d / 0 . 

Proof. Since ^ ) is not in (c, />*, a)& for each a, 0 < a < c, z> must satisfy for 

some a, 0 < a < c — 1, the inequality 

w + 1 + (a - c)p* < Ï; < (a + l)pk - 1. 

Since for each a, 0 < a < c — 1, this inequality is impossible when 
u = (c -\- l)pk — I we can restrict attention to u < (c + 1)/?* — 1. Now 

u = a0 + aip + • . . + ak-i pk~l + cpk 

v = b0 + b1p + . . . + V i />*"* + apA: 
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and therefore by Lemma 1, 

( : ) - ( : : ) • • • ( : : : : ) ( : ) - ( : : i ; - w ' ) <••»">• 
But since 

(u - (c - l)pk) - pk + 1 = u + I - cpk <v - apk < pk - 1 
< pk < u - (c - l)p* < 2pk - 1, 

we know by Lemma 3 that 

(u - (c - l)pk\ . / , N 

This completes the proof. 

By this lemma we see that when u ^ (c + l)pk — 1 there is always a v, 

0 < v < u, such that ( I is divisible by p. It is interesting to note that for 

each u of the form (c + \)pk — 1, ( 1 is non-divisible by ^ for 0 < v < ^. 

Thus we state the 

COROLLARY, NO r), o < v < u, is divisible by p if and only if u is of the 

form (c + l)pk ~ 1 where 0 < c < p — 1. 

Proof. The necessity is by the lemma. For the sufficiency we have 

(c + l)p* - 1 = (p - 1) + (p - l)p + . . . + (P - l)pk~l + cpk 

v = h + b,p + . . . + bk^pk~l + bkp
k 

where bt < p — 1,1 < i < & — 1 and ^ < c. Hence 

by Lemma 1. But this right-hand side is not congruent to 0 modulo £. This 
completes the proof. 

Another important application of Lemma 1 is the following 

LEMMA 4. 

(c, s, a)k = ( C
a J (0, 5, 0)* (mod p). 

Proof. Let f J be in (c, s, a)k. Then cpk < u < cpk + s, apk < v < u 

+ (a — c)pk and we can write in radix p, 
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u = a0 + ^ p + . . . + ak-i pk l + cpk 

v = »0 + 61 P + • • • + ift-i ^ _ 1 + a/>*. 

Hence by Lemma 1, 

l U— Ct>k\ IU\ 

Since! __ fe)runs over (0, s, 0)k as ( 1 runs over (c, s, a)k the proof is 

complete. 
COROLLARY. The number of numbers in (c, s, a)k which are congruent to 

j (mod p), 1 < j < p - 1, is 

where ja is that number satisfying 

1 < ja < P - 1,i«^ 0 / = J ( m o d £)• 

Proof. By the lemma a number in (c, .9, a)/- is congruent to j modulo p if 

Kl only i f ( ' ) i 

modulo/?. Since 

and only iff J times its homologous element in (0, s, 0)k is congruent to j 

jay °a J = j (mod p) 

the number of possibilities is the number of ja in (0, s, 0)& and this is just 

3. The main recursion relation. Utilizing Lemma 3 we see that for 

0 < c < p - 1, 1 < 5 < pk all of those (j, 0 < v < u, cpk < « < c/>* + s, 

which are not congruent to zero modulo p are in one of the c + 1 ^-triangles 
(c, s, a)k, 0 < a < c. Therefore 0;-(c/>

fc + 5) — 6}{cp1') is just the number of 
elements congruent to j modulo p contained in these ^-triangles. By Lemma 4 
this number is 

I X M • 
Defining effi (c), ! < # < £ — 1, to be the number of j a , 0 < a < c, which 
are equal to q, the above sum becomes 

p-i 

But £< (̂c) is just the number of solutions of the congruence 
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C
x*9^j (mod/)), 

which number is, by definition, 

Ofi(c + 1) - dfQ(c) 

where q is the reciprocal of q modulo p. Hence we have the following theorem 
setting forth our main recursion relation. 

THEOREM 1. If 0 < c < p - 1, 1 < s < pk, k > 0, qq = 1 (mod p) them 

dj(cpk + s) = dj(cpk) + £ {dfq{c + 1) - %(<0) 0,(s). 

Remembering the definition of 0(w) we have under the hypotheses of the 
theorem the following 

COROLLARY 1. d(cpk + s) = 6(cpk) + (c + l)0(s). 

Proof. For each q, 1 < g < £ — 1, the residues modulo p of the numbers 
q, 2g, . . . , ( / ? — l)g are the numbers 1,2, . . . , £ — 1 in some order. Using 
this fact and the theorem we obtain 

9(cpk + s) = £ 0,(#* + 5) 
y=i 

= £ *,(#*) + £ £ (0rq(c + 1) - %(a)) 0,Cv) 
y = l </=l j = i 

= 6{cpk) + (0(c + 1) - W ) ^ ) . 

Since 6(c + 1) — 6(c) = c + 1, because c is smaller than p, the proof is 
complete. 

COROLLARY 2. 7/ 0 < c < /;>, & > 0 ///<?w 

(a) *,(#*) = £ 6fi(c)eq(p*); 

(b) *(#*) = i * ( * + ! ) *(/>*)• 

Proof, (a) This is true for c = 0 or k = 0 so we suppose c > 0, & > 0. 
Now taking s = £* the theorem gives, for 1 < c < p, 

eAcpk) = Z ( W ) - * , ( ( * - !)/>*)) 
c p—1 

= E I (M«) - M * - D) *«(/>*) 

« - 1 
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(b) e(cpk) = Z e,(cp*) 
p-i / p-i \ 

= E ( E Ofi(c))et(p>) 

= e(c)e(pk) = hc{c + \)d{pk). 

COROLLARY 3. (a) / / k > 0, 1 < j < p — 1 then 

e}{Pk) = £ M £ ) ^ * _ 1 ) ; 

(b) If k > 0 /Ae« 

^(^) = (hP(P + 1))*. 

Proof, (a) Taking c = /> in Cor. 2 (a) gives 

^•(^+1) = £ M/>)^(P*),*>o 

and this is equivalent with (a). 
(b) This is obvious for k = 0. If true up to some k > 0 then by Cor. 2(b), 

e(Pt+1) = hPiP + D9(Pk) = (hP(P + i))*+1. 

This completes the proof. 

By repeated application of these corollaries we are able to give an explicit 
expression for 0(n). This we do in the next corollary. 

COROLLARY 4. If n = aQ + arp + . . . + akp
k, 0 < at < p — 1 then 

B(n) = è É at«at + l)... (ak + 1)) (*/>(/>+1)) ' . 

Theorem 1 and its corollaries determine the 9j(n), 1 < j < n, as solutions 
of a system of linear difference equations with constant coefficients. The 
quantity 

00(n) = \n{n + 1) - 0(«). 

In general the calculations needed to compute explicitly the dj(n) are pro­
hibitive. However we perform some calculations in this direction in the 
next section. 

4. 6j(pk) for p = 3, 5. The simplest case to deal with is p = 2. In this case 
we can compute Oj(n) for arbitrary n. The details will be given in the next 
section where some other aspects of our results for p = 2 are discussed. 

When p = 3, since (jq)q =j (mod 3), we have 

1 ï s 22 s 1, 12 s 2Ï s 2 (mod 3). 
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By direct examination we find 0i(3) = 5, 02(3) = 1. We now obtain from 
Cor. 3(a) of Theorem 1 the following pair of simultaneous difference equations 

0i(3*) - 5 0i(3*-1) - 02(3*"1) = 0, 

02 (3") - 0i (3*-1) - 502 (3"-1) = 0. 

Solving these equations using the empirical initial conditions 

0,(1) = 02(3) = l, ^(3) = 5, 02(1) = 0 

we obtain 
0i (3*) = \ (6* + 4*), 02 (3*) = W: - 4*). 

From these it follows that 

0O(3*) = ±3* (3* + 1) - 6*. 

In a similar way with p = 5 we find a system of four linear difference 
equations in four unknowns. Using the suitable initial conditions we obtain: 

0i(5*) = i(15* + 9* + (8 - if + (8 + i)*)f 

<92(5*) = £(15* - 9* - i(8 - i)k + i(S + i)k), 
es(5

k) = J(15* - 9k + i(S - i)k - i(S + i)k), 
6>4(5*) = i(15fc + 9k - (8 - *)* - (8 + i)*). 

From these it follows that 

0O(5*) = ±5*(5* + 1) - 15*. 

5. The case p = 2. In the case p = 2, Cor. 4 of Theorem 1 reads as follows: 
(1) If w = 2«i + . . . + 20*, «i > . . . >a r , then 

00) = 2 2'-1 • 3a\ 
z = l 

Since every w is of one of the three forms: 

(i) 2a> + • • • + 2ar with « ! > . . . > a r > 0; 
(ii) 2«i + . . . + 2«' + 2s + 2 s"1 + . . . + 2 + l w i t h a i > . . . > a r > s + l ; 

(iii) 2s + 2 s"1 + . . . + 2 + 1 

we can use (1) to compute 6(n + 1) — 6(n) finding its values in the three 
cases to be 2\ 2s+r, 2S+1 respectively. Hence we have the result: 

(2) the number of odd (™) for fixed n and 0 < m < n is equal to 2s where 5 
is the number of non-zero digits in the binary expansion of n. 

This result was proved by Glaisher (2) from our Lemma 1. From this we 
have the special result, which can be proved in a very nice way directly 
(3, p. 15 problem 12 and the solution pp. 97-98), that the nth row of Pascal's 
triangle consists of odd numbers exclusively if and only if n is a power of 
2. This special case is also an immediate consequence of the corollary to 
Lemma 3. 
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If we let 6n = Oi(n + 1) - Bi(n) and En = d()(n + 1) - 0o(w) we have 
the result: 

(3) Ew < 0W if and only if n + 1 < 2i+s where .9 is the number of non-zero 
digits in the binary expansion of n. In all other cases En > 9n. 

The first statement in (3) follows from (2) since En — dn — n + 1 — 2 \ 
In order to prove the second part of (3) suppose the contrary. That is, suppose 
En = 0» for some n. Then by (2), n + 1 = 2l+s or n = 2s + . . . + I. But 
then the number of non-zero digits in the binary expansion of n is >v + I. 
This is a contradiction and therefore En ^ 6n for all n. 

We include one other result whose proof we omit. 
(4) 6i(n) > doO) if and only if 1 < n < 18. 

6. "Most binomial coefficients are divisible by a given prime". In 
this section we prove the 

THEOREM 2. 

Hm0(w)/0o(») = 0. 
W->co 

Proof. Clearly 6(n) and 0o(w) are non-decreasing functions of n. Hence if 
pk < n < pk+l then, using Cor. 3(b) of Theorem 1, 

0(»)/0o(») < d(pk+1)/6o(pk) 

and this tends to 0 as n —* oo . 
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