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ASYMPTOTICS OF TWO INTEGRALS FROM OPTIMIZATION
THEORY AND GEOMETRIC PROBABILITY

D. J. GATES,* CSIRO Division of Mathematics and Statistics

Abstract

Asymptotic series are derived for two integrals using a Gaussian
identity and Laplace’s method, demonstrating an improvement over
earlier methods.

LAPLACE’S METHOD; OPTIMIZATION

Anderssen et al. (1976) obtain various bounds and approximations for the expected
distance

1 1
(1) mk:,['“_[ (xf+"'+xi)%dx1'-'dxk
0 0

from the origin of a point uniformly distributed in the cube [0, 1]*. They evaluate m,,
m, and m; exactly. Otherwise their computationally most efficient formula, by far, is the
asymptotic series

(2)  m=(k/3)X(1-1/10k —13/280k>— 101/2800k>—37533/1232000k*) + O (k 9

as k — . Terms up to k> give, for example, m, accurate to five figures, m,, accurate
to six figures and m,, accurate to seven figures. Their derivation of (2) is, however,
cumbersome. We give a simple derivation based on Laplace’s method.

The authors also study the expected interpoint distances

1 1
3) M, =j v .[ {xl“Y1)2+ t +(xk_Yk)2}% dx,dy, - - - dx, dys,
o )

but do not give an asymptotic series like (2), presumably because of the work required
using their method. We give a simple derivation of such a series, again using Laplace’s
method.

Since

oo

(4) x%:(z/w)%xj ds exp (—3rs?),

0

we can write

o

® My = (2/“")%"1 f(=387)f(=3s3)* " ds,

0
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where

1

(6) f(t)= J exp (tx?) dx.

Since f(t) has a maximum at t=0, and {'(0) =3, we write

1

f(t)=exp (t/S)J' {1+t(x>-3)+3°(x>=3)°+ - - -}dx
0

@)
=exp (1/3)(1+2t7/45+ - - +).
Similarly
® fi(t)=exp (t/3)G+41/45+ - - -).
Finally
m = (2/7r)%kjwexp (—ks?/6)(b— s>+ ks*+ - - ) ds
) 0

= (g)%(l— 1/10k + - - -).

Turning now to (3) we have, similarly,

(10) M, = (2/ﬂ)%kj g'(—3s7)g(=3sM) " ds,
0
where
1p1
11 g(t)=j I exp (t(x—vy)?) dx dy,
0 J0
which has a maximum at ¢t =0, where g'=é. Thus we write
(12) g(t)=exp (1/6) Y, "L,
n=0
where
1 1p1
I, =—I I {(x—y)*—&" dx dy,
n'J Jo
and
(13) g'(t)=exp (1/6) Y, t"J,,
n=0
where

J.=LJ6+(n+1)L,.,.

Then I,=1, I,=0, I,=7/360, I,=11/5670, J,=1/6, J;=7/180 and J,=137/15120.
Now putting (12) and (13) in (10) and using standard formulae for moments of a
normal density gives

(14) M, = (k/6)¥(1—7/40k — 65/896k>+ - - -).
Anderssen et al. (1976) compute M;, M, exactly and Ms, - -, M, by a slowly
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convergent series method. They also obtain an upper bound
(15) M, = (k/6)1{1+2(1-3/5k)}/3F.

The table lists the M, - - - , M;, from Anderssen et al. and their deviations from (14) (as
shown) and (15) denoted (14)— M, and (15)— M, respectively. This illustrates the

accuracy of (14), for k not too small, while its efficiency is obvious.

k M, (14)- M, (15)- M,
1 0-33333 ~0-026 0-021
2 0-52141 ~0-005 0-024
3 0-66167 ~0-001 0-020
4 0-77766 ~0-0006 0-017
5 0-87853 ~0-0003 0-015
6 0-96895 ~0-0001 0-014
7 1-05159 ~0-00007 0-013
8 1-12817 ~0-00004 0-012
9 1-19985 ~0-00002 0-011
10 1-26748 ~0-00001 0-010
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