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DECOMPOSITION VARIETIES
IN SEMISIMPLE LIE ALGEBRAS

ABRAHAM BROER

ABSTRACT. The notion of decompositon class in a semisimple Lie algebra is a
common generalization of nilpotent orbits and the set of regular semisimple elements.
We prove that the closure of a decomposition class has many properties in common
with nilpotent varieties, e.g., its normalization has rational singularities.

The famous Grothendieck simultaneous resolution is related to the decomposi-
tion class of regular semisimple elements. We study the properties of the analogous
commutative diagrams associated to an arbitrary decomposition class.

1. Introduction. Let ª be a semisimple Lie algebra over an algebraically closed
field k of characteristic zero with adjoint group G. We shall say that two elements x and
x0 are in the same decomposition class D if x and x0 have a similar Jordan decomposition.
There are only finitely many different decomposition classes; they are all smooth; and
the closure of any one of them, called decomposition variety, is a union of decomposition
classes. Decomposition classes were first defined and studied by Borho and Kraft [8],
and their analogs in the group G first by Lusztig and Spaltenstein [38]. Their properties
have important applications in representation theory.

To be more precise, let x = xs + xn and x0 = x0s + x0n be the Jordan decompositions of
x and x0. Then x and x0 are in the same decomposition class if and only if there exists a
g 2 G such that xn = gx0n and Gxs = Ggx0s . For «¿n this means that in a decomposition class
we vary the continuous parameters (eigenvalues) but fix all discrete parameters (sizes of
Jordan blocks).

In this article we study the algebraic geometric properties of decomposition vari-
eties. As motivation we give first some examples. First of all the collection of regular
semisimple elements is a decomposition class. At the other extreme, all adjoint orbits
consisting of nilpotent elements, called nilpotent orbits, are decomposition classes. The
determinantal varieties of nðn-matrices occur as normalizations of decomposition vari-
eties in «¿n (see Section 9.6). The determinantal varieties of symmetric 2nð2n-matrices
are isomorphic to decomposition varieties in «ƒ2n (see Section 9.5). Varieties defined
by Pfaffians of fixed order of a generic anti-symmetric n ð n matrix are decomposition
varieties in «√n (see Section 9.7). As a last example we mention the symplectic rank
variety first appearing in a study of the subregular nilpotent variety [10], and thoroughly
studied by Klimek et al [28]; it is a decomposition variety in «ƒ2n (see Section 9.8).
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930 ABRAHAM BROER

We have tried to generalize some known properties for determinantal varieties and
for the closures of nilpotent orbits, called nilpotent varieties. For example, the properties
that there are only finitely many nilpotent orbits, that they are all smooth and that
each nilpotent variety is a union of nilpotent orbits all extend to decomposition classes
(see Proposition 2.3). It is known that determinantal varieties and the normalization of
any nilpotent variety (by Hinich and Panyushev) have rational singularities. We show
that this generalizes: the normalization D̃ of any decomposition variety D̄ has rational
singularities (see Theorem 7.1). In general, decomposition varieties are not normal, not
even for «¿n.

Fix an element x in a decomposition class D with Jordan decomposition x = xs + xn.
Let L be the stabilizer of the semisimple part xs, and ∑ the center of the Lie algebra ¿
of L. The subset ∑Ž of ∑ consisting of semisimple elements with stabilizer L is an affine
open subset. The decomposition class containing x = xs + xn is then

D := G Ð (∑Ž + xn)

The finite group Γs := NGLÛL acts on ∑, stabilizing ∑Ž. It also acts on the set of irreducible
components of NGL Ð xn; we call Γ the stabilizer in Γs of the component Lxn. In general
Γs is not equal to Γ. When it is equal we shall call the decomposition class stable. By
general results due to Luna, the inclusion of ∑ into the closure D̄ of D induces a map

ó̄: ∑ÛΓs ! D̄ÛÛG

between quotient spaces which is just the normalization map. Here D̄ÛÛG is the affine
variety with coordinate ring k[D̄]G. We classify the decomposition varieties such that
D̄ÛÛG is normal (see Theorem 3.1), completing work begun by Richardson [43].

In general all the fibres of the G-quotient map ô̄: D̄ ! D̄ÛÛG are of the same
dimension, but they need neither be irreducible nor reduced. The G-quotient space of
the normalization D̃ can be identified with ∑ÛΓ and the fibres of the quotient map
ỗ: D̃ ! ∑ÛΓ are all irreducible containing a dense orbit. We give criteria for when the
fibres of ỗ are all reduced (see Theorem 7.5); if that is the case, then the quotient map is
flat with Gorenstein fibres having rational singularities, and then D̃ is also Gorenstein.

Borho and Kraft showed that we can choose, for any decomposition variety D̄ , a
parabolic subgroup P and a solvable ideal ∆ of ƒ such that G∆ = D̄ . We can assume that
∑ is contained in ∆, but L is not necessarily the Levi factor of P. We can write ∆ = ∑ ý ¬,
for some nilpotent ideal ¬. The collapsing map

ç: G ðP ∆ ! D̄: g Ł y 7! g Ð y

of the homogeneous vector bundle on GÛP with fibre ∆ is a projective morphism, but
it is not birational in general. Since G ðP ∆ is smooth, ç factors over the normalization
of D̄. We define the normal affine variety Y by its ring of global regular functions:
k[Y] := k[GðP ∆]. We can choose P and ∆ in such a way that additionally the following
properties hold. The finite group Γ acts on this remarkable variety Y (although it does
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not act on G ðP ∆) having D̃ as orbit space YÛΓ (see Theorem 4.9). We show that Y is
Gorenstein and has rational singularities (see Corollary 6.7), and that Y does not depend
on the various possible good choices of P and ∆.

There are other interesting varieties and morphisms involved; their study is neces-
sary for the understanding of various geometric, combinatorial or algebraic aspects of
decomposition varieties. Using the smooth map

í: G ðP ∆ ! ∆Û¬ ' ∑: g Ł y 7! y + ¬

and the collapsing ç: G ðP ∆ ! D̄ , factorizing over the normalization D̃ by

ç̃: G ðP ∆ ! D̃

and the normalization map ó: D̃ ! D̄, we get the following commutative diagram

G ðP ∆
ç̃

��! D̃ ó
��! D̄

í

???y
???y ỗ

???y ô̄
∑ ��! ∑ÛΓ ��! D̄ÛÛG

If we write X̃ for the image of the product map (íÒ ç̃), then there is an induced
map G ðP ∆ ! X̃. This map is a resolution of singularities. We study the various
properties of this diagram. Although various aspects of the diagram in special cases have
been extensively studied by various authors, much is still unknown about the algebraic
geometric properties.

In the special case of the decomposition class consisting of the regular semisimple
elements we obtain the famous so-called Grothendieck simultaneous resolution. There ∑
is the Lie algebra of a maximal torus T contained in a Borel subgroup B and Γs = Γ is
the Weyl group W. Chevalley proved that the inclusion » ² ª induces an isomorphism
»ÛW ' ªÛÛG of quotient spaces. Now P = B, ∆ = ∂ and the diagram simplifies to

G ðB ∂ ��! ª???y
???y

» ��! ªÛÛG

This diagram has many good properties we sought to generalize. The vertical maps are
flat, having irreducible and reduced fibres containing a dense orbit. The diagram gives
rise to a birational proper morphism of GðB ∂ to the Cartesian product »ðªÛÛG ª and an
isomorphism of algebras of global regular functions:

k[G ðB ∂] ' k[»] 
k[ª]G 
k[ª]Ò

and indeed W acts on k[G ðB ∂] with ring of W-invariants k[ª].
Unfortunately many of the good properties of the Grothendieck simultaneous resolu-

tion are not present in our generalized set-up. One of the aims of this research is to under-
stand what is actually happening. This study was already begun by Borho-Brylinski [7],
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932 ABRAHAM BROER

Soergel [49] and Knop [30]. We analyze each of the occurring maps and morphisms.
For example, we classify the parabolic subgroups that induce diagrams similar to the
Grothendieck simultaneous resolution (the classification is up to normality results for
nilpotent varieties in exceptional Lie algebras of types E6, E7 and E8). More precisely, if
∆ is the solvable radical of the Lie algebra of ƒ, we require in this classification that the
decomposition variety D̄ := G∆ is normal and the pull-back k[D̄] 
k[D̄]G k[∑] identifies
with the ring of global regular functions on G ðP ∆ (see Theorem 7.9).

There are applications to the theory of primitive ideals of enveloping algebras and
rings of differential operators. In the special case where decomposition classes contain
semisimple elements, decomposition varieties and all the other varieties defined above
have non-commutative analogs (see Section 8) involving quotients of the universal
enveloping algebra of ª and rings of global differential operators on homogeneous
spaces. See Section 8 and [7], [49].

This is one way where representation theory enters the picture. The same decomposi-
tion classes also appear in representation theory in connection to the orbit method as first
studied by Dixmier. The geometry and topology of some special cases of the analog of
decomposition classes in the group G also play an important role in Lusztig’s theories of
the generalized Springer correspondence and of the character sheafs, see [36] and [37].
The examples of decomposition varieties arising in Lusztig’s study having beautiful
properties, see Section 9.10.

In the last section we collect several examples and counter-examples. We show that
most of the results above remain true for ª¿n if we allow the algebraically closed field k
to be of positive characteristic, see Section 9.1.

2. Decomposition classes. We shall fix a reductive group G of rank r defined over
an algebraically closed field k of characteristic zero. We denote the Lie algebra of an
algebraic group by its corresponding gothic character, e.g., the Lie algebra of G is ª.

If K is a reductive group acting on an affine variety X, we denote the K-quotient
space by XÛÛK with coordinate ring k[X]K. If K acts on any variety X with only closed
orbits (for example if K is a finite group) then we write XÛK for the K-orbit space XÛÛK.
If P is any closed subgroup of K acting on a variety Y, then it acts freely on K ð Y
by p(kÒ y) := (kp�1Ò py) and we let K ðP Y denote its orbit space. We denote the class
containing (kÒ y) by k Ł y.

Whenever we fix an element x 2 ª we shall adopt the following notation. When we
write x = xs + xn, we mean the Jordan decomposition, i.e., xs is the semisimple part of
x, xn its nilpotent part and [xsÒ xn] = 0. We write L := Gxs for the stabilizer in G of the
semisimple part of x, ∑ for the center of ¿ and ∑Ž for the open subset of ∑ of the elements
in ª with stabilizer L. The finite group Γs := NGLÛL acts on the collection of irreducible
components of (NGL)xn. The stabilizer in Γs of the irreducible component Lxn is denoted
by Γ.

We say that x and y are in the same decomposition class if and only if there is a g 2 G
such that Gxs = Ggys and xn = gyn. We can describe the decomposition class D containing
x as D = G(∑Ž + xn). Obviously ª is a the disjoint union of its decomposition classes. We
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refer to [8], [5] and [13] for an introduction into the theory of decomposition classes.
See [17, Ch. 7] for Lusztig-Spaltenstein’s related notion of induction.

Our first aim is to show that decomposition classes are smooth, first shown in the
literature by Lusztig [36, p. 216]. We shall then classify their orbits. To prove these result
we shall apply Luna’s fundamental lemma [2] at several places; for a somewhat different
proof see our lecture notes [13]. We start with a useful lemma.

LEMMA 2.1. Let M be a Levi subgroup of G. Define ¡Ž to be the collection of points
y 2 ª such that the stabilizer of its semisimple part ys is contained in M.

(i) Then ¡Ž is an M-stable affine open subset of ¡.
(ii) The morphism G ðM ¡Ž ! ª: g Ł y 7! gy induces a Cartesian diagram

G ðM ¡Ž ��! ª???y tu
???yô

¡ŽÛÛM ��! ªÛÛG

with étale horizontal maps and vertical G-quotient maps.

PROOF. (i) Let f be the product of all the weights of ªÛ¡, considered as a homo-
geneous WM-invariant polynomial function on », where WM is the Weyl group of M. By
Chevalley’s isomorphism »ÛWM ' ¡ÛÛM, we can extend f uniquely to an M-invariant
homogeneous polynomial function F on ¡. We claim that ¡Ž is the M-stable principal
affine open subset of ¡ defined by F. Let y 2 ¡Ž, we have to show that F(y) 6= 0. Since
ªys

² ¡ and ys, yn and y all centralize ys, it follows that y 2 ¡. Since F is M-invariant,
it suffices to show that F(ys) 6= 0 for ys 2 ». By assumption [xãÒ ys] = ã(ys) 6= 0 if ã is
a weight of ªÛ¡, where xã is the corresponding root vector. So f (ys) = F(ys) 6= 0. The
argument can be reversed, so this proves (i).

(ii) Let y = ys + yn, then it is easy to show that

ª = [ªÒ ys] ý ªys
Ò

and [ªÒ ys] ² [ªÒ y]. The tangent map of G ð ¡ ! ª: (gÒ y) 7! gy at (1Ò y) is (XÒY) 7!
[XÒ y] + Y, where X 2 ª and Y 2 ¡. It follows that this tangent map is surjective at
(1Ò y) (and (1Ò ys)) when y 2 ¡Ž. Hence the tangent map at 1 Ł y (and at 1 Ł ys) of
G ðM ¡Ž ! ª is also surjective if y 2 ¡Ž, hence is étale at 1 Ł y and 1 Ł ys (by [22,
Proposition 10.4]). In this situation we can apply Luna’s fundamental lemma (see [2]), so
that the diagram is indeed a pull-back diagram, with étale horizontal maps. And indeed
k[G ðM ¡Ž] ' k[¡Ž]M.

In general, the intersection of a levi subalgebra¡ with a decomposition variety for G
is not necessarily a union of decomposition classes for M. But we shall use the previous
lemma to show that the intersection of a G-decomposition class with the open affine
subset¡Ž is a union of M-decomposition classes.
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LEMMA 2.2. Let M be a Levi subgroup of G, and ¡Ž the principal open subset in ¡ as
defined in the previous lemma. Let D be any decomposition class such that D \¡Ž is
not empty, or, equivalently, such that D ² G¡Ž.

Then the intersection D \¡Ž is a union of decomposition classes for M in ¡, all of
equal dimension dim D � dim GÛM, and the intersection is reduced.

More precisely, take any element x = xs + xn in D \ ¡Ž. Write L := Gxs and ∑Ž for
the collection of elements in ª having stabilizer L. Let fL1Ò    ÒLmg be the collection of
different conjugates of L contained in M and containing a fixed maximal torus. Fix a
gi 2 G such that giLg�1

i = Li and write ∑Ži := gi∑Ž and yi := gixn. Then

D \¡Ž =
m[

i=1
M(∑Ži + NGLiyi \¡)

In particular, in the special case where L = M,

D \¡Ž = ∑Ž + NGLxn

PROOF. Both xs and xn are in ¿ by the theory of Jordan decompositions. By assumption
¿ ² ¡, hence ∑Ž is also equal to the collection of points in ¡ with centralizer exactly ¿.
So the whole decomposition class M(∑Ž + xn) is contained in ¡Ž. If m(a1 + xn) = a2 + xn,
for ai 2 ∑Ž and m 2 M, then ma1 = a2 and mxn = xn, by unicity of Jordan decomposition.
Thus m 2 NML, and the orbit NMLa1 is finite. We conclude that the decomposition class
is a union of orbits, each of dimension dim G � dim Gx, and each orbit intersects ∑Ž + xn

in finitely many points. Hence its dimension is dim ∑ + dim G � dim Gx.
By the lemma above the natural map GðM (D \¡Ž) ! D is a pull-back of an étale

map, hence is itself étale. It follows that the intersection D \¡Ž is reduced, and each
component has dimension dim D � dim GÛM. In particular, M(∑Ž + xn) is one of those
components, and all components are of this form.

Let g(a + xn) 2 ¡Ž\D with a 2 ∑Ž and g 2 G. Then Gga = gLg�1 ² M. Now take an
m 2 M such that mgL(mg)�1 contains the fixed maximal torus. Then Gmga = Li = Ggia for
some i, and so g�1

i mg 2 NGL and g�1
i mgxn 2 NGLxn. Thus mga 2 ∑Ži , mgxn 2 NGLiyi\¡

and ga + gxn 2 M(∑Ži + NGLiyi \¡).

2.3. We shall now use the two lemmas to describe the basic orbit structure of decom-
position classes and show that they are all smooth. The precise statement is longer than
its proof.

PROPOSITION 2.3. Let D be a decomposition class containing x 2 ª. Let x = xs + xn, L,
∑, ∑Ž and Γs be as defined before. Then:

(i) The decomposition class D is smooth.
(ii) The natural action of Γs on

VŽ := G ðL (∑Ž + NGL Ð xn)

is free, and its orbit space is isomorphic to D, i.e.,

D ' VŽÛΓs = G ðNGL (∑Ž + NGL Ð xn)
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(iii) The morphism
íŽ: VŽ ! ∑Ž: g Ł (s + e) 7! sÒ

where g 2 G, s 2 ∑Ž, and e 2 NGL Ð xn, induces a morphism between orbit spaces

ôŽ: D ' VŽÛΓs ! ∑ŽÛΓsÒ

and a Cartesian diagram
VŽ ��! D

íŽ
???y tu

???yôŽ
∑Ž ��! ∑ŽÛΓs

Moreover, the horizontal maps are finite, étale Γs-quotient maps, and the vertical maps
are constant on G-orbits.

(iv) Let D̄ be the closure of D. Write the G-quotient map as

ô̄: D̄ ! D̄ÛÛG;

then ô̄ is the restriction to D̄ of the quotient map ô:ª ! ªÛÛG, and we get Cartesian
squares

G ðL (∑Ž + NGLxn) ��! D̄???y tu
???y ô̄

∑Ž ��! D̄ÛÛGÒ

and
G ðNGL (∑Ž + NGLxn) !̈ D̄???y tu

???y ô̄
∑ŽÛΓs !̈ D̄ÛÛGÒ

with étale horizontal maps and vertical G-quotient maps, where the horizontal maps are
open immersions. It follows that the natural map ∑ÛΓs ! D̄ÛÛG is the normalization
map.

PROOF. (i) follows from (ii). Since D \ ¿Ž = ∑Ž + NGLxn, by the previous lemma, we
get that the morphism

G ðL (∑Ž + NGLxn) ! D

is étale, as it is the pull-back of an étale map (by Lemma 2.1). Hence D is smooth. Since
Γs acts freely on the left-hand side, we get another étale morphism

G ðNGL (∑Ž + NGLxn) ! D

Since the latter is bijective, it is an isomorphism (see [1, p. 122]), hence (ii).
As Γs also acts freely on ∑Ž, the quotient map ∑Ž ! ∑ŽÛΓs and its pull-back ∑Ž ð∑ŽÛΓs

D ! D are étale. Since Γs acts freely on both VŽ and ∑Ž ð∑ŽÛΓs
D with isomorphic

Γs-quotients, the induced map VŽ ! ∑Ž ð∑ŽÛΓs
D is a bijective étale morphism, hence is

an isomorphism, and (iii) is shown.

https://doi.org/10.4153/CJM-1998-048-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-048-6


936 ABRAHAM BROER

For (iv), the previous lemma that D̄ \ ¿Ž = (∑Ž + NGLxn) gives us étale morphisms

G ðL (∑Ž + NGLxn) ��! D̄

G ðNGL (∑Ž + NGLxn) ��! D̄ 

The latter is injective and therefore an open immersion (see [1, p. 122]). The second
Cartesian diagram and subsequently the first diagram follow as in (iii) (or by using
Luna’s fundamental lemma).

By restricting to a connected component we obtain a twin version of the proposition
with an analogous proof.

PROPOSITION 2.4. Assume the same notation as before. Recall that Γ is the stabilizer in
Γs of the irreducible component Lxn of NGL Ð xn. Then:

(i) The natural action of Γ on

ṼŽ := G ðL (∑Ž + Lxn)

is free. Its orbit space is isomorphic to D, i.e.,

D ' ṼŽÛΓ = G ðNGLŽ

(∑Ž + Lxn)Ò

where NGLŽ is the normalizer in G of the component Lxn in NGL Ð xn.
(ii) The morphism

í̃Ž: ṼŽ ! ∑Ž: g Ł (s + e) 7! sÒ

where g 2 G, s 2 ∑Ž, and e 2 Lxn, induces a morphism between orbit spaces

ỗŽ: D ' ṼŽÛΓ ! ∑ŽÛΓÒ

and a Cartesian diagram
ṼŽ ��! D

í̃Ž
???y tu

???y ỗŽ
∑Ž ��! ∑ŽÛΓ

such that the horizontal maps are finite, étale Γ-quotient maps, and any fibre of the
vertical maps is a G-orbit. Hence ỗŽ and í̃Ž are G-quotient maps, so ∑ŽÛΓ classifies the
orbits in D.

(iii) Let D̃ be the normalization of D̄ . The G-quotient variety D̃ÛÛG can be identified
with the Γ-quotient variety ∑ÛΓ.

2.5. Positive characteristics. The definition of decomposition classes and the elemen-
tary properties given in the two propositions and their proofs remain valid over more
general algebraically closed fields. We only need that for all x 2 ª it is true that the Lie
algebra of Gx is the centralizer of x and that the stabilizer of any semisimple element in ª
is the Levi-component of some parabolic subgroup of G. This guarantees every adjoint
orbit map is separable. These conditions are known to be satisfied for G = GLn. Let p
be the characteristic of k, and suppose ª is simple. Then these conditions are satisfied if
and only if p does not divide n when ª = «¿n, p 6= 2 if ª 6= Ar, p 6= 3 if ª is exceptional
and p 6= 5 if ª = E8.
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2.6. The finite groups Γs and Γ. From the two previous propositions, it follows that ∑ÛΓs

and ∑ÛΓ play important roles in the theory of decomposition varieties. The first quotient
can be identified with the normalization of D̄ÛÛG and the latter with D̃ÛÛG. These
G-quotient spaces classify closed orbits, and under the normalization map ó: D̃ ! D̄
closed orbits can be covered by several closed orbits. This happens generically if and
only if Γs 6= Γ.

Recall from the introduction that the decomposition class containing x = xs + xn is
called stable if Lxn = NGL Ð xn. This desirable property does not depend on the choice of
x. For example the SL4-decomposition class containing the matrix

x =

0
BBB@

1 1 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1
CCCA 2 «¿4

is unstable. We give some characterizations of stableness.

COROLLARY 2.7. The following are equivalent for a decomposition variety D containing
x:

(i) D is stable;
(ii) Γs = Γ;

(iii) VŽ is irreducible;
(iv) D̃ÛÛG is the normalization of D̄ÛÛG;
(v) The intersection of Gx with ∑ + xn is just Γsxs + xn.

PROOF. This all follows from the two propositions.

In almost, but not all, cases, Γs acts as a reflection group on ∑, so ∑ÛΓs is smooth.
In general Γs contains a normal subgroup Γ0

s acting as a reflection group on ∑ with an
elementary abelian group (ZÛ2Z)‡ as factor group ΓsÛΓ0

s. For example, if ª is simple of
type Ar, Br, Cr, F4 or G2 then Γs is a reflection group, and for the exceptional simple Lie
algebras, the order of ΓsÛΓ0

s is either one or two. For a precise description of Γs and Γ0
s

see Howlett [25]. If G = GLn, then Γ is always a reflection group (see Section 9.1).
Write îs: ∑ ! ∑ÛΓs and î: ∑ ! ∑ÛΓ for the quotient maps. Then the restriction to ∑

of ô̄ is surjective and factors as

∑
îs

��! ∑ÛΓs
ó̄

��! D̄ÛÛG

Moreover, we already showed Luna’s result that ó̄ identifies with the normalization map.

LEMMA 2.8. The following three conditions are equivalent.
(refl.1) î: ∑ ! ∑ÛΓ is flat;
(refl.2) Γ acts as a reflection group on ∑;
(refl.3) ∑ÛΓ is smooth.
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PROOF. The Killing form on ª restricts to a non-degenerate bilinear form on ¿ such
that ¿ = ∑ ý [¿Ò ¿] is an orthogonal direct sum. In particular ∑ carries a non-degenerate
form which is Γs and Γ invariant. So if Γ (or Γs) acts as a pseudo-reflection group, it
even acts as a reflection group. Now apply Chevalley’s theorem.

We shall say that (refl) is satisfied, if one of the conditions in the lemma is satisfied.

2.10. The most important decomposition classes are stable. For any integer, d the union
of all adjoint orbits of dimension d is a locally closed subvariety of ª whose irreducible
components are called sheets. They are unions of decomposition classes. The class D(x)
is dense in some sheet if and only if the nilpotent orbit Lxn is in [¿Ò ¿] (see [5, 4.3 Satz]),
i.e., if Lxn itself is a sheet in [¿Ò ¿]. Sheets are classified by Spaltenstein and Elashvili. If a
sheet contains a semi-simple element it is called a Dixmier sheet. Borho [5, 4.5 Lemma]
showed that the dense decomposition class in a sheet is stable. Also the decomposition
class D(x) of a regular or a nilpotent element x is stable.

3. The normality question for D̄ÛÛG. The closure of a decomposition class, i.e.,
a decomposition variety, is usually not normal; for example, when the decomposition
class is not stable, or when it is stable but Lxn is not normal (by Proposition 2.3(iv)).
Richardson [43] discussed the question whether the quotient space D̄ÛÛG is normal, or
equivalently whether ∑ÛΓs equals D̄ÛÛG. He answered this question for the classical
simple Lie algebras using Howlett’s calculations [25]. His method extends to the excep-
tional Lie algebras. We present the classification. The closure D̄(xs) of the decomposition
class containing xs is contained in the closure D̄(x) of the decomposition class contain-
ing x and both have the same quotient spaces D̄(xs)ÛÛG ' D̄(x)ÛÛG, so the question of
normality of D̄(x)ÛÛG only depends on the semisimple part of x. But the normality of
D̄(x) itself depends on both xs and xn.

Recall that ô̄: D̄ ! D̄ÛÛG is the quotient map, and write

ỗ: D̃ ! D̃ÛÛG ' ∑ÛΓ

for the quotient map of the normalization. We shall show later that both quotient maps
are equidimensional.

In the following we shall always use Bourbaki’s enumeration of simple roots, say
ã1Ò    Ò ãr.

THEOREM 3.1. Let ª be simple and x 2 D. As usual L := Gxs .
(i) If D̄ÛÛG is normal then D̄ÛÛG is also smooth.
(ii) The quotient D̄ÛÛG is normal if and only if L is either a maximal torus or the full

group G or
(a) of type pAq with p(q + 1) = r + 1 and q ½ 0, when ª = Ar;
(b) its type is pAq + Bj with jÒ pÒ q ½ 0 and r = j + p(q + 1), when ª = Br (here B1 is

distinguished from A1 by root length);
(c) its type is pAq + Cj with jÒ pÒ q ½ 0 and r = j + p(q + 1), when ª = Cr (here C1 is

distinguished from A1 by root length);
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(d) its type is pAq +Dj with j ½ 2 and p(q +1)+ j = r, or its type is pAq with p(q +1) = r
and q is odd, when ª = Dr with r ½ 4 (here L has component Dj for j ½ 2 if and
only if ãr�1 and ãr are the roots of L);

(e6) its type is A2 + A2, A5 or A2 + A2 + A1, when ª = E6;
(e7) its type is A5 (with simple roots ã2, ã4, ã5, ã6 and ã7), 3A1 + A2 (with simple roots

ã1, ã2, ã3, ã5, ã7) or when its semisimple rank is 6, when ª = E7;
(e8) its semisimple rank is 7, when ª = E8;

(f) its type is A2 (both possible cases) or if the semisimple rank is 3, when ª = F4;
(g) any other type, when ª = G2.

PROOF. By the remarks before the theorem it follows that we can assume that x is
semisimple, i.e., D = G(∑Ž). Richardson [43] showed that D̄ÛÛG is normal if and only
if the map

k[»]W ! k[∑]Γs

induced by restriction is surjective. He also showed (a), (b), (c) and (d). His method of
proof extends to the exceptional Lie algebras as well, using the tables of Γs compiled by
Howlett [25].

If L is a maximal torus, then D̄ = ª. If L = G then D̄ = f0g, so in both cases normality
is clear. Suppose that 0 Ú dim ∑ Ú r.

If dim ∑ = 1 then Γs is either trivial or f1Ò �1g. In the first case there is a linear
Γs-invariant on ∑ but no linear W-invariant on », so the map between invariant rings is
not surjective and D̄ÛÛG is not normal. If Γs = f�1Ò 1g, then k[∑]Γs is generated by a
quadratic invariant. On the other hand, since the quadratic form associated to the Killing
form does not vanish on D̄ , we get that its restriction to ∑ is non-zero. So the restriction
map is surjective and hence D̄ÛÛG is normal. Summarizing, if dim ∑ = 1, then D̄ÛÛG is
normal if and only if Γs is non-trivial. For example, if �1 2 W then Γs is non-trivial.
For the remaining cases we check Howlett’s tables.

Next we restrict to the case where ª is exceptional and 1 Ú dim ∑ Ú r. If Γs is
a reflection group but not irreducible, then k[∑]Γs has either a linear invariant or two
independent quadratic invariants. Since k[»]W has no linear W-invariant and no pair of
independent quadratic invariants, it follows that the map between invariant rings is not
surjective and so D̄ÛÛG is not normal. Suppose next that Γs is an irreducible reflection
group. If it is of type A, B, C or D, then Γs has at least a degree 3 or a degree 4 generating
invariant. But W does not (since ª is exceptional), so D̄ÛÛG is not normal in that case.
So suppose that Γs is of exceptional type. Then it has a degree 6 generating invariant
(since it is not E8), hence two linearly independent degree six invariants. But if ª is of
type E8, then W has only one independent degree 6 invariant, hence D̄ÛÛG is not normal.
So we assume now that ª is not of type E8. Then the type of Γs can only be F4 or G2.
From Howlett’s tables it follows that F4 does not occur as a Γs, and G2 occurs 5 times:
For ª = E6 and L of type 2A2, for ª = E7 and L is of type A5 or of type 3A1 ð A2 and for
ª = F4 and both cases where L is of type A2. We’ll show that in each of these five cases
D̄ÛÛG is normal.

https://doi.org/10.4153/CJM-1998-048-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-048-6


940 ABRAHAM BROER

Using the Killing form we can define the gradient of a G-invariant function f on ª,
which will be a G-equivariant vector field grad f :ª ! ª. Analogously, we can use the
restriction of the Killing form to ∑ to define the gradient grad g: ∑ ! ∑ of a Γs-invariant
g on ∑. If f̄ and grad f are the restrictions to ∑, we have that

grad f̄ = grad f 

We now consider the five cases, where the type of Γs is G2. First of all the Killing
quadratic form f2 restricts to a quadratic generator g2 of k[∑]Γs . Let f6 be any degree six
generating G-invariant on ª. The so-called Richardson nilpotent orbit corresponding to
L is contained in D̄ . Richardson [44] showed that in each of the five cases grad f6 does
not vanish on the Richardson orbit. In particular grad f6 is non-zero on D̄ = G∑Ž, so
necessarily non-zero on ∑. This does not depend on the choice of the generator f6. So
grad f6 6= 0, and therefore f6 6= 0. Suppose the restriction f6 is not a Γs-generator. Then
f6 = cg3

2, for some constant c. But then f6 � cf 3
2 is also a degree 6 generating G-invariant,

but now with grad f6 � cf 3
2 = 0, which contradicts Richardson’s non-vanishing result. So

f6 is a Γs-generator, and so the map k[ª]G ' k[»]W ! k[∑]Γs is surjective, and D̄ÛÛG is
normal in all five cases.

Next suppose that ª is exceptional, 1 Ú dim ∑ Ú r and that Γs is not a reflection group.
That can not happen when ª = F4. According to Howlett’s tables Γs contains an index
two normal subgroup Γ0

s that acts as a reflection group on ∑ and an order two subgroup
V such that VΓ0

s = Γs. Suppose that Γ0
s is not irreducible, then there is either a linear

and a quadratic generating Γ0
s invariant, or two generating quadratic Γ0

s invariants. It is
no harm to assume that both are eigenvectors for the ΓsÛΓ0

s = f�1Ò 1g action. One of
the two quadratic Γ0

s invariants is the restriction of the Killing quadratic form, hence is
already invariant by Γs. In either case, there are two independent Γs-invariants of degree
4. But there are no two W-invariants of degree 4 on », hence the map between invariant
rings is not surjective and so D̄ÛÛG is not normal.

Consider next the special case where ª = E8 and Γ0
s of type As, then there are at least

two independent degree six Γs-invariants (by the same argument as before), but only one
degree six W-invariant. Hence non-normality. Apart from this special case, it follows
from Howlett’s tables that there are only two remaining cases to be considered.

The first is where ª = E8 and L of type A2. Then Γ0
s is of type E6. There are

two generating invariants for Γ0
s of degree five and six. If ΓsÛΓ0

s does not act trivially
on either of them, then it acts trivially on its product. Since k[»]W contains no two
independent elements of degree six nor invariants of degree five or eleven it follows that
k[»]W ! k[∑]Γs cannot be surjective, and so D̄ÛÛG is not normal.

The last remaining case to be considered is where ª = E7 and L of type A2 (roots ã1

and ã3). Here Γ0
s is of type A5. There are two generating invariants for Γ0

s of degree three
and four. If ΓsÛΓ0

s does not act trivially on either of them, then it acts trivially on its
product. Since k[»]W contains no two independent elements of degree four nor elements
of degree three or seven it follows that k[»]W ! k[∑]Γs cannot be surjective, and so
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D̄ÛÛG is not normal. We have now considered all possible cases, hence the proof of the
classification in (ii) is complete.

We saw that whenever Γs is not a reflection group, then D̄ÛÛG is not normal, whence
(i).

REMARK. We give the type of the reflection groups Γs coming up in the classification.
If L is a maximal torus, then Γs = W. If L = G then Γs = f1g and if the semisimple rank
of L is r�1, then Γs = f1Ò �1g. For the exceptional Lie algebras there remain five cases,
and in each of these cases, the type of Γs is G2. For the classical Lie algebras we get that
in case (a) Γs is of type Ap�1 and, in case (b), (c) and (d), Γs is of type Bp(= Cp).

Even when D̄ÛÛG is not normal it can happen that the normalization map is still
a bijection, so that ∑ÛΓs still parametrizes the closed G-orbits in D̄ . This situation is
described in the next lemma.

LEMMA 3.2. Let x 2 D and L := Gxs . Let z 2 ∑ with stabilizer M := Gz. The following
three statements are equivalent.

(i) The variety D̄ÛÛG is unibranch at ô̄(z), i.e., the fibre of ô̄(z) 2 D̄ÛÛG under the
normalization map ó̄: ∑ÛΓs ! D̄ÛÛG consists of only one element;

(ii) We have Gz \ ∑ = Γsz;
(iii) For any g 2 G such that gLg�1 ² M there exists an m 2 M such that

mgL(mg)�1 = L, i.e., such that mg 2 NGL.

PROOF. It is clear that the fibre of ô̄(z) consists exactly of the Γs-orbits in Gz\∑, so (i)
and (ii) are equivalent. Suppose (ii) holds and that gLg�1 ² M. Then L ² g�1Mg = Gg�1z,
i.e., g�1z 2 ∑. By assumption there is an n 2 NGL such that g�1z = nz, or gn 2 M. Take
m := (gn)�1, then mgL(mg)�1 = n�1Ln = L. So (iii) follows.

Suppose (iii) holds and z0 := gz 2 ∑. Then L ² Gz0 = gMg�1, or g�1Lg ² M. By
assumption there exists an m 2 M such that n := mg�1 2 NGL, so z0 = gz = gm�1z =
n�1z 2 NGLz. Hence (ii) holds.

REMARK. The condition (iii) is often easy to check. It holds when Mcontains only one
conjugacy class of Levi subgroups isomorphic to L. For example, if L is of semisimple
type A1 ð A2 ð A3 in G of type A8, then the normalization map ∑ ! D̄ÛÛG is bijective
(here Γs is trivial), but not an isomorphism.

4. Collapsing of a vector bundle.

4.1. Indicators and notation. A decomposition class is completely determined by giv-
ing a Levi subgroup L and a nilpotent NGL-orbit in [¿Ò ¿], where L is only determined up to
conjugacy. Nilpotent conjugacy classes Ge in ª were classified by Dynkin and Kostant,
using certain weighted Dynkin diagrams constructed from «¿2-triples. The weighted
Dynkin diagram determines a parabolic group P and a nilpotent ideal ¬ ² ƒ together
with a collapsing map G ðP ¬ ! Ge which happens to be a resolution of singularities.

We shall call an indicator any sequence [n1Ò n2Ò    Ò nr] of r numbers in f0Ò 1Ò 2g,
where additionally some of the ni’s are underlined, and where the non-underlined ni have
value 2.
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Any indicator determines a decomposition class in the following way. The underlined
indices correspond to the simple roots of a Levi subgroup L. Let ∑Ž be the collection of
points in ª with stabilizer L. The values ni at underlined positions define a graded Lie
algebra structure ¿ =

L
i ¿i, by imposing that a simple root vector of ¿ corresponding to

the simple root ãi has degree ni. There is a nilpotent e in ¬1 :=
L

i½2 ¿i with the property
that the intersection ¬Ž

1 of Le with ¬1 is dense in ¬1. Then we define D := G(∑Ž + e) as
the corresponding decomposition class.

For a given decomposition class there may be many different indicators. For example,
take ª = «¿3. The indicator [2Ò 2] defines the decomposition class of regular semisimple
elements, [2Ò 2] that of the regular nilpotent elements and [2Ò 2], [2Ò 2] both define the
class of non-semisimple, non-nilpotent, regular elements. The indicators [2Ò 1], [1Ò 2],
[2Ò 0], [0Ò 2], [1Ò 1], [1Ò 0], and [0Ò 1] all define the non-zero, non-regular, nilpotent orbit,
and [0Ò 0] defines the zero-orbit. The indicators [2Ò 1], [1Ò 2], [2Ò 0] and [0Ò 2] all define
the decomposition class of non-zero, non-regular, semi-simple elements.

An indicator determines much more than just a decomposition class. We introduce
more notation. ƒ1 :=

L
i½0 ¿i is a parabolic subalgebra in ¿ corresponding to a parabolic

subgroup P1 ² L. Define analogously a grading on ª by using all ni’s. Write

¬ :=
M
i½2

ªi ² ƒ :=
M
i½0

ªi

with corresponding parabolic subgroup P ² G. Next write ∆ := ∑ + ¬, where ∑ is the
center of ¿. Generally the Levi factor of P is not L.

If we change the indicator by putting all underlined ni equal to zero, we get a new
attached parabolic subgroup P2 ² G this time having L as Levi factor. Let ¬2 be the
nilradical of ƒ2, so

¬ = ¬1 ý ¬2

We get several collapsing maps of homogeneous vector bundles:

ç1: L ðP1 ¬1 ! ¿: g Ł y 7! gyÒ

with image Le, and

ç: G ðP ∆ ! ª: g Ł y 7! gyÒ

with image D̄ , i.e., D̄ = G∆, where the decomposition class D = G(∑Ž + e) is as defined
before. Both collapsings are proper morphisms. We write

Y := G ðP ∆Ò

and define a map

í: Y ! ∑: g Ł (s + u) 7! sÒ

for g 2 G, s 2 ∑ and u 2 ¬.
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We write X for the image of Y under the product map (íÒ ç): Y ! ∑ðD̄ ; it is closed
and an irreducible component of the Cartesian product V := ∑ ðD̄ÛÛG D̄:

Y ��! X ² V ��! D̄???y tu
???y

∑ ��! D̄ÛÛG

Then V contains VŽ (as defined in Proposition 2.3) as an open, smooth (but not necessarily
dense) subvariety.

Recall óA: Ã ! A is the normalization map of any variety A. Since Y is smooth, any
morphism û: Y ! A factorizes over Ã as

Y û̃
��! Ã

óA
��! AÒ

for a unique map û̃: Y ! Ã.
Let X̃ be the image of Y under the product map (íÒ ç̃): Y ! ∑ð D̃ ; it is closed and is

an irreducible component of the Cartesian product Ṽ := ∑ ðD̃ÛÛG D̃ from the following
diagram:

Y ��! X̃ ² Ṽ ��! D̃???y tu
???y

∑ ��! D̃ÛÛG

Then Ṽ contains ṼŽ, as defined in Proposition 2.4, as a dense smooth subvariety.
The algebra k[Y ] ' k[Gð ∆]P of global regular functions on Y is finitely generated

and defines a normal affine variety Y, the affinization of Y . Let

ã: Y ! Y := Spec k[Y ]

be the canonical map, which is proper and birational. We have the property that any
morphism û: Y ! A of Y to an affine variety A factors through ã: Y ! Y as

Y ã
! Y

ûa
! AÒ

for a unique morphism ûa: Y ! A. In particular we get surjective maps ía: Y ! ∑,
ça: Y ! D̄, ç̃a: Y ! D̃, (íÒ ç)a: Y ! X and (íÒ ç̃)a: Y ! X̃.

All these varieties and morphisms are determined by a single indicator. We shall
consider how much only depends on the decomposition class.

4.2. Good indicators. We shall single out among all indicators the most useful ones.
We shall call a indicator good if the collapsing ç1: L ðP1 ¬1 ! Le is birational, or,
equivalently, if Le ² P1 or, equivalently, if ç1 restricts to an isomorphism

L ðP1 ¬Ž
1 ' Le

The indicator corresponding to the weighted Dynkin diagram of a nilpotent orbit (all
indices underlined) is a good diagram for this orbit, but there might be more good
indicators.
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LEMMA 4.3. Any decomposition class D is associated to at least one good indicator.

PROOF. To define one, pick an x = xs + xn 2 D, and define L = Gxs and ∑Ž as before.
Then ni will be underlined iff ãi is a root of ¿, and we’ll put ni := 2 whenever ãi is not a
root of L. The nilpotent orbit Lxn has an ordinary weighted Dynkin diagram, as defined
by Dynkin and Kostant. These give the underlined ni, corresponding to the simple roots
of ¿. Then D corresponds to this indicator. It follows from the general theory of nilpotent
orbits, that such an indicator is good (see [16]). Such an indicator for a decomposition
class is not uniquely determined, but it only depends on the choice of L ¦ T and on the
choice of a component of NGL Ð e.

4.4. Description of an open set of Y . From now on we shall fix a good indicator and
all the notation that comes with it. We show that an open subset of the vector bundle Y
can be identified with the variety ṼŽ defined in Proposition 2.4 and that the map í̃Ž (also
defined there) identifies with the restriction of í̃ (defined in Section 4.1).

PROPOSITION 4.5. We fix a good indicator and corresponding notation as in Section 4.1.
Then:

(i) The open dense subset Y Ž := G ðP (∑Ž + ¬Ž
1 + ¬2) of Y := G ðP ∆ is isomorphic

to the Γ-stable irreducible component ṼŽ = G ðL (∑Ž + Le) of VŽ = G ðL (∑Ž + NGL Ð e)
(see Proposition 2.4), where e is any element of ¬Ž

1.
(ii) Y Ž identifies with the preimage of D under the collapsing ç: Y ! D̄,

Y Ž ��! D
\ tu \
Y ��! D̄Ò

and the restriction to Y Ž of the collapsing ç is a Galois covering of D with Galois group
Γ.

(iii) The commutative diagram

Y Ž ��! D???y
???y

∑ ��! ∑ÛΓ

identifies with the Cartesian square in Proposition 2.4(ii).

PROOF. With N2 the unipotent subgroup of P2 with Lie algebra ¬2, we claim that the
following map is an isomorphism

N2 ð ∑Ž ð ¬Ž
1

¾
��! ∑Ž ð ¬Ž

1 ð ¬2: (nÒ z) 7! n Ð z

We shall prove the claim first. Let (sÒ y) 2 ∑Ž ð ¬Ž
1. Since N2 is unipotent, the orbit

N2 Ð (sÒ y) ² (sÒ y) ð ¬2 is closed by the Kostant-Rosenlicht lemma. Let n 2 N2 be in
the stabilizer of (sÒ y). By the unicity of Jordan decompositions it follows that n fixes s
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and y separately. So n 2 N2 \ L and hence n is trivial. It follows that the orbit equals
(sÒ y) ð ¬2 and that the map in the lemma is bijective. Since both varieties are smooth
the claim follows.

We have the following sequence of isomorphisms:

G ðL (∑Ž + Ly) ' G ðL (∑Ž ð L ðP1 ¬Ž
1)

' G ðP1 (∑Ž + ¬Ž
1)

' G ðP (∑Ž + ¬Ž
1 + ¬2)

Here the first isomorphism comes from the goodness of the indicator, and the last
isomorphism follows from the claim. This shows (i). The remaining statements follow
from Propositions 2.3 and 2.4.

COROLLARY 4.6. The maps (íÒ ç)a: Y ! X and (íÒ ç̃)a: Y ! X̃ are normalization maps.

PROOF. From the proposition it follows that these maps are birational, and Y is
normal.

The following corollary is very important in applications.

COROLLARY 4.7. The open subset Y Ž of Y and the varieties X̃ and Y do not depend on
the choice of a good indicator, but only on the associated decomposition class.

PROOF. That Y Ž does not depend on the choice of a good indicator follows from the
proposition. The preimage of D under the projection Ṽ ! D̃ is independent of the good
indicator, and identifies with Y Ž. The image of Y in Ṽ is X̃, which identifies with the
closure of the preimage of D, and hence does not depend on the good indicator. Since Y
is the normalization of X̃, it does not depend on the good indicator either.

4.8. The normalization of D̄ as the Γ-quotient of Y. In particular, it follows from the
last proposition that Γ acts on the open set Y Ž. This action does not extend to the whole
variety Y , but Γ does act on Y, commuting with the G ð kŁ-action. This fact is very
useful for obtaining information on D̄ from information on Y, and vice versa.

THEOREM 4.9. (i) Y admits a GðΓðkŁ-action such that the G-quotient map ía: Y ! ∑
is Γ ð kŁ-equivariant.

(ii) The map ç̃a: Y ! D̃ , induced by the collapsing ç: Y ! D̄ , can be identified with
the Γ-quotient map of the Γ-action on Y; in particular YÛΓ ' D̃ .

(iii) The G-quotient map ía: Y ! ∑ induces (by taking Γ-quotients) the G-quotient
map

ỗ: D̃ ! ∑ÛΓ

PROOF. We consider the commutative diagram

Y
ç̃a

��! D̃

ía

???y
???y ỗ

∑ ��!
î

∑ÛΓ
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Γs acts on the Cartesian product V by pulling back the Γs-action on ∑. By the foregoing
proposition the subgroup Γ acts on an open set of X isomorphic to Y Ž, and therefore
on its closure. The surjection of Y onto X is the normalization map, and so the Γ-action
extends to Y as well. Since the surjection V ! ∑ is Γs-equivariant, it follows that ía

is Γ-equivariant. By the previous proposition, ç̃a: Y ! D̃ is generically a Galois cover
with Galois group Γ. Since D̃ is normal it follows from Zariski’s main theorem that ç̃a

is the Γ-quotient map. It follows that the natural map YÛΓ = D̃ ! ∑ÛΓ induced by the
G-quotient map ía is the G-quotient map of D̃.

5. Regular elements in decomposition varieties. Although the Γ-action on Y Ž

does not extend to Y , it does extend to the union Y r of all orbits of maximal dimension,
and this subvariety is also independent of the good indicator.

For an irreducible G-variety W we denote the open set consisting of orbits of maximal
dimension by W r, and call it the set of regular elements in W . If V is a subset of W ,
we denote the open (possibly empty) set V \ W r by V r; it should be clear from the
context what the corresponding variety W is. This open set is of interest in the theory of
sheets. If D̄ is the closure of some sheet, then this sheet is just D̄r. A useful property is
that the regular parts of Y and Y coincide, hence Yr is smooth. Next we get information
on the normalization of D̄r, since it is the Γ-orbit space of Yr.

The decomposition class D is contained in the subvariety D̄r of regular elements in
D̄, but in general the inclusion is strict. We shall need the following lemma.

LEMMA 5.1. Let ñ: Y r ! Xr ² ∑ ð D̄r (resp. ñ̃: Y r ! X̃r ² ∑ ð D̃r) be the restriction
of (íÒ ç) (resp. (íÒ ç̃)). For any y 2 Y r the tangent map dñy (resp. dñ̃y) is injective on
TyY r.

PROOF. We can assume y = 1Ła, with a 2 ∆. Write X1 := f1Ł(s+a) 2 Y r; s 2 ∑g; this
is an open subset of an affine space in the fibre above P 2 GÛP. Put X2 := Gy; then X1 and
X2 are smooth varieties. Restricted to X1, the map í is an embedding, but X2 maps onto
a single point. Since dim X1 + dim X2 = dim Y r, this implies that TyY r = TyX1 ý TyX2.
Since Ker dñy = Ker díy \ Ker dçy it follows also that Ker dñy is equal to the kernel
of the restriction of dçy to TyX2. But since ç restricted to X2 is just a finite covering of
one G-orbit by another of the same dimension, it follows that this kernel is trivial. The
statements involving normalizations are proved the same way.

5.2. The (1-1)-condition. The following corollary and its proof are inspired by unpub-
lished work of Brylinski-Kostant [14].

COROLLARY 5.3. (i) The affinization map ã: Y ! Y restricts to an isomorphism
ãr: Y r ' Yr on the open subsets of regular elements. It follows that Y r is indepen-
dent of the good indicator and the Γ-action on Y Ž extends to Y r.

(ii) The following statements are equivalent.
(1-1.1) ñ: Y r ! Xr is injective;
(1-1.2) ñ: Y r ! Xr is an isomorphism;
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(1-1.3) The fibre ç�1(e) of ç: Y ! D̄ consists of a single point for any nilpotent element
e in D̄r.

(iii) The following statements are equivalent.
(g1-1.1) ñ̃: Y r ! X̃r is injective;
(g1-1.2) ñ̃: Y r ! X̃r is an isomorphism;
(g1-1.3) The fibre ç̃�1(e) of ç̃: Y ! D̃ consists of a single point for any nilpotent element

e in D̃r.

PROOF. Since ãr is the pull-back of the proper map ã, it is proper; therefore it is a
finite map by Chevalley’s theorem since it has finite fibres. Since Yr is normal and ã is
birational, Zariski’s main theorem implies that ãr is an isomorphism. This proves (i).
By the same arguments ñ and ñ̃ are normalization maps (in the notation of the previous
lemma), hence finite. Since both tangent maps are injective at all points, by Lemma 5.1
it follows that (1-1.1) and (1-1.2) (resp. (g1-1.1) and (g1-1.2)) are equivalent to each other
(see [46, Lemma, p. 136]). Assuming (1-1.3) it follows by the same arguments that Xr is
normal in (0Ò e). If X is not normal, then the locus of non-normal points Xnn is a kŁðGðΓ
stable closed subvariety of X. The G-quotient map Xnn ! XnnÛÛG attains its maximal
fibre dimension in the fibre containing (0Ò 0) which has dimension strictly smaller than
dim G(0Ò e) = dim Ge since (0Ò e) is a normal point by (ii). So Xnn \ Xr is empty and
hence Y r ' Xr. This proves (ii), and (iii) is proved similarly.

REMARKS. (i) We shall write (1-1) for the equivalent conditions on D in (ii) of the
corollary, and (g1-1) for the conditions in (iii). Usually it is not difficult to check (1-1.3)
in contrast to (g1-1), using for example [23]. For ª = «¿n (1-1) is always satisfied; this is
not the case for the other simple Lie algebras.

(ii) Let ü = [n1Ò    Ò nr] be the weighted Dynkin diagram of any nilpotent variety
N. As remarked by Collingwood-McGovern [17, p. 110], the ni that have values 0 or 1
form the weighted Dynkin diagram of a nilpotent variety for the Levi L defined by the
corresponding ãi. This is an empirical fact, and an a priori proof would be interesting.
If we define a decomposition variety D̄ by the indicator ü where we only underline the
ni’s with value unequal to 2, then D̄ satisfies (1-1) and N is the (reduced) intersection of
D̄ with the full nilpotent variety. In this way one can put any nilpotent variety with 2’s
in its weighted Dynkin characteristic in a strictly larger decomposition variety, and try
to study it using information on the generic orbit closures in the decomposition variety
(just like polarizable orbits are studied by comparing them to semisimple orbits).

6. Cohomological results. Motivated by the result that YÛΓ = D̃ , we wish to know
more properties of Y that might descend to D̃. We show in this section that Y has rational
singularities using results of Hinich and Panyushev. By a theorem due to Boutot, this
property descends to D̃. Rational singularities implies Cohen-Macaulayness. It is also
true that Y is Gorenstein, but this property does not always descend to D̃. We shall also
give some information on the minimal resolution of k[Y] as a module over the polynomial
ring R of regular functions on ª, and that information also descends in principle.
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6.1. Coverings of nilpotent varieties. Let N be any nilpotent variety. Panyushev and
Hinich showed that the normalization of N has rational singularities. This is a very
useful result, which we will show also holds for decomposition varieties. To prove this
generalization we need a small extension of the Panyushev-Hinich result, saying that
finite coverings of N have the same property. We need the following general result,
proved using a result of Flenner [19]. Recall that our base field has characteristic zero.

THEOREM 6.2. Let f : Z1 ! Z2 be a finite morphism between two normal varieties, and
let ZŽ

2 ² Z2 be an open subset of smooth points with complement of codimension at least
two. Suppose the restriction of f to ZŽ

1 := f�1(ZŽ
2) is étale. Then if Z2 is Gorenstein with

rational singularities, Z1 is also Gorenstein with rational singularities.

PROOF. Suppose Z2 is Gorenstein with rational singularities. Since the statements in
the theorem are local we can assume that Z1 and Z2 are affine and that the Grothendieck
dualizing sheaf°Z2 is trivial (by the Gorenstein property), with generating global section
s. So the restriction °ZŽ

2
is trivial too, and also °ZŽ

1
by étaleness. By the normality of Z1

and the codimension condition it follows that°Z1 = iŁ°ZŽ
1

is also trivial, where i: ZŽ
1 ! Z1

is the inclusion map. Put another way, f Ł°Z2 = °Z1 is isomorphic to the structure sheaf.
Let

ö2: fZ2 ! Z2

be a resolution of singularities. Since Z2 has rational singularities we have ö2ÒŁ°e
Z2

= °Z2 .

Identifying ZŽ
2 with an open subset of fZ2, we see that the restriction of s to ZŽ

2 extends to
a global regular section s̃ of °e

Z2

, i.e., to a global regular differential form on the smooth

variety fZ2.

We can identify ZŽ
1 with an open subset of the cartesian product fZ2 ðZ2 Z1; write cZ1

for its closure. Let f̂ : cZ1 !
fZ2 and ö̂2: cZ1 ! Z1 be the corresponding projections. Taking

a resolution of singularities
ö̃1: fZ1 !

cZ1Ò

we then obtain the following diagram:

fZ1
ö̃1

��! cZ1
ö̂2

��! Z1???y f̂

???y f

fZ2
ö2

��! Z2

In the above, the composition ö1 := ö̂2 Ž ö̃1 is a resolution of singularities for Z1, and the
composed map f̃ := f̂ Ž ö̃1 is a morphism between smooth varieties.

The pull-back f̃ Ł(s̃) is a global regular differential form on fZ1, extending the global

section f Ł(s) of °ZŽ
1
, where ZŽ

1 is identified with an open subset of fZ1.
In general we have an inclusion ö1ÒŁ°e

Z1

² °Z1 . But we just saw that the generator of

°Z1 extends to a global regular differential form onfZ1, so this inclusion is an isomorphism.
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To sum up, °Z1 is invertible and ö1ÒŁ°e
Z1

= °Z1 , where ö1: fZ1 ! Z1 is a resolution of

singularities. These are exactly the conditions of a theorem of Flenner [19], implying
that Z1 is Gorenstein with rational singularities.

The slight extension of the result of Hinich [24] and Panyushev [41] is then as follows.

COROLLARY 6.3. Let N ² ª be the closure of a nilpotent orbit. Suppose ó: N̂ ! N is a
finite G-equivariant covering. Then the normalisation of N̂ is Gorenstein with rational
singularities.

PROOF. Let Z1 be the normalization of N̂, Z2 the normalization of N and f : Z1 ! Z2

the associated finite G-equivariant map. All orbits on N and therefore on Z2 and Z1 are
even dimensional, and both Z1 and Z2 are the closure of one orbit, so we can take Z2

to be that orbit. By the result of Hinich and Panyushev, Z2 is Gorenstein with rational
singularities. By the above theorem it follows that Z2 also is Gorenstein with rational
singularities.

REMARK. If I remember correctly, the idea of this proof came up in a conversation
with F. Knop around 1991 in Basel after discussing Hinich and Panyushev’s work.

6.4. Syzygies. G acts on the graded coordinate ring R := k[ª]. This we extend to a
GðΓ action where Γ acts trivially. Consider k[Y] as a graded R-module with compatible
G ð Γ action. Since G ð Γ is linearly reductive, k[Y] has a G ð Γ-equivariant minimal
resolution by finitely generated, free, graded R-modules of the form

Ð Ð Ð ! R 
k M2 ! R 
k M1 ! R 
k M0 ! k[Y] ! 0Ò

where each Mi is a finite dimensional graded G ð Γ-module. Here minimality means
that all maps become zero after tensoring with k�), where k0 is the quotient of R by its
maximal graded ideal. The GðΓs-modules Mi are uniquely determined and isomorphic
to the finite dimensional doubly-graded associative Tor-algebra TorR

ž (k0Ò k[Y]). In fact,
for all i,

Mi ' TorR
i (k0Ò k[Y])

as a graded G ð Γ-module.
By taking Γ-invariants of a minimal resolution of k[Y],

Ð Ð Ð R 
k MΓ
2 ! R 
k MΓ

1 ! R 
k MΓ
0 ! k[Y]Γ ! 0Ò

we get a minimal free G-equivariant resolution of k[D̃] ' k[Y]Γ (see Theorem 4.9) by
graded R-modules.

Remarkably enough, these Tor-modules can be calculated as sheaf cohomology groups
of certain homogeneous vector bundles on GÛP. If M is a P-module, we write LGÛP(M)
for the locally free sheaf of sections of the homogeneous vector bundle GðP M ! GÛP.
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THEOREM 6.5. Notations as before.
(i) We have G-module isomorphisms

�
TorR

j (k0Ò k[Y])
�

i+j
' Hi

�
GÛPÒ

i+ĵ

LGÛP(ªÛ∆)Ł
�
Ò

and
TorR

ž (k0Ò k[D̃]) '
�
TorR

ž (k0Ò k[Y])
�Γ


(ii) We have the vanishing results

Hi
�

GÛPÒ
ĵ

LGÛP(ªÛ∆)Ł
�

= 0 for i Ù j, and(1)

Hk(Y ÒOY ) = 0 for k ½ 1.(2)

PROOF. Given the vanishing results of (ii), the same proof as [10, Lemma 3.9] gives
the first statement of (i); the second follows from the remarks made before the statement
of the theorem.

Since the indicator is assumed to be good, it follows that the dimensions of G¬
and G ðP ¬ are the same, so Spec k[G ðP ¬] is a normal finite covering of G¬. From
Corollary 6.3 it follows that Spec k[G ðP ¬] is Gorenstein with rational singularities.
Since the affinization map

G ðP ¬ ! Spec k[G ðP ¬]

is a resolution of singularities, it follows that the higher cohomology groups of the
structure sheaf of G ðP ¬ vanish.

Consider the graded Koszul complex associated to the global section s: gŁx 7! gŁ(xÒ x̄)
of the vector bundle

G ðP (ª ð ªÛ¬) ! G ðP ª ' GÛP ð ª

The scheme of zeros of the section s is just GðP ¬. Using the two spectral sequences of
hypercohomology of this complex, an argument as in [10, Section 2.12] shows that the
higher vanishing of the structure sheaf of G ðP ¬ implies that

Hi
�

GÛPÒ
ĵ

LGÛP(ªÛ¬)Ł
�

= 0 for i Ù j.

The short exact sequence

0 ! ∆Û¬ ! ªÛ¬ ! ªÛ∆ ! 0

induces the long exact sequence (using the triviality of the bundle LGÛP(∆Û¬)Ł ' OGÛP

∑Ł, since P acts trivially on ∆Û¬ ' ∑)

0 !
î

LGÛP(ªÛ∆)Ł !
î

LGÛP(ªÛ¬)Ł !
i�1̂

LGÛP(ªÛ¬)Ł 
 S1∑Ł !

Ð Ð Ð !
i�2̂

LGÛP(ªÛ¬)Ł 
 S2∑Ł ! LGÛP(ªÛ¬)Ł 
 Si�1∑Ł ! OGÛP 
 Si∑Ł ! 0

By breaking this up into short exact sequences and using the vanishing results forVj LGÛP(ªÛ¬)Ł, the proof of (ii) follows straightforwardly.
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REMARKS. (i) The theorem implies that the cohomology of certain homogeneous
vector bundles carries a remarkable G ð Γ action. Let k = C, the field of complex
numbers, K be a compact form of G and H ² K be such that KÛH ' GÛP as manifolds.
Then Γs acts naturally on the manifold KÛH; can we lift this action (or restricted to Γ)
to the complex vector bundle GðP (ªÛ∆)Ł ! KÛH and to its cohomology groups? This
is possible for P = B and ∆ = ∂. In that case, this bundle is just the complex cotangent
bundle.

(ii) One can get an explicit upper bound for the dominant weights occurring in
TorR

ž (k0Ò k[Y]) as in [10, Lemma 2.10].

6.6. Y has rational singularities. As a first corollary, we find the key result of this
article, namely that Y is Gorenstein and has rational singularities.

COROLLARY 6.7. The affine variety Y is a rational Gorenstein variety with rational
singularities and with resolution of singularities ã: Y ! Y.

PROOF. From Bruhat’s lemma it follows that GÛP is rational, and therefore also Y is
rational, since it is the total space of a vector bundle on GÛP. Since Yr ' Y r, it follows
that Y is rational. Since ã is a resolution of singularities of Y, the corollary follows from
the theorem and the definition of rational singularities.

REMARKS. (i) In the case of decomposition classes of semisimple elements this result
together with its non-commutative analog was already known, using an observation of
Elkik (see [49, Proposition 10]). For the decomposition classes of nilpotent elements it
is due to Hinich and Panyushev.

(ii) Suppose we have an indicator with the property that L ðP1 ¬Ž
1 ! Le is only a

finite covering. Then the corresponding affine variety Y is still a Gorenstein variety with
rational singularities, and the full proof extends to this case.

6.8. Identification with X. As a second corollary (of the proof), we derive that Y iden-
tifies with its image X in ∑ ð ª if and only if (1-1) is satisfied and the nilpotent variety
G¬ is normal. These hypotheses are always satisfied in case ª = «¿n.

COROLLARY 6.9. (a) The following five statements are equivalent.
(i) The variety X is normal, i.e., Y ' X;

(ii) The variety X is Cohen-Macaulay and (1-1) is satisfied;
(iii) The nilpotent variety G¬ is normal and (1-1) is satisfied;
(iv) The following holds:

Hi
�

GÛPÒ
î

LGÛP(ªÛ¬)Ł
�

=
(

kÒ if i = 0;
0Ò otherwise;

(v) G acts trivially on TorR
0 (k0Ò k[Y]), i.e., G acts trivially on Hi

�
GÛPÒ

Vi LGÛP(ªÛ∆)Ł
�
,

for all i.
(b) Suppose the stable class D satisfies the conditions in (a) and that D̄ÛÛG is

unibranch (see Lemma 3.2). Then D̄ is unibranch, and D̃ is the underlying variety of
the pull-back ∑ÛΓs ðD̄ÛÛG D̄.
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PROOF. Since Y is Cohen-Macaulay, (i) implies (ii). If we assume (ii), then the non-
smooth locus of X is of codimension at least two. Serre’s normality criterion shows that
X is normal, hence (i).

By a variation of [10, Lemma 3.9] the conditions in (iii) and (iv) are equivalent. It
follows from Theorem 6.5(i) that k[Y] is a quotient of k[∑] 
k k[ª] = k[Y]G 
k k[ª] if
and only if Hi

�
GÛPÒ

Vi LGÛP(ªÛ∆)Ł
�

consists only of G-invariants for all i. It follows
easily that (i) and (iv) are equivalent. The equivalence of (i) and (v) follows from the
theorem. Finally, (b) follows directly from (a).

LEMMA 6.10. The pull-back variety Ṽ is irreducible with underlying variety X̃, i.e.,
X̃ = Ṽred. Moreover X̃ is normal, i.e. Y ' X̃, if and only if X̃ is Cohen-Macaulay and
(g1-1) holds.

PROOF. Consider the following commutative square of quotient maps:

Y ��! D̃???y
???y

∑ ��! ∑ÛΓ

Let s 2 ∑ have image s̄ := î(s). Then Γ acts transitively on the (closed) points of the fibre
î�1(s̄). Since all fibres of ía are irreducible by Theorem 6.12(iv), Γs acts transitively on
the set of irreducible components of the fibre í�1

a

�
î�1(s̄)

�
. This implies that the fibre

ỗ�1(s̄) is irreducible. So all fibres of Ṽ ! ∑ are irreducible of the same dimension and
Ṽred = X̃. The proof of the second statement uses the same argument as the one used in
the previous proof.

6.11. Fibres of the G-quotient map of Y. In the next proposition we assemble some
more results on Y and its G-quotient map.

PROPOSITION 6.12. (i) Y ã
! Y

ça
! D̄ is the Stein factorization of the collapsing ç.

(ii) The map í: Y ! ∑ is smooth.
(iii) The G-quotient map ía: Y ! ∑ is flat. Its fibres are irreducible, reduced, Goren-

stein, have rational singularities and contain a dense open G-orbit.
(iv) For s 2 ∑, the dense orbits in í�1(s) and í�1

a (s) are isomorphic and the induced
map í�1(s) ! í�1

a (s) is a resolution of singularities.

PROOF. (i) is standard (see [22]). The map í factors through the smooth maps of
vector bundles

Y ! G ðP ∆Û¬ ' GÛP ð ∆Û¬

and the smooth projection GÛP ð ∆Û¬ ! ∆Û¬ ' ∑. Thus í is smooth.
Since k[G ðP ¬] does not contain non-constant G-invariants, it follows that k[Y]G '

k[∑]. It follows that the isotypical components of k[Y] are finitely generated maximal
dimensional Cohen-Macaulay graded modules over the ring of invariants k[∑], which is
a polynomial ring. From the Auslander-Buchsbaum equality (see [39, Theorem 19.1])
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it follows that the isotypical components are projective, hence free. So k[Y] is k[∑]-free
and ía is flat. (One can also use [21, Proposition 15.4.2] directly.) Then from general
theorems (see [39, Theorem 23.4]), flatness of ía implies that Y is Gorenstein if and only
if the special fibre Y0 is Gorenstein.

Since f : í�1(s) ! í�1
a (s) is a pull-back of ã, it is proper, surjective with connected

fibres (by (i)). Each fibre of í and ía is a complete intersection by global G-invariant
regular functions, and all have the same dimension. It follows that f is generically one-to-
one. By the vanishing of higher cohomology of OY , it follows that k[í�1(s)] ' k[í�1

a (s)],
in particular í�1

a (s) is normal, and the higher cohomology of Oí�1(s) vanishes. Hence f is
a generically finite map with connected fibres between normal varieties, so by Zariski’s
main theorem, f is birational. Since í�1(s) ' G ðP (s + ¬) is smooth, f is a resolution
of singularities and í�1

a (s) has rational singularities. To show that these fibres contain a
dense open G-orbit, it is enough to show that í�1(0) = G ðP ¬ contains a dense orbit
(compare [32, p. 130]). Since GðP ¬ and G¬ have the same dimension and G¬ contains
an open, dense orbit of nilpotent elements, it follows that GðP ¬ has a dense open orbit.
This finishes the proof of (iv).

7. Fibres of the G-quotient map of D̃. In the last section we derived various
very good properties for Y and its G-quotient map. Now we shall try to induce those
properties on D̃ and on its quotient map. Fibres of the quotient map remain irreducible,
but no longer need to be reduced. We shall give several characterizations of when all
fibres are reduced.

We first show that D̃ has rational singularities and study some properties of the fibres
of the G-quotient map ỗ: D̃ ! ∑ÛΓ.

THEOREM 7.1. (i) The normalization of any decomposition variety has rational singu-
larities. Furthermore D̃ ' YÛΓ and D̃r ' YrÛΓ.

(ii) The fibres of the G-quotient map ỗ: D̃ ! ∑ÛΓ are all irreducible containing a
dense G-orbit.

(iii) Recall that î: ∑ ! ∑ÛΓ is the quotient map. Then G acts trivially on
TorR

0 (k0Ò k[Y])Γ if and only if D̃ is the image of (î Ž íÒ ç): Y ! ∑ÛΓ ð D̄. In par-
ticular, this is the case if (1-1) is satisfied and G¬ is normal.

(iv) D̄ is normal if and only if TorR
0 (k0Ò k[Y])Γ = k.

PROOF. Since Y has rational singularities by Corollary 6.7, (i) follows from Boutot’s
theorem [9] and Theorem 4.9. In the proof of Lemma 6.10 we already showed (ii). And
(iii) follows from Corollary 6.9 and (i). If D̄ = D̃ then k[D̃] is a quotient of R and vice
versa, this proves (iv).

REMARK. It follows that ∑ÛΓ parametrizes the regular orbits of D̃ , by associating to
c 2 ∑ÛΓ the dense orbit in the fibre of ỗ, and we at least get a surjection of ∑ÛΓ on the
orbit space D̄rÛG. If D̄r is a sheet (and so Γ = Γs), then the main result of Borho [5]
gives that ∑ÛΓ also parametrizes the orbits of D̄r. If the normalization map D̃r ! D̄r is
bijective, this is obvious, but I don’t know whether an analogous result is true in general.
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Katsylo [27] proved that the orbit space D̄rÛG has the structure of an algebraic variety
for any decomposition class D.

7.2. Conditions for flatness of ỗ. If A is an affine G-variety, the G-multiplicities are the
multiplicities of simple G-modules in k[A], ranging over all simple G-modules.

LEMMA 7.3. (i) The following conditions are equivalent.
(1) The G-quotient map ỗ: D̃ ! ∑ÛΓ is flat;
(2) The G-multiplicities are constant along the fibres of ỗ: D̃ ! ∑ÛΓ;
(3) The G-quotient map Ṽ ! ∑ is flat;
(4) The G-multiplicities are constant along the fibres of Ṽ ! ∑;
(5) Ṽ is Cohen-Macaulay and reduced (i.e., X̃ = Ṽ).
(ii) If (refl) is satisfied, then the conditions in (i) are also satisfied.
(iii) If D̃r is smooth, then the conditions in (i) are satisfied if and only if (refl) holds.

PROOF. The coordinate ring k[D̃] considered as a graded module for the invariant
ring k[D̃]G ' k[∑ÛΓ] is a direct sum of its G-isotypical components. By Nakayama’s
lemma for graded modules, it follows that the rank of any isotypical component as a
graded k[D̃]G-module is equal to the minimal number of homogeneous generators if and
only if the isotypical components are free. So (1) () (2). Analogously (3) () (4).
Since Ṽ ! ∑ is a pull-back of ỗ, it follows that the corresponding fibres are isomorphic.
Hence (2) () (4). If Ṽ is Cohen-Macaulay, then Ṽ ! ∑ is flat, so (5) implies (3).

For any irreducible G-character ï, there is a k[∑]-linear map between isotypical
components

fï: k[Ṽ]ï !! k[X̃]ï !̈ k[Y]ïÒ(3)

where k[Y]ï is free by the flatness of ía (see Theorem 6.12(iii)). Let s 2 ∑Ž and let ks be
the corresponding k[∑]-module defined by f Ðt := f (s)t (f 2 k[∑]). The open orbits in í�1

a (s)
and the fibre of s under Ṽ ! ∑ are isomorphic, by Proposition 4.5, so the singularity
locus of the latter fibre is at least of codimension two (all orbits have even dimension).
Assuming flatness of ỗ, then both fibres are Cohen-Macaulay, and, by Serre’s criterion,
both are normal and hence isomorphic. So there is an isomorphism of vector spaces

fï 
 ks: k[Ṽ]ï 
 ks ' k[Y]ï 
 ks

This shows that the three isotypical components in (3) all have the same rank as k[∑]-
modules. Again, by the flatness assumption on ỗ, we have that k[Ṽ]ï is free for all
ï. Since free modules are torsion free, it follows that fï is injective for all ï. Since
k[Ṽ] ! k[X̃] is surjective it follows by Theorem 7.1 that it is an isomorphism, i.e.,
X̃ = Ṽ. Since ∑ÛΓ and D̃ are Cohen-Macaulay, it follows from the flatness of ỗ that all
its fibres are Cohen-Macaulay. This also holds for the fibres of the pull-back Ṽ ! ∑, so
Ṽ is Cohen-Macaulay. Hence (1) implies (5) and we have finished the proof of (i).

Assuming (refl.3), it follows from the Cohen-Macaulayness of D̃ that ỗ is flat (apply
[21, Proposition 15.4.2] or [39, Theorem 23.1]). Hence (ii).

Suppose D̃r is smooth, then flatness of ỗ implies that ∑ÛΓ is smooth. Hence (iv).
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7.4. Grothendieck simultaneous resolutions for ỗ. The usefulness of the following
theorem lies in the fact that very often we can check condition (cart.3). But once this is
satisfied, many other very desirable properties follow.

THEOREM 7.5. (i) The following statements are equivalent.
(cart.1) The zero fibre ỗ�1(0̄) of ỗ: D̃ ! ∑ÛΓ is reduced;
(cart.2) All the fibres of ỗ are reduced and irreducible, are Gorenstein and have rational

singularities;
(cart.3) ỗ is flat and (g1-1) is satisfied;
(cart.4) Y ' X̃ ' Ṽ, i.e., the following diagram of quotient maps is Cartesian

Y ��! Y ��! D̃???y tu
???y

∑ ��! ∑ÛΓ

(ii) Suppose the conditions in (i) are satisfied. Then D̃ is Gorenstein and the smooth
locus of D̃r is the preimage under ỗ of the smooth locus of ∑ÛΓ. In particular D̃r is
smooth if and only if (refl) is satisfied.

PROOF. Obviously, using Proposition 6.12, both (cart.2) and (cart.4) imply (cart.1).
Assume (cart.1), so the special fibre of ỗ is reduced (and irreducible). The map that
surjects the normal variety í�1

a (0) onto ỗ�1
�
ỗ(0)

�
is in fact the Γ-quotient map, from

which it follows that
�
ỗ�1

�
ỗ(0)

��
red

=
�
ỗ�1

�
ỗ(0)

��
is normal. Then it follows from

Borho-Kraft’s associated cone construction (see [32, II 4.2]) that all the (closed) fibres are
reduced, irreducible and normal and that the multiplicities along the fibres are constant.
Hence by (ii) ỗ is flat. By applying [21, Corollaire 12.1.7], it follows that the collection
of (not necessarily closed) points z in D̃ such that z is normal and reduced in the
(not necessarily closed) fibre ỗ�1

�
ỗ(z)

�
is open and G ð kŁ-stable. Its complement is a

closed G-stable cone. Suppose it is non-empty. Then it contains a point in the zero-fibre
ỗ�1

�
ỗ(0)

�
, which is normal and reduced. This is a contradiction, hence all fibres of ỗ are

reduced and normal.
By pulling back (see [21, Proposition 6.8.2]), we see that the quotient map ôṼ : Ṽ ! ∑

has the same properties. It follows that Ṽ is reduced and normal (see [21, Corollaires 6.4.2
and 6.5.4]). Because Y ! Ṽ is the normalization map it follows that Y ' X̃ ' Ṽ, i.e.
(cart.1) implies (cart.4). Using the equivalence of (cart.1) and (cart.4), it also follows
that (g1-1) is satisfied. So (cart.1) also implies (cart.3).

Assume (cart.3), then by the lemma before we have that X̃ = Ṽ is reduced and
Cohen-Macaulay, and by Corollary 5.3 that Y r ' Yr ' X̃r. Let X̃s be the singular locus
of X̃, then X̃s has codimension at least three, since dim X̃sÛÛG Ú dim X̃ÛÛG = dim ∑
and dim í�1

a (s) \ X̃s Ú dim í�1
a (s) \ (X̃ n X̃r) � dim í�1

a (s) � 2, all orbits having even
dimension in X̃. So Ṽ = X̃ is Cohen-Macaulay and smooth up to a subset of codimension
at least three. Then it follows from Serre’s criterion for normality that X̃ is normal. Thus
Y ' X̃ and (cart.4) follows. Hence (i).
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If the conditions are satisfied, then D̃ is Gorenstein since all the fibres of ỗ are
Gorenstein. In addition, all the fibres of the flat map ỗr: D̃r ! ∑ÛΓ are smooth. Now
apply [39, Theorem 27.7] to get (iii).

REMARKS. (i) We shall say that (cart) is satisfied if one of the equivalent conditions
in (i) of the theorem is satisfied. If that is the case, the commutative diagram

Y ��! D̃???y
???y

∑ ��! ∑ÛΓ

is a simultaneous resolution of the flat quotient map D̃ ! ∑ÛΓ (see [48]). (cart) is always
satisfied if ª is of type Ar.

(ii) As remarked in the proof, the Killing form restricts to a non-degenerate form on
∑. It follows that the induced quadratic invariant on ª vanishes on D̄ if and only if ∑ = 0.

(iii) In general D̃ need not be Gorenstein, even if D̄ = D̃ (see example Section 9.5).
(iv) Let Γ0 be the (normal) subgroup of Γ generated by the reflections in Γ. Suppose

(g1-1) holds; then the same arguments show that Y is isomorphic to the pull-back ∑ ð∑ÛΓ0

YÛΓ0 and YÛΓ0 = (∑ÛΓ0 ð∑ÛΓ D̃)red.

7.6. Grothendieck simultaneous resolutions for ô̄. We describe next the situation where
D̄ itself is part of a Grothendieck simultaneous resolution. The conditions in (b) are in
general easy to check, using tables already published in the literature.

THEOREM 7.7. Let D be a decomposition class.
(i) The following two statements are equivalent.

(1) The quotient D̄ÛÛG is normal and V = Y, i.e., we have a Cartesian diagram

Y ��! Y ��! D̄???y tu
???y

∑ ��! ∑ÛΓ

(2) D is stable, satisfies (1-1), and both D̄ÛÛG and G¬ are normal.
(ii) Suppose the conditions in (i) are satisfied. Then D̄ has rational singularities,

is Gorenstein; its quotient D̄ÛÛG ' ∑ÛΓ is smooth; its quotient map ô̄ is flat with
irreducible, reduced, Gorenstein fibres having rational singularities, and D̄r is smooth.

PROOF. Suppose (1) is satisfied. Then Y = X, hence (1-1) and normality of G¬ (see
Corollary 6.9). Since V = Y is irreducible, VŽ is also irreducible, and D is stable (see
Corollary 2.7). Hence D̄ = YÛΓ = D̃ is normal and ∑ÛΓ is smooth by Theorem 3.1(i).
Hence (2).

Conversely, suppose (2) is satisfied. (1-1) and normality of G¬ imply that Y = X is an
irreducible component of V, and Γs = Γ acts on Y with quotient D̃ . From D̄ÛÛG ' ∑ÛΓs

it follows again that (refl) holds, and the group Γs also acts on V with quotient D̄. So D̃
is a component of D̄, hence D̄ is normal. So V = Ṽ = Y by Theorem 7.5.

Hence (i), and (ii) follows from Theorem 7.5.
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REMARKS. (i) Assuming only the condition Y = V does not imply the normality of
D̄ÛÛG (see example Section 9.3). But then D̄ is normal if and only if D̄r is normal if
and only if D̄ÛÛG is normal.

(ii) The conditions in the theorem are satisfied for any stable decomposition class in
Ar = «¿r+1 such that the type of ¿ is pAq with p(q + 1) = r + 1, (see [34]).

(iii) Another equivalent condition is as follows. Y = V and D̄ÛÛG is normal if and only
if dim TorR

0 (k0Ò k[Y]) = #Γ if and only if the representation of Γs on TorR
0 (k0Ò k[Y])Γ is the

regular representation. The ordinary Grothendieck simultaneous resolution was used by
Slodowy [48] to define a W-action on the cohomology of the fibres ofç using monodromy.
These actions turned out to be equivalent to Springer’s famous W-representations. One
might ask whether Slodowy’s method generalizes to obtain Γ-actions on fibres of ç, at
least in the situation of the last theorem.

7.8. Classification of Dixmier sheets where Y = V and the closure is normal. The
following theorem classifies the Dixmier sheets that resemble most the regular sheet in
the sense that its closure is normal and that there is a natural simultaneous resolution
for the quotient map of D̄. The classification is complete only up to normality results of
nilpotent varieties in Lie algebras of type Er.

THEOREM 7.9. Let ª be simple. Suppose the decomposition class D contains a semisim-
ple element x with stabilizer L so that D̄r is a Dixmier sheet.

Then D̄ÛÛG is normal and Y = V if and only if L is either a maximal torus or L = G
or

(a) its type is pAq, with q ½ 0 and r + 1 = p(q + 1), if ª = Ar;
(b) its type is pAq + Bj, with qÒ j ½ 0, r = j + p(q + 1) and 2j ½ q, if ª = Br;
(c) its type is pAq + Cj, with qÒ j ½ 0, r = j + p(q + 1) and 2j � q + 1, if ª = Cr;
(d) its type is pAq + Dj, with q ½ 0, j ½ 2, r = j + p(q + 1) and 2j ½ q + 1 or its type is

pAq, with q odd and r = p(q + 1), if ª = Dr;
(e) the types in Theorem 3.1(e6) (resp. (e7), (e8)) where the nilpotent variety G¬ is

normal (we conjecture that these are all normal), if ª = Er.
(f) its type is A2 (short roots), A1 + A2 (short roots and one long simple root) or C3, if

ª = F4;
(g) its type is A1 (corresponding to the short simple root) if ª = G2.

PROOF. Since we require D̄ÛÛG to be normal, we only have to consider the types
given in Theorem 3.1. Among those types we have to consider which satisfy both (1-1)
and that G¬ is normal. For ª = Ar both conditions are satisfied for the given types, by
Kraft and Procesi [34], which gives (a).

Let ª be classical. Then we can check (1-1) using Hesselink [23] and normality using
Kraft-Procesi [35]. Let ª = «√2r+1 and L of type pAq +Bj, where r = p(q +1)+ j. Order the
sequence

�
(q+1)2jÒ 2j+1

�
to obtain a partition of 2r+1 and then take the dual partition and

obtain ï. From a result of Hesselink [23, Theorem 7.1] it follows that (1-1) is satisfied if
and only if ï is the partition of a nilpotent in «√2r+1. If 2j ½ q then ï =

�
(2p+1)q+1Ò 12j�q

�
is the partition of a nilpotent (i.e., all even parts occur an even number of times), hence
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(1-1) is satisfied. To check normality, we have to find the minimal è-degenerations of
ï. Then normality fails if and only if a minimal è degeneration of type (e) occurs (see
Kraft-Procesi[35, Theorem 16.2]). In this case, type (e) does not occur, hence normality
holds for G¬. If q Ù 2j, then ï =

�
(2p + 1)2j+1Ò 2pq�2j

�
. If q is odd this is not a partition

of a nilpotent, hence (1-1) is not satisfied. But if q is even, it is a partition of a nilpotent,
hence (1-1) is satisfied. But then there is a minimal degeneration of type (e), hence
non-normality. This handles type Br.

Type Cr is similar. Here L is of type pAq + Cj, where r = p(q + 1) + j. If 2j ½ q, then
we get (1-1) and normality. If q Ù 2j, then (1-1) is satisfied if and only if q is even. But
if q is even, normality fails. This handles type Cr.

Let ª = «√2r. Here Procesi-Kraft’s normality criterion only holds for partitions that
are not very even. First consider the case where the type of L is pAq + Dj, where j ½ 2
and p(q + 1) + j = r. If 2j ½ q + 1, we obtain that ï =

�
(2p + 1)q+1Ò 12j�(q+1)

�
is a partition

of a nilpotent, hence (1-1). This is not very even and there is no minimal degeneration
of type (e), hence normality. If 2j Ú q + 1 then ï =

�
(2p + 1)2jÒ 2pq+1�2j

�
. This is a

partition of a nilpotent (hence (1-1) holds) if and only if q is odd. But if q is odd, then
the partition is not very even but a degeneration of type (e) occurs, hence non-normality.
Now consider the second case where L is of type pAq, where p(q + 1) = r and q is odd.
Now the partition ï =

�
(2p)q+1

�
is the partition of a nilpotent, hence (1-1) holds. This

time the partition is very even and we can use Kraft-Procesi [35, 17.3 Theorem (b)] to
conclude the normality of G¬. This handles type Dr.

For F4 the following cases given in Theorem 3.1 are ruled out: A2 (long roots) since
G¬ is not normal; A2 + A1 (long roots and one short simple root) since (1-1) is not
satisfied; B3 since G¬ is not normal. The remaining cases satisfy (1-1) and the normality
condition: see [12].

For G2 we only have to check both rank one cases. In any case the closure of the
nilpotent orbit in D̄r is normal (Kraft), and (1-1) is satisfied if the simple root in the Levi
factor of P is short.

For Er, the cases given in Theorem 3.1 all satisfy (1-1).

REMARKS. (i) Many of the cases of sheets studied by Rubenthaler [45] occur in the
list above. A special case was studied by Brylinski-Kostant [14], where the decomposition
class contains an element h that is part of an even «¿2-triple feÒ f Ò hg, such that Gh is
of semi-simple rank r � 1. In general Rubenthaler’s D and Ge need not be normal.
For example, in type C4 with Levi group L of semisimple type A1 ð C2, or in type F4

with Levi of semisimple type B3. But we conjecture that they are always normal in the
simply-laced case.

(ii) If ª = Ar, then all sheets are smooth (due to Peterson and Kraft-Luna, see [4]).
Also for the other classical types it is conjectured that all sheets are smooth, so we could
forget about the normality condition on D̄ÛÛG. So far only one non-smooth sheet has
been found (the subregular Dixmier sheet in G2 corresponding to a long root, found by
Borho and Kraft), but in that case (1-1) is not satisfied. One might ask whether there are
non-smooth Dixmier sheets where (1-1) is satisfied.
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(iii) Here is a remark on the classification of normal nilpotent varieties. In 1989
Kraft [33] gave a summary of what was known about normality of nilpotent varieties.
For the classical simple Lie algebras and for G2 this remains up to date, but for the
exceptional Lie algebras some new results appeared. In [11], we showed that certain
nilpotent varieties are normal, and in [12] we completely handled the case of type F4.
We obtained the normality of the following nilpotent varieties.

In E6 those with Bala-Carter labels: E6, E6(a1), D5, E6(a3), 3A1, 2A1, A1, A0. In E7

those with labels E7, E7(a1), E7(a2), E7(a3), E6, E6(a1), 4A1, (3A1)0, (3A1)00, 2A1, A1, A0.
In E8 those with labels E8, E8(a1), E8(a2), E8(a3), E8(a4), 4A1, 3A1, 2A1, A1, A0.

Richardson [44] calculated the multiplicity of the adjoint representation in the co-
ordinate ring of any nilpotent variety. For some nilpotent varieties he also calculated
the multiplicity of the adjoint representation in the coordinate ring of the normalization.
If these multiplicities are not equal, then obviously the nilpotent variety is not normal.
We calculated the multiplicity of the adjoint representation in the normalization of any
nilpotent variety in the exceptional Lie algebras. We used the methods exposed in [12],
and calculated most cases by hand and some with the help of a computer (and found that
Richardson made some errors). Eric Sommers independently programmed a computer
and obtained the same multiplicity results. In this way the non-normality is detected for
the following nilpotent varieties in type Er.

In E6 those with labels: A4, A3 + A1, A3, 2A2 and A2 + A1. In E7 those with labels
D6(a1), D6(a2), (A5)00, A4, A3 + A2, D4(a1) + A1, A3 + 2A1, (A3 + A1)0, (A3 + A1)00, A3. In
E8 those with labels E7(a1), E7(a2), D7(a1), E7(a3), E6, D6, E6(a1), E7(a4), D6(a1), A6,
D5 +A1, E7(a5), E6(a3)+A1, D6(a2), D5(a1)+A2, A5 +A1, D5, E6(a3), D4 +A2, D5(a1)+A1,
A5, D5(a1), D4 + A1, A4, A3 + A2, A3 + 2A1, D4, A3 + A1 and A3.

In general the normalization map of a nilpotent variety N is not bijective. For type
Er Beynon-Spaltenstein [3] provided a table saying exactly how many points lie over
a given point in N. In this way the non-normality of two more non-normal nilpotent
varieties can be shown, namely in E8 those with labels 2A2 + A1 and D4(a1).

We expect that the remaining nilpotent varieties in Er are all normal. At least they
are all unibranch, i.e., the normalization map is bijective (Beynon-Spaltenstein), and the
multiplicities of the adjoint representation in C[N] and C[Ñ] are the same.

For any semisimple Lie algebra we conjecture (together with Panyushev and Som-
mers) that all distinguished nilpotent varieties (in the sense of Bala-Carter) are normal.
This is correct at least for the classical Lie algebras and for E6, F4 and G2. For E7 two
cases remain to be settled and for E8 six cases.

8. Non-commutative analogs. The decomposition varieties allow non-commuta-
tive analogs, at least when they allow a good, even indicator. In that case ∆ = ∑+¬with ¬
the nilradical of ƒ. We shall assume also that D is stable. There is a connected subgroup
F Ú G with the properties that (PÒP) � F � P, PÛF = A, a torus with Lie algebra ∑, and
(ªÛ∫)Ł can be identified with ∆ using the Killing form. Let I be the annihilator in U(ª)
of the left-module

U(ª) 
U(∫) C�2öP Ò
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where C�2öP =
Vtop(ªÛ∫) =

Vtop(ªÛƒ), hence 2öP is the sum of all roots in ƒ (or ¬). Then
k[D̄] is the associated graded ring of the Poincaré-Birkhoff-Witt filtration on U(ª)ÛI.
Here U(ª) is the universal enveloping algebra of ª.

Also, the other varieties associated to such a good indicator, such as YÒ D̃ÒVÒ ṼÒ D̄ÛÛG,
etc., have non-commutative analogs as we shall indicate. If Z is any smooth variety we
denote its ring of global algebraic differential operators by DZ . If G acts on Z, the Lie
algebra ª acts by global vector fields on Z, and therefore we get an operator represen-
tation °: U(ª) ! DZ , where the elements in the enveloping algebra are interpreted as
differential operators on Z.

The following results are due to or follow easily from work of Borho-Brylinski and
Soergel.

THEOREM 8.1. Fix a good, even indicator. The completely prime ideal I defined above
is the kernel of the operator representation °: U(ª) ! DGÛF induced by the G action on
GÛF. The action of A on the right of GÛF induces an inclusion U(∑) ! DGÛF. Write U∑

for the image of U(ª ð ∑) in DGÛF, it is contained in the ring of A-invariant differential
operators D := DA

GÛF. The centers of D and U∑ can both be identified with U(∑). D is
flat as a module over its center.

Let K be the fraction field of U(∑). Then the ring of A-invariant differential operators
D is the integral closure of U∑ in DK = (U∑)K, i.e., D is equal to

fx 2 DK j the subalgebra of DK generated by U∑ and x is a finitely generated
U∑-bimoduleg.

The associated graded ring of D with respect to the operator filtration is k[Y]. The
associated graded ring of Ū := U(ª)ÛI with respect to the PBW-filtration is k[D̄] and
the associated graded ring of Z̄ := Z(ª)Û

�
I \ Z(ª)

�
is k[D̄ÛÛG]. The associated graded

ring of the image U∑ of U(ª ð ∑) in D with respect to the PBW-filtration is k[X]. The
associated graded ring of U(∑) 
Z̄ Ū is k[V].

PROOF. See Borho-Brylinski [6] and Soergel [49]. There the algebra DGÛS of global
differential operators on any homogeneous space GÛS is studied. It allows a faithful
representation on the local cohomology M = Hn

x (GÛSÒOGÛH), where n = dim GÛS and
x = S 2 GÛS. Its restriction to U(ª) can be identified with the induced module

M = U(ª) 
U(«)

n̂

(ªÛ«)

Apply this to the homogeneous space GÛF. Let Q ² G ð A be the image of P !

G ð A: p ! (pÒ pF). Then

GÛF = (G ð A)ÛQ
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8.2. An action of Γ on D. To give a non-commutative analog of D̃, we need to define
a twisted action of Γs on ∑ (or on ∑Ł and using the Killing form). The extension of this
action to D hasn’t been explicitly used in the literature before.

The ž-action of W on »Ł is defined by

w ž ñ := w(ñ + ö) � öÒ

where ö = öB is half the sum of positive roots. The projection ª = …� ý » ý … ! »
induces a linear map from U(ª) ! U(») and an algebra homomorphism

û: Z(ª) ! U(»)

For every z 2 Z(ª) there is a z0 2 U(ª)… such that z = û(z) + z0. Harish-Chandra showed
that û induces an isomorphism of the center of U(ª) onto the invariant ring by the
ž-action of W on U(») ' k[»Ł].

Let öL be half the sum of positive roots in L and öP = ö � öL half the sum of roots in
¬. The surjection j#: » ² ƒ ! ƒÛ∫ ' ∑ induces an injection j: ∑Ł ! »Ł. Write

jL: ∑Ł ! »ŁÒ jL(ï) := j(ï) � 2öLÒ

with comorphism
j#L: U(») ! U(∑)

Let Γ̃ be the normalizer of this affine subspace jL(∑Ł) ² »Ł for the ž-action of W. Let
NW(∑Ł) be the normalizer of ∑Ł and CW(∑Ł) its centralizer for the ordinary W-action. Then
the finite group Γs identifies with the quotient NW(∑Ł)ÛCW(∑Ł) (by identifying » and »Ł

using the restriction of the Killing form). Howlett [25, Corollary 3] showed that Γ̃ is just
the subgroup of NW(∑Ł) permuting the positive roots of L, and NW(∑) = CW(∑) Ð Γ̃.

There is an involution commuting with the ž-action of W defined by

ì: »Ł ! »ŁÒ ì(ï) := �ï � 2ö

Write ì#: U(») ! U(») for the comorphism.
The operator representation °: U(ª) ! U∑ restricts to a homomorphism of centers,

i.e., a morphism °Z(ª): U(ª) ! U(∑).

LEMMA 8.3. The restriction°Z(ª) of the operator representation to Z(ª) can be identified
with j#L Ž ì

# Ž û. Its image is contained in the ring of invariants U(∑)Γ̃Òž for the ž-action
of Γ̃.

PROOF. See Soergel [49, Proposition 16]. By Borho-Brylinsky, there is a faithful
action of U(ªð ∑) on M = U(ªð ∑)
U(≈)

Vn(ªð ∑)Û≈, with notation as in the previous
proof. Let v be a generator for

Vn(ª ð ∑)Û≈, where n = dim GÛS.
For t 2 » we have

t 
 v =
h�

j#(t) + t
�
� j#(t)

i

 v = [�2öP(t) � j#(t)] 
 v = j#L

�
ì#(t)

�

 v
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So, for every t 2 U(»), t 
 v = j#L
�
ì#(t)

�

 v.

For c 2 Z(ª) and u 2 U(ª ð ∑), we then get that

cu
 v = uc 
 v = uû(c)
 v = uj#L
�
ì#
�
û(c)

��

 v = j#L

�
ì#
�
û(c)

��
u 
 v

So c acts in the same way as j#L
�
ì#
�
û(c)

��
on the faithful module M. This proves the

lemma.

8.4. Now we can extend the ž-action of Γ̃ on U(∑) to D = DA
GÛF. Its ring of invariants

is a non-commutative analog of D̃.

THEOREM 8.4. There is a natural Γ̃-action on D = DA
GÛF preserving the filtration. The

associated graded Γs-action coincides with the action on k[Y] defined earlier in the
paper. The associated graded of the ring of invariants DΓ̃ is k[D̃]. The center of DΓ̃ can
be identified with the invariant ring U(∑)Γ̃Òž. DΓ̃ is the integral closure of Ū 
Z̄ U(∑)Γ̃Òž

modulo U(∑)Γ̃Òž-torsion in the ring obtained by localizing in the quotient field of U(∑)Γ̃Òž =
KΓ̃Òž.

PROOF. The ž-action of Γ̃ extends naturally to an action on the tensor product Ū 
Z̄

U(∑). We get an action on the quotient R∑ obtained by dividing out the U(∑)-torsion
(see Soergel [49, Corollar 20]). If K is the quotient field of U(∑), Γ̃ also acts on the
localization (R∑)K and therefore on the integral closure fR∑ of R∑ in (R∑)K defined in the
following sense:

fR∑ := fx 2 R∑ j the subring of (R∑)K generated by R∑ and x is finitely generated as
R∑-bimoduleg.

According to Soergel [49, Theorem 13] this is just D, hence we have extended the
Γ̃-action.

The remaining statements follow from the results in this article by considering asso-
ciated graded rings.

REMARK. It would be interesting to get a direct definition of the Γ̃-action on D; for
the classical case of the decomposition class of regular semisimple elements over the
complex numbers this was done by Gel’fand-Kirillov (see [20, Remark 10.3]).

We give a sample of immediate applications.

COROLLARY 8.5. (i) Assume the conditions in Corollary 6.9 are satisfied. Then the
operator representation

°: U(ª ð ∑) ! D

is surjective.
(ii) Assume the conditions (cart) in Theorem 7.5(i) are satisfied, then DΓ̃ is flat over

its center and D ' DΓ̃ 
U(∑)Γ̃Òž U(∑). For each maximal ideal m of U(∑)Γ̃Òž, the ring

DΓ̃ÛmDΓ̃ is an integral domain.
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(iii) If the conditions in Theorem 7.7 are satisfied then

D ' Ū 
Z̄ U(∑)

In particular, those conditions are satisfied in the situation of Theorem 7.9.

PROOF. (i) is due to Soergel [49, Theorem 30]. The other assertions follow from the
results of this article by considering associated graded rings.

9. Examples. In this section we give various examples and counter-examples.

9.1. Type Ar over fields in any characteristic. We shall sum up now the results for
ª¿r+1. In fact, most of the results for this type remain true when we allow k to be an
algebraically closed field of any characteristic. We shall indicate briefly the changes we
have to make in the proofs.

Suppose a1Ò    Ò as are the different eigenvalues of x 2 ª¿r+1 acting on kr+1, with
generalized eigenspacesE1Ò    ÒEs of dimensions e1Ò    Ò es. We suppose that e1 ½ e2 ½
Ð Ð Ð ½ es. The restriction of x � ai1 to Ei is nilpotent with partition ïi = ïi1 ½ ïi2 ½ Ð Ð Ð
of ei. Let Γs (resp. Γ) be the subgroup of the symmetric group on f1Ò 2Ò    Ò sg of
permutations ú such that eú(i) = ei (resp. ïú(i) = ïi) for all i.

PROPOSITION 9.2. (GLr+1, CHARACTERISTIC k ARBITRARY) Let D be the decomposition
class containing x 2 ª¿r+1. Then D is stable if and only if ïi = ïj whenever ei = ej.
D̄ÛÛG is normal if and only all ei are equal. Both k[∑]Γs and k[∑]Γ are polynomial rings.

Every decomposition class D has a good, even indicator, i.e., where all labels are
even. It gives a decomposition ∆ = ∑+¬, where¬ is the nilradical of ƒ. G¬ is Gorenstein
with rational singularities and (1-1) is satisfied.

The normalization D̃ is a normal Gorenstein variety with flat quotient map ỗ: D̃ !
∑ÛΓ (and has rational singularities if the characteristic of k is zero). G¬ is isomorphic
to the zero fibre of ỗ, hence is isomorphic to a complete intersection in D̃ .

The affinization ã: Y ! Y is a resolution of singularities, the canonical bundle of
Y is trivial, and Y is Gorenstein with rational singularities. Y allows a Γ action with
quotient D̃ , the quotient map is flat. k[Y] is a free graded k[D̃]-module of rank #Γ with
k[D̃] as a direct summand.

There is a simultaneous resolution of singularities of ỗ

Y ��! Y ��! D̃???y tu
???y

∑ ��! ∑ÛΓ

We have additionally that Y = D̃ if and only if ïi 6= ïj whenever ei = ej. And D̄ is
normal if and only if all ei are equal and all ïi are equal.

Y is an irreducible component of V, and D̄ is an irreducible component of VÛΓ.
D̃r is always smooth. If D is semisimple, then the sheet D̄r is smooth with orbit space

∑ÛΓs.

https://doi.org/10.4153/CJM-1998-048-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-048-6


964 ABRAHAM BROER

PROOF. Write

pi := #fj; ej = ig and piÒï := #fj; ej = iÒ ïj = ïgÒ

for an integer j and a partition ï of j. Write ï̃ for the dual partition of ï. Write Sj for the
symmetric group on j letters, then

Γs '
Y

i
Spi ; Γ '

Y
iÒï

SpiÒï

acting as a group generated by reflections on ∑. The fundamental theorem on symmetric
polynomials holds true in any characteristic, hence k[∑]Γs and k[∑]Γ are both polynomial
rings and k[∑]Γ is a direct summand of k[∑] as a graded k[∑]Γ-module.

We construct a good indicator as follows. We underline ni if and only if i is one of the
integers e1Ò e1 + e2Ò    Ò e1 + e2 + Ð Ð Ð + es�1. We put ni := 2 if and only if i is of the form

e1 + Ð Ð Ð + ej + ï̃j1 + ï̃j2 + Ð Ð Ð + ï̃jkÒ

for some j and k. All the other ni are put 0. That this indicator is good and that (1-1) holds
follows from a result of Spaltenstein (see [40, Theorem 4.8]). That G¬ is Gorenstein with
rational singularities is a result of Mehta-van der Kallen [40, Theorem 4.6]. It follows
that Y is Gorenstein with rational singularities.

We show next that k[Ṽ] is reduced. It is a free k[D̃] module of rank #Γ and it allows a
surjection to k[Y] which becomes an isomorphism after localizing at a generic maximal
ideal of k[D̃], by the description of ṼŽ. By Nakayama’s lemma it follows that k[Ṽ] and
k[Y] are isomorphic.

So k[Y] is a free k[D̃]-module of finite rank, so k[D̃] is Cohen-Macaulay if and
only if k[Y] is Cohen-Macaulay. And hence by commutative algebra that ỗ is flat with
Gorenstein fibres, hence D̃ is Gorenstein.

That the sheet D̄r is smooth in any characteristic is a result of Bongartz [4].

9.3. Complement of the regular semisimple elements in A2. Peterson’s theorem says
that D̄r is always smooth in type Ar, if D is dense in a sheet. This does not generalize to
general stable decomposition classes. Even if Y = V and D̄ is a hypersurface D̄r can be
non-normal.

This is so for example for the decomposition class of

x =

0
B@ 1 1 0

0 1 0
0 0 �2

1
CA 2 «¿3

of indicator [2Ò 2], consisting of regular elements. Its closure is the complement of the
affine open set of regular semisimple elements. This hypersurface is defined by the
homogeneous invariant F = f 3

2 � 6f 2
3 , where f2(X) = tr(X2) and f3 = tr(X3). The quotient

D̄ÛÛG with coordinate ring k[D̄]G = k[f2Ò f3]Û(f 3
2 � 6f 2

3 ) is a cusp, so it is not normal
and neither is D̄. But D̄ is a hypersurface, and so it follows from Serre’s criterion of

https://doi.org/10.4153/CJM-1998-048-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-048-6


DECOMPOSITION VARIETIES 965

normality that its singularities form a subvariety of codimension one; in fact it is the
cone of nilpotent elements in D̄. In this case Y equals the normalization D̃ , which
can be identified with a subvariety in ª¿3 defined by the equations tr(X2) = (tr X)2 and
tr(X3) = (tr X) and the normalization map D̃ ! D̄ identifies with X ! X � (tr XÛ3)I,
where I is the identity matrix. And Y = V = ∑ ðD̄ÛÛG D̄ , even though D̄ÛÛG is not
normal.

Y ��! Y = D̃ ��! D̄???y tu
???y

∑ ��! D̄ÛÛG

This example generalizes easily to the complement of the set of regular semisimple
elements in any «¿n. Compare with Richardson [43, Proposition 9.3].

9.4. Various counter-examples. For a stable example where V is not irreducible, or
equivalently where VŽ is not dense in V, take [2Ò 2Ò 0] in A3. In this example

x =

0
BBB@

1 1 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1
CCCA and x0 =

0
BBB@
�1 1 0 0
0 �1 0 0
0 0 1 0
0 0 0 1

1
CCCA

generate two different regular orbits in the same fibre of ô̄.
The class containing x, with indicator [2Ò 2Ò 0] is unstable. Here Γ is trivial, Γs has order

two, and so Y = D̃ , and D̃ can be identified with the hypersurface of the determinantal
variety of 4 ð 4-matrices of rank � 2 defined by the invariant 2 tr(x2) � (tr x)2. The
normalization map is induced by the natural projection ª¿4 ! «¿4.

For a stable example where (1-1) is not satisfied but D̄ is normal still (see example
9.5); for a stable example where (1-1) is not satisfied, where D̄ÛÛG is normal but where
D̄ is not normal and D̄r is not smooth take [2Ò 0] in G2.

For a stable example where (1-1) is satisfied, but where (refl) is not satisfied, take
ª = D4 and indicator [2Ò 0Ò 2Ò 2]. Here the generator of Γs acts as multiplication by �1
on ∑ and ∑ÛΓs has only one singular point.

I don’t know of an example where (g1-1) is satisfied but where (1-1) is not.

9.5. Determinantal varieties and «ƒ2r. In this subsection we give examples of stable
decomposition varieties where (cart) and (g1-1) are not satisfied, but where still D̄ is
normal but not Gorenstein and where D̄r is smooth.

Let ª be of type Cr, realized as the Lie algebra of 2r ð 2r-matrices X such that

XJ + JXt = 0, with J :=
 

0 I
�I 0

!
, where I (resp. O) is the r ð r identity (resp.

zero) matrix. Let L be the Levi subgroup of G of type Cl, and D̄ the closure of the
corresponding Dixmier sheet. In this case (1-1) is not satisfied (see [23]), but still Γs acts
like the reflection group W(Cr�l) (see [25]).

Multiplication X 7! JX induces an isomorphism between ª and the space Sym(2r)
of symmetric 2r ð 2r-matrices. Both ∑Ž and its image in Sym(2r) consist of matrices of
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rank 2(r� l), so JD̄ ² Sym(2r) is contained in the determinantal variety D of symmetric
2rð 2r-matrices of rank at most 2(r� l). Since both varieties are irreducible of the same
codimension l(2l + 1), it follows that D̄ is isomorphic to D. This determinantal variety
is well-studied, e.g., it is normal with rational singularities and its ideal is minimally
generated by the determinants of the 2(r � l) + 1-dimensional minors of the generic
symmetric 2r ð 2r-matrix of coordinate functions, also the higher syzygies are known
(see [26]). Its coordinate ring is isomorphic to the invariant ring associated to the repre-
sentation of the orthogonal group O2(r�l) on 2r copies of its natural representation, but it
is not Gorenstein. It follows that (cart) is not satisfied, that D̄ is normal and that it is not
Gorenstein.

In the special case where l = r � 1, hence where D̄ has dimension 4r � 1, we claim
that Y is isomorphic to the determinantal subvariety D2 of ª¿2r of matrices of rank � 1.
This is also a (4r � 1)-dimensional affine cone; it is normal Gorenstein with rational
singularities and its ideal in the coordinate ring of ª¿2r is minimally generated by the
determinants of the 2 ð 2-minors of the generic matrix of coordinate functions. The
endomorphism ú: x 7! JxtJ of ª¿2r is an involution with fixed points space ª = «ƒ2r,
D2 is stable under ú; Γs acts on D2 as the group generated by ú. Let å:ª¿2r ! ª be the
projection defined by

 
A B
C D

!
7!

1
2

 
A � Dt B + Bt

C + Ct �At + D

!
Ò

with AÒBÒC and D rð r-matrices. Then å is Sp2r-equivariant and constant on Γs-orbits.
The Γs-quotient map ça: Y ! D̄ can be identified with the restriction of å to D2. Indeed
the image of D2 contains å

�
diag(1Ò 0    Ò 0)

�
2 ∑Ž, which implies that this image is

contained in D̄. For the non-commutative analog of this example see [49, 8.2].

9.6. Determinantal varieties as normalization of decomposition varieties. Let Dr�l be
the determinantal variety of matrices in ª¿r+1 of rank at most r � l; it is a Gorenstein
variety with rational singularities. The image of Dr�l under the projection

å:ª¿r+1 ! «¿r+1: X 7! X �
tr(X)
r + 1

I

is the closure D̄ of a sheet corresponding to a Levi factor of type Al. The restriction of
å to Dr�l is the normalization map. For the non-commutative analog of this example in
case l = r � 1 see [49, 8.1].

9.7. Pfaffian varieties as decomposition varieties. Let ª be of type Br and L a Levi
subgroup of type Bl for l Ú r. The corresponding Dixmier sheet is dense in the stable
decomposition variety D̄ of any semisimple element with stabilizer L, it has Dynkin
indicator [2Ò 2Ò    Ò 2Ò 0Ò 0Ò    Ò 0]. The nilpotent variety G¬ ² D̄ has the same indicator
(see [23]), so (1-1) is satisfied. By [25], Γs acts like W(Br�l) on ∑, so (refl) is satisfied.
We consider ª as the Lie algebra of anti-symmetric 2r + 1 ð 2r + 1-matrices. Any
x 2 ∑Ž has rank precisely 2(r � l), so D̄ is contained in the variety Pf of anti-symmetric
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2r + 1ð 2r + 1-matrices of rank at most 2(r� l). Since D̄ and Pf both are irreducible of
the same dimension 2(r2 � l2) + (r � l) it follows that D̄ = Pf.

The variety Pf has been well-studied, its coordinate ring is isomorphic to the invariant
ring associated to the representation of the symplectic group Sp2(r�l) acting on 2r + 1
copies of its natural representation. The ideal of Pf is generated by 2(r � l) + 2-order
Pfaffians and much is known on the higher syzygies (see [26]). Pf is normal, Gorenstein
with rational singularities. It follows that D̄ has the same properties, (cart) is satisfied,
and the sheet D̄r is smooth. It also follows that the minimal resolution of the coordinate
ring k[G¬] (which is normal) is the tensor product of the minimal resolution of k[Pf]
(see [26]) and the Koszul complex on fundamental invariants f2Ò f4Ò    Ò f2l .

Analogous results hold for the closure of the sheet in ª = Dr corresponding to L of
type Dl for 2 � l Ú r.

9.8. Subregular decomposition varieties. An element x 2 ª with a stabilizer of dimen-
sion r + 2 is called subregular. Let ª be simple then there is a unique class of nilpotent
subregular elements, its closure is called the subregular nilpotent variety Nsr. We studied
its algebraic properties in [10]; for example, we showed it is normal and we described a
minimal set of generators for its ideal.

PROPOSITION 9.9. Let x be a subregular element in the simple Lie algebra ªwith decom-
position class D = D(x). Suppose D̄ÛÛG is normal and (1-1) is satisfied. Then D̄ is a
normal Gorenstein variety with rational singularities, the quotient map ô̄: D̄ ! D̄ÛÛG
is flat and Y = V.

Furthermore, let é1Ò    Ò éa be the fundamental degrees of the action (ΓsÒ ∑) and
d1Ò    Ò dr the fundamental degrees of (GÒ ª), arranged in such a way that éi = di, for
i � a, and dr is the largest degree. Let é be the height of the short dominant root û.
Then the ideal of D̄ is generated by fundamental invariants of degree da+1Ò    Ò dr and
by homogeneous functions of degree é forming a basis for a G-module of highest weight
û.

The subregular nilpotent variety Nsr is the complete intersection of D̄ by fundamental
invariants of degrees d1Ò    Ò da. So TorR

ž (k0Ò k[Nsr]) is the product of TorR
ž (k0Ò k[D̄]) with

an exterior algebra on generators of degree 2Ò 4Ò    Ò 2r � 6 in TorR1 (k0Ò k[Nsr]).

The only weights occurring in TorR
ž (k0Ò k[D̃]) are the zero-weight and short dominant

roots.

PROOF. The proof follows by combining the results of [10] with the results obtained
in this article, as Theorem 6.5.

The following cases were studied in [10]. If ª = Br and x of type [2Ò 2Ò    Ò 2Ò 2Ò 0];
we get the variety defined by the 2r-Pfaffians studied by Buchsbaum and Eisenbud. If
ª = Cr and x of type [2Ò 2Ò    Ò 2Ò 0Ò 2] we get a variety also (thoroughly) studied by
Klimek, Kraśkiewicz and Weyman in [28]. For Dr and x of type [2Ò 2Ò    Ò 2Ò 2Ò 2Ò 0] we
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find the variety, whose existence we conjectured in [l.c.]. For F4 we can take x of type
[2Ò 2Ò 0Ò 2] and for G2 we take x of type [0Ò 2].

9.10. Lusztig’s special cases. In representation theory Lusztig needed to study some
special decomposition varieties with extremely good properties.

Let ª be simple. Suppose L is a Levi-subgroup and Lxn a nilpotent orbit in [¿Ò ¿] with an
irreducible L-equivariant cuspidal local system (see Lusztig [37] for the definition). Let
∑ be the center of ¿ and D̄ the decomposition variety D̄ := G(∑ + xn). Lusztig determined
the decomposition varieties arising in this way. See [36] and [37, p. 160] (when L 6= G).
He showed normality of D̄ÛÛG, that Γ = Γs is a reflection group, that (1-1) holds, that
there is an even, good indicator obtained in the following way. Take the weighted Dynkin
characteristic of the nilpotent class in D̄r, and underline the indices corresponding to L.
Furthermore, he proved that Yr ' Y r is isomorphic to the pull-back ∑ð∑ÛΓ D̄r and hence
that D̄r is smooth.

Using Kraft-Procesi’s normality results we checked case by case as in the proof of
Theorem 7.9 that whenever G 6= L that the closure of the nilpotent class in D̄r is normal.
When G = L (so when the decomposition variety is a nilpotent variety) this is also the
case except maybe for E8(a7) in E8 or for E7(a5) in E7, where the normality property is
conjectured (see Remark 7.8(iii)) but not yet shown.

So we get additional properties (with possibly at most two exceptions) for Lusztig’s
special cases of decomposition varieties arising from cuspidal local systems. They
are normal, Gorenstein with rational singularities and Y = ∑ ð∑ÛΓ D̄, i.e., there is a
Grothendieck simultaneous resolution diagram (using Theorem 7.7)

Y ��! Y ��! D̄???y tu
???y

∑ ��! ∑ÛΓ

Finally, there are non-commutative analogs of all varieties in the diagram, with corre-
sponding properties.

9.11. Sheets in F4. In general, if D̄r is a sheet it is known what the Dynkin diagram
is of its nilpotent orbit. For exceptional Lie algebras these results are due to Elashvili,
see Spaltenstein’s book [51]. If D̄r is a Dixmier sheet it is even known in all cases
what #GeÛPe is, i.e., whether (1-1) is satisfied. Let ª be of type F4. Then according to
Howlett [25] the (refl)-condition is always satisfied. Suppose x is semisimple then (1-1)
is not satisfied if and only if the semisimple type is A1 (long root), B2, or A1 ð A2 (one
short simple root and the long simple roots). This is checked using Elashvili’s tables
reproduced in [51, p. 174] together with the knowledge of the component group GeÛG0

e ,
where e is an element in the dense P-orbit of ¬ (see [16, p. 401]).
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We collect some information in the following table. The columns with headings G¬,
D̄ÛÛG and D̄ indicate whether these varieties are normal “+”, non-normal “�”; the
column with heading D̄r indicates whether the sheet is smooth. We use the normality
results obtained in [12].

type sheet type G¬ Γs (1-1) G¬ D̄ÛÛG D̄ Y = V D̄r

[2Ò 2Ò 2Ò 2] [2Ò 2Ò 2Ò 2] F4 + + + + + +
[2Ò 2Ò 2Ò 0] [2Ò 2Ò 0Ò 2] B3 + + � � � ?
[0Ò 2Ò 2Ò 2] [2Ò 2Ò 0Ò 2] B3 � + � � � ?
[0Ò 2Ò 2Ò 0] [0Ò 2Ò 0Ò 2] 2A1 + + � � � ?
[2Ò 0Ò 1Ò 2] [0Ò 2Ò 0Ò 2] B2 � + � � � ?
[2Ò 2Ò 0Ò 0] [2Ò 2Ò 0Ò 0] G2 + + + + + +
[0Ò 0Ò 2Ò 2] [1Ò 0Ò 1Ò 2] G2 + � + � � +
[0Ò 2Ò 0Ò 0] [0Ò 2Ò 0Ò 0] A1 + + + + + +
[0Ò 0Ò 2Ò 0] [0Ò 2Ò 0Ò 0] A1 � + + ? � ?
[2Ò 0Ò 0Ò 2] [0Ò 2Ò 0Ò 0] B2 � + � � � ?
[0Ò 1Ò 0Ò 2] [1Ò 0Ò 1Ò 0] A1 + � + � � +
[2Ò 0Ò 0Ò 1] [2Ò 0Ò 0Ò 1] A1 + � + � � +
[0Ò 1Ò 0Ò 1] [1Ò 0Ò 1Ò 0] A0 + � + � � +
[0Ò 0Ò 1Ò 0] [0Ò 0Ò 1Ò 0] A0 + + + + + +
[2Ò 0Ò 0Ò 0] [2Ò 0Ò 0Ò 0] A1 + + + + + +
[0Ò 0Ò 0Ò 2] [0Ò 0Ò 0Ò 2] A1 + � + � � +
[0Ò 1Ò 0Ò 0] [0Ò 1Ò 0Ò 0] A0 + + + + + +
[0Ò 0Ò 0Ò 1] [0Ò 0Ò 0Ò 1] A0 + + + + + +
[1Ò 0Ò 0Ò 0] [1Ò 0Ò 0Ò 0] A0 + + + + + +
[0Ò 0Ò 0Ò 0] [0Ò 0Ò 0Ò 0] A0 + + + + + +
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