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DECOMPOSITION VARIETIES
IN SEMISIMPLE LIE ALGEBRAS

ABRAHAM BROER

ABSTRACT. The notion of decompositon class in a semisimple Lie algebra is a
common generalization of nilpotent orbits and the set of regular semisimple elements.
We prove that the closure of a decomposition class has many properties in common
with nilpotent varieties, e.g., its normalization hasrational singularities.

The famous Grothendieck simultaneous resolution is related to the decomposi-
tion class of regular semisimple elements. We study the properties of the analogous
commutative diagrams associated to an arbitrary decomposition class.

1. Introduction. Let g be a semisimple Lie algebra over an algebraically closed
field k of characteristic zero with adjoint group G. We shall say that two elements x and
X' arein the same decompositionclass D if x and X’ haveasimilar Jordan decomposition.
There are only finitely many different decomposition classes; they are al smooth; and
the closure of any one of them, called decomposition variety, isaunion of decomposition
classes. Decomposition classes were first defined and studied by Borho and Kraft [8],
and their analogsin the group G first by Lusztig and Spaltenstein [38]. Their properties
have important applications in representation theory.

To be more precise, let x = Xs + X, and X' = X, + X/, be the Jordan decompositions of
x and x'. Then x and X' are in the same decomposition classif and only if there exists a
g € Gsuchthat x, = gx, and Gy, = Ggy . For 3(, thismeansthat in adecomposition class
we vary the continuous parameters (eigenvalues) but fix all discrete parameters (sizes of
Jordan blocks).

In this article we study the algebraic geometric properties of decomposition vari-
eties. As motivation we give first some examples. First of al the collection of regular
semisimple elements is a decomposition class. At the other extreme, all adjoint orbits
consisting of nilpotent elements, called nilpotent orbits, are decomposition classes. The
determinantal varieties of n x n-matrices occur as normalizations of decomposition vari-
etiesin 31, (see Section 9.6). The determinantal varieties of symmetric 2n x 2n-matrices
are isomorphic to decomposition varieties in 3p,, (see Section 9.5). Varieties defined
by Pfaffians of fixed order of a generic anti-symmetric n x n matrix are decomposition
varieties in 3o, (See Section 9.7). As a last example we mention the symplectic rank
variety first appearing in a study of the subregular nilpotent variety [10], and thoroughly
studied by Klimek et al [28]; it is a decomposition variety in $p,, (see Section 9.8).
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We have tried to generalize some known properties for determinantal varieties and
for the closures of nilpotent orbits, called nilpotent varieties. For example, the properties
that there are only finitely many nilpotent orbits, that they are all smooth and that
each nilpotent variety is a union of nilpotent orbits all extend to decomposition classes
(see Proposition 2.3). It is known that determinantal varieties and the normalization of
any nilpotent variety (by Hinich and Panyushev) have rational singularities. We show
that this generalizes: the normalization D of any decomposition variety D has rational
singularities (see Theorem 7.1). In general, decomposition varieties are not normal, not
even for 3l,.

Fix an element x in a decomposition class D with Jordan decomposition x = Xs + X.
Let L be the stabilizer of the semisimple part xs, and ¢ the center of the Lie algebra [
of L. The subset ¢° of ¢ consisting of semisimple elements with stabilizer L is an affine
open subset. The decomposition class containing X = Xs + X, iSthen

D :=G-(c°+Xn).

Thefinitegroup s := NgL /L actson ¢, stabilizing ¢°. It also actson the set of irreducible
components of NgL - X,; we call " the stabilizer in I of the component Lx,. In general
I's is not equal to I'. When it is equal we shall call the decomposition class stable. By
general results dueto Luna, the inclusion of ¢ into the closure D of D inducesamap

7c/Ts—D//G

between quotient spaces which is just the normalization map. Here D //G is the affine
variety with coordinate ring k[D]C€. We classify the decomposition varieties such that
D //Gisnormal (see Theorem 3.1), completing work begun by Richardson [43].

In general al the fibres of the G-quotient map m:D — D //G are of the same
dimension, but they need neither be irreducible nor reduced. The G-quotient space of
the normalization D can be identified with ¢ /T and the fibres of the quotient map
7D — ¢ /T areall irreducible containing a dense orbit. We give criteria for when the
fibresof 7 are all reduced (see Theorem 7.5); if that is the case, then the quotient map is
flat with Gorenstein fibres having rational singularities, and then D isaso Gorenstein.

Borho and Kraft showed that we can choose, for any decomposition variety D, a
parabolic subgroup P and a solvableideal t of p suchthat Gr = D. We can assumethat
¢ iscontainedin r, but L is not necessarily the Levi factor of P. We canwriter = ¢ @ n,
for some nilpotent ideal n. The collapsing map

v:GxPr—D:gxyrg-y

of the homogeneous vector bundle on G/P with fibre r is a projective morphism, but
it is not birational in general. Since G x” r is smooth, 7 factors over the normalization
of D. We define the normal affine variety Y by its ring of global regular functions:
K[Y] := K[G xP r]. We can choose P and r in such away that additionally the following
properties hold. The finite group I' acts on this remarkable variety Y (although it does
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not act on G x” r) having D as orbit space Y /T (see Theorem 4.9). We show that Y is
Gorenstein and hasrational singularities (see Corollary 6.7), and that Y does not depend
on the various possible good choicesof P and r.

There are other interesting varieties and morphisms involved; their study is neces-
sary for the understanding of various geometric, combinatorial or algebraic aspects of
decomposition varieties. Using the smooth map

0:GxPr—r/n~cgryr—y+n
and the collapsing¥: G xP r — D, factorizi ng over the normalization D by

“~/ZG><PL‘—>D

and the normalization map »: D — D, we get the following commutative diagram

124

GxPr L D . D

N

¢ — ¢/l — DJ/G

If we write X for the image of the product map (¢.7), then there is an induced
map G xP r — X. This map is a resolution of singularities. We study the various
properties of this diagram. Although various aspectsof the diagram in special caseshave
been extensively studied by various authors, much is still unknown about the algebraic
geometric properties.

In the special case of the decomposition class consisting of the regular semisimple
elements we obtain the famous so-called Grothendieck simultaneous resolution. There ¢
isthe Lie algebra of a maximal torus T contained in a Borel subgroupBand I's =T is
the Weyl group W. Chevalley proved that the inclusion t C g induces an isomorphism
t /W~ g //G of quotient spaces. Now P = B, r = b and the diagram simplifiesto

GxBp — g

t — g//G.

This diagram has many good properties we sought to generalize. The vertical maps are
flat, having irreducible and reduced fibres containing a dense orbit. The diagram gives
riseto abirational proper morphism of G xB b to the Cartesian product t x //c g andan
isomorphism of algebras of global regular functions:

KIG x® b] ~ K[t] @yqc @K[g].

and indeed W acts on k[G xB b] with ring of W-invariants k[q].

Unfortunately many of the good properties of the Grothendieck simultaneous resolu-
tion are not present in our generalized set-up. One of the aims of thisresearchisto under-
stand what is actually happening. This study was already begun by Borho-Brylinski [7],
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Soergel [49] and Knop [30]. We analyze each of the occurring maps and morphisms.
For example, we classify the parabolic subgroups that induce diagrams similar to the
Grothendieck simultaneous resolution (the classification is up to normality results for
nilpotent varietiesin exceptional Lie algebras of typesEg, E7 and Eg). More precisely, if
v isthe solvableradical of the Lie algebraof p, we require in this classification that the
decomposition variety D := Gt is normal and the pull-back k[D] @yDie k[c] identifies
with the ring of global regular functionson G xP r (see Theorem 7.9).

There are applications to the theory of primitive ideals of enveloping algebras and
rings of differential operators. In the special case where decomposition classes contain
semisimple elements, decomposition varieties and all the other varieties defined above
have non-commutative analogs (see Section 8) involving quotients of the universal
enveloping algebra of g and rings of global differential operators on homogeneous
spaces. See Section 8 and [7], [49].

Thisis one way where representation theory enters the picture. The same decomposi-
tion classesalso appear in representation theory in connection to the orbit method asfirst
studied by Dixmier. The geometry and topology of some special cases of the analog of
decomposition classesin the group G also play an important rolein Lusztig's theories of
the generalized Springer correspondence and of the character sheafs, see [36] and [37].
The examples of decomposition varieties arising in Lusztig's study having beautiful
properties, see Section 9.10.

In the last section we collect several examples and counter-examples. We show that
most of the results aboveremain true for gl,, if we allow the algebraically closed field k
to be of positive characteristic, see Section 9.1.

2. Decomposition classes. We shall fix areductive group G of rank r defined over
an algebraically closed field k of characteristic zero. We denote the Lie algebra of an
algebraic group by its corresponding gothic character, e.g., the Lie algebraof Gisg.

If K is areductive group acting on an affine variety X, we denote the K-quotient
space by X//K with coordinate ring k[X]¥. If K acts on any variety X with only closed
orbits (for exampleif K isafinite group) then we write X /K for the K-orbit space X //K.
If P is any closed subgroup of K acting on a variety Y, then it acts freely on K x Y
by p(k.y) := (kp~2, py) and we let K x” Y denote its orbit space. We denote the class
containing (k, y) by k x y.

Whenever we fix an element x € g we shall adopt the following notation. When we
write X = Xs + Xn, we mean the Jordan decomposition, i.e., Xs is the semisimple part of
X, Xn its nilpotent part and [Xs, Xn] = 0. We write L := Gy, for the stabilizer in G of the
semisimple part of x, ¢ for the center of [ and ¢° for the open subset of ¢ of the elements
in g with stabilizer L. Thefinite group I's := NgL /L acts on the collection of irreducible
componentsof (NgL)x,. Thestabilizer in I g of the irreducible component Lx, is denoted
by .

We say that x and y are in the same decomposition classif and only if thereisag € G
suchthat Gy, = Ggy, and x, = gyn». We can describe the decomposition class D containing
xasD = G(c° +x,). Obviously g isathe disjoint union of its decomposition classes. We
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refer to [8], [5] and [13] for an introduction into the theory of decomposition classes.
See[17, Ch. 7] for Lusztig-Spaltenstein’s related notion of induction.

Our first @im is to show that decomposition classes are smooth, first shown in the
literature by Lusztig [36, p. 216]. We shall then classify their orbits. To provethese result
weshall apply Luna'sfundamental lemma|[2] at several places; for asomewhat different
proof see our lecture notes [13]. We start with a useful lemma.

LEMMA 2.1. Let M be a Levi subgroup of G. Define m° to be the collection of points
y € g such that the stabilizer of its semisimple part ys is contained in M.

(i) Then m° isan M-stable affine open subset of n1.

(i) ThemorphismG xM m° — g: gy — gy induces a Cartesian diagram

GxMme —— g
0 Jw
m®//M —— g//G

with étale horizontal maps and vertical G-quotient maps.

PrROOF. (i) Letf be the product of all the weights of g /m, considered as a homo-
geneous Wy -invariant polynomial function on t, where Wy isthe Weyl group of M. By
Chevalley’s isomorphism t /Wy ~ m //M, we can extend f uniquely to an M-invariant
homogeneous polynomial function F on nt. We claim that m° is the M-stable principal
affine open subset of m defined by F. Lety € m®, we have to show that F(y) # 0. Since
ay, C mandys, Yo andy al centraizeys, it followsthat y € m. Since F is M-invariant,
it suffices to show that F(ys) # O for ys € t. By assumption [X,,Ys] = a(ys) Z 0if a is
aweight of g /m, where x, is the corresponding root vector. So f(ys) = F(ys) # 0. The
argument can be reversed, so this proves (i).

(i) Lety=ys+Yyn, thenitiseasy to show that

a =[a,ys] @ ay,,

and [g,Ys] C [g,y]. Thetangent map of G x m — q:(9,y) — gy at (1, y) is(X,Y) —
[X,y] +Y, where X € g and Y € m. It follows that this tangent map is surjective at
(1.y) (and (1.ys)) wheny € m°. Hence the tangent map at 1 « y (and at 1 * ys) of
G xM m° — g isalso surjectiveif y € m°, henceis étaleat 1 xy and 1 x ys (by [22,
Proposition 10.4]). In this situation we can apply L una’sfundamental lemma (see[2]), so
that the diagram is indeed a pull-back diagram, with étale horizontal maps. And indeed
K[G xM m®] ~ k[m°]M. ]

In general, the intersection of alevi subalgebra m with adecomposition variety for G
is not necessarily aunion of decomposition classesfor M. But we shall use the previous
lemma to show that the intersection of a G-decomposition class with the open affine
subset m® isaunion of M-decomposition classes.
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LEMMA 2.2. Let M bea Levi subgroup of G, and m° the principal open subsetin m as
defined in the previous lemma. Let D be any decomposition class such that D N m® is
not empty, or, equivalently, such that D ¢ Gm®.

Then the intersection D M m® is a union of decomposition classesfor M in m, all of
equal dimensiondimD — dimG/M, and the intersection is reduced.

More precisely, take any element X = xs + X, in D N m°. Write L := Gy, and ¢° for
the collection of elementsin g having stabilizer L. Let {L, ..., Ly} bethe collection of

different conjugates of L contained in M and containing a fixed maximal torus. Fix a
g € Gsuchthat gLg* = Lj and write ¢y := gic® andy; := giXy. Then

m
Dnme®= U M(c? + NgLiyi nm).
i=1

In particular, in the special case wherelL = M,
D Nm® =¢° + NgLxp.

PrOOF. Bothxs and x, arein by thetheory of Jordan decompositions. By assumption
[ C m, hencec° isalso equa to the collection of pointsin m with centralizer exactly [.
So the whole decomposition class M(c° + X,) iscontained in m°. If m(ag + x,) = ag + Xy,
fora € ¢ andm e M, then ma; = a; and mx,, = Xy, by unicity of Jordan decomposition.
Thus m € NyL, and the orbit Ny Lay isfinite. We conclude that the decomposition class
isaunion of orhits, each of dimension dimG — dim G, and each orbit intersects ¢® + x,
in finitely many points. Henceits dimensionisdim¢ +dim G — dim Gy.

By the lemma above the natural map G xM (D N m°) — D isapull-back of an étale
map, henceis itself étale. It follows that the intersection D M m°® is reduced, and each
component has dimension dimD — dimG/M. In particular, M(c¢® + x,) is one of those
components, and al components are of this form.

Letg(a+x,) € m°ND witha € ¢°andg € G. ThenGg, = gLg™* C M. Now takean
m € M suchthat mgL(mg)~* containsthe fixed maximal torus. Then Gpyga = Li = Gga for
somei, andsogtmg € NgL and g tmgx, € NgLxn. Thusmga € ¢7, mgx, € NeLiyinm
and ga+ gx, € M(c? + NgLjyi N m). L]

2.3. We shall now use the two lemmas to describe the basic orbit structure of decom-
position classes and show that they are all smooth. The precise statement is longer than
its proof.

ProPOSITION 2.3. Let D be a decomposition class containing X € g. Let X = Xs + Xn, L,
¢, ¢® and ' be as defined before. Then:

(i) The decomposition class D is smooth.

(i) Thenatural action of I's on

Ve = G xb (¢®+ Ngl - %)
is free, and its orbit spaceisisomorphicto D, i.e.,

D~ V°/Isg=G x"Ne" (¢° + NgL - Xn).
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(iii) The morphism
0°:V° — c%:g*x(ste)—s
whereg € G, s € ¢°, and e € NgL - X,, induces a mor phism between orbit spaces
7D ~V°/Ts— /T,

and a Cartesian diagram
Ve — D

¢/ O [

o

¢ — /T

Moreover, the horizontal maps are finite, &tale I's-quotient maps, and the vertical maps
are constant on G-orbits.
(iv) Let D betheclosureof D. Write the G-quotient map as

=D —-D//G;
then 7 is the restriction to D of the quotient map 7: g — g //G, and we get Cartesian
squares _
Gx“(c°+NgLx,) —— D
| o |r
¢® — D//G,
and

O

G XMt (¢ + NeDa)
0 l 7
¢ /Ts — DJ/G.
with &tale horizontal maps and vertical G-quotient maps, where the horizontal maps are

open immersions. It follows that the natural map ¢ /T's — D //G is the normalization
map.

Proor. (i) followsfrom (ii). Since D N(° = ¢° + NgLxy, by the previouslemma, we
get that the morphism
G xb (¢° +Nglx,) — D

isétale, asit isthe pull-back of an étale map (by LemmaZ2.1). Hence D is smooth. Since
I's acts freely on the left-hand side, we get another étale morphism

G xNeb (¢° + NgLx,) — D.

Since the latter is hijective, it is an isomorphism (see[1, p. 122]), hence (ii).

AsT s aso actsfreely on ¢°, the quotient map ¢° — ¢° /T's and its pull-back ¢° Xeo 1y
D — D are &de. Since I's acts freely on both V° and ¢° . r, D with isomorphic
I's-quotients, the induced map V° — ¢° X D isabijective &tale morphism, henceis
an isomorphism, and (iii) is shown.
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For (iv), the previous lemmathat DNe= (¢® + NgLxn) gives us étale morphisms
G x" (¢° +Nglxy) —— D
G xNeb (¢° + NgLxy) —— D.

The latter is injective and therefore an open immersion (see [1, p. 122]). The second
Cartesian diagram and subsequently the first diagram follow as in (iii) (or by using
Luna’sfundamental lemma). ]

By restricting to a connected component we obtain a twin version of the proposition
with an analogous proof.

PROPOSITION 2.4. Assume the same notation as before. Recall that I is the stabilizer in
Is of the irreducible component Lx, of NgL - X,. Then:
(i) Thenatural action of I on

Ve = G xbE (¢ + L)
isfree. Its orbit spaceisisomorphicto D, i.e.,
D ~V° /I =G xMNet (¢° + Lxy),
where NgL° is the normalizer in G of the component Lx, in NgL - X.
(i) The morphism N
0°:V° —c°:g*(s+e)—s
whereg € G, s € ¢°, and e € Lxy, induces a mor phism between orbit spaces
7D~ Ve /T — )T,

and a Cartesian diagram

Ve — D

W o |
© — /T
such that the horizontal maps are finite, &tale I'-quotient maps, and any fibre of the
vertical mapsis a G-orhit. Hence #° and §° are G-quotient maps, so ¢° /T classifiesthe
orbitsin D. B
(iii) Let D bethenormalization of D . The G-quotient variety D // G canbeidentified

with the I"-quotient variety ¢ /T .

2.5. Positive characteristics. The definition of decomposition classes and the elemen-
tary properties given in the two propositions and their proofs remain valid over more
general algebraically closed fields. We only need that for all x € g it istrue that the Lie
algebraof Gy isthe centralizer of x and that the stabilizer of any semisimpleelementin g
is the Levi-component of some parabolic subgroup of G. This guarantees every adjoint
orbit map is separable. These conditions are known to be satisfied for G = GL,,. Let p
be the characteristic of k, and suppose g is simple. Then these conditions are satisfied if
and only if p does not dividenwhen g = 31, p# 2if g Z A, p Z 3if g is exceptional
andp #5if g = Es.
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2.6. Thefinitegroupslsandl". Fromthetwo previouspropositions, itfollowsthatc /T's
and ¢ /" play important rolesin the theory of decomposition varieties. The first quotient
can be identified with the normalization of D //G and the latter with D //G. These
G-quotient spaces classify closed orbits, and under the normalization map v: D-D
closed orbits can be covered by several closed orbits. This happens generically if and
onlyif F's#T.

Recall from the introduction that the decomposition class containing X = Xs + Xy iS
called stable if Lx, = NgL - ;. Thisdesirable property does not depend on the choice of
X. For example the S_4-decomposition class containing the matrix

11 0 0
_(010 0| _.
“loo -1 o |€%4
\o 0o 0 -1

is unstable. We give some characterizations of stableness.

COROLLARY 2.7. Thefollowing areequivalent for a decompositionvariety D containing
X:
(i) D isstable;
(i) re=T;
(iii) Ve isirreducible; _
(iv) D //Gisthenormalization of D //G;
(V) Theintersection of Gx with ¢ + X, iSjust I'sXs + Xp.

PrOOF. Thisall follows from the two propositions. ]

In almost, but not all, cases, I's acts as a reflection group on ¢, so ¢ /T’ is smooth.
In general I's contains a normal subgroup I} acting as a reflection group on ¢ with an
elementary abelian group (Z /27)" asfactor group I's/ .. For example, if g is simple of
type A, By, C;, F4 or G then I isareflection group, and for the exceptional simpleLie
algebras, the order of I's/T'} is either one or two. For a precise description of I's and I';
see Howlett [25]. If G = GLy, then T is always areflection group (see Section 9.1).

Write ks:¢ — ¢ /Tsand k:¢ — ¢ /T for the quotient maps. Then the restriction to ¢
of 7 is surjective and factors as

¢ ¢ /Te—>D//G.
Moreover, we already showed L una’sresult that v identifies with the normalization map.

LEMMA 2.8. The following three conditions are equivalent.
(refl.l) kic — ¢ /T isflat;
(refl.2) T actsasareflection group on ¢;
(refl.3) ¢ /I issmooth.
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ProoF. The Killing form on g restricts to a non-degenerate hilinear form on [ such
that [ = ¢ @ [L,1] is an orthogonal direct sum. In particular ¢ carries a non-degenerate
form which isFs and I invariant. So if I (or I's) acts as a pseudo-reflection group, it
even acts as a reflection group. Now apply Chevalley’stheorem. ]

We shall say that (refl) is satisfied, if one of the conditionsin the lemmais satisfied.

2.10. Themost important decomposition classes are stable. For any integer, d the union
of all adjoint orbits of dimension d isalocally closed subvariety of ¢ whoseirreducible
components are called sheets. They are unions of decomposition classes. The class D (x)
is densein some sheet if and only if the nilpotent orbit Lx, isin [, [] (see[5, 4.3 Satz]),
i.e., if Lx,itself isasheetin[{, []. Sheetsare classified by Spaltenstein and Elashvili. If a
sheet contains a semi-simple element it is called a Dixmier sheet. Borho [5, 4.5 Lemma]
showed that the dense decomposition class in a sheet is stable. Also the decomposition
class D(x) of aregular or a nilpotent element x is stable.

3. Thenormality question for D //G. The closure of a decomposition class, i.e.,
a decomposition variety, is usualy not normal; for example, when the decomposition
class is not stable, or when it is stable but Lx, is not normal (by Proposition 2.3(iv)).
Richardson [43] discussed the question whether the quotient space D //G is normal, or
equivalently whether ¢ /T's equals D //G. He answered this question for the classical
simple Lie algebras using Howlett’s calculations [25]. His method extendsto the excep-
tional Lie algebras. We present the classification. The closure D (xs) of the decomposition
class containing xs is contained in the closure D (x) of the decomposition class contain-
ing x and both have the same quotient spaces D (xs) // G ~ D (x)// G, so the question of
normality of D(x)//G only depends on the semisimple part of x. But the normality of
D(x) itself depends on both xs and x,.

Recall that 7: D — D //G isthe quotient map, and write

#D—D//Gar

for the quotient map of the normalization. We shall show later that both quotient maps
are equidimensional.
In the following we shall always use Bourbaki’'s enumeration of simple roots, say

THEOREM 3.1. Let g besimpleandx € D. Asusual L := G,..
(i) 1fD//Gisnormal then D //G is also smooth.
(i) Thequotient D //Gisnormal if and onlyif L iseither a maximal torusor the full
group G or
(a) of type pAqwithp(q+1) =r+21andqg> 0, wheng = A;
(b) itstypeis pAq+ Bj withj,p,g > 0andr =j +p(q+ 1), when g = B, (hereBs is
distinguished from A; by root length);
(c) itstypeis pAq+ Cj withj,p.qg > 0andr =j+p(q+ 1), wheng
distinguished from A; by root length);

C: (hereCyis
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(d) itstypeispAq+Djwithj > 2andp(q+1)+j =r, or itstypeis pAqwithp(gq+1) =r
and g is odd, when g = D, withr > 4 (here L has component D; for j > 2 if and
only if ar_; and «, aretherootsof L);

(e6) its typeisAz + Ay, As or Ao + Ay + Ag, when g = Eg;
(e7) itstypeisAs (with simpleroots oz, aa, as, as and a7), 3A1 + Az (with simpleroots
a1, o, a3, as, or7) OF whenits semisimplerankis 6, when g = Ey;
(e8) its semisimplerankis 7, when g = Eg;
(f) itstypeis A, (both possible cases) or if the semisimplerankis 3, when g = Fy;
(g) any other type, when g = G,.

ProoF. By the remarks before the theorem it follows that we can assume that x is
semisimple, i.e., D = G(¢°). Richardson [43] showed that D //G is normal if and only
if the map

k(] — K[c]"

induced by restriction is surjective. He also showed (@), (b), (c) and (d). His method of
proof extendsto the exceptional Lie algebrasaswell, using the tables of I's compiled by
Howlett [25]. _ _

If Lisamaximal torus,then D = g.If L = Gthen D = {0}, soin both casesnormality
isclear. Supposethat 0 < dime <.

If dime = 1 then Is is either trivial or {1, —1}. In the first case there is a linear
Is-invariant on ¢ but no linear W-invariant on t, so the map between invariant rings is
not surjective and D //G is not normal. If I's = {—1,1}, then k[¢]"s is generated by a
quadratic invariant. On the other hand, since the quadratic form associated to the Killing
form does not vanishon D, we get that its restriction to ¢ is non-zero. So the restriction
map is surjective and hence D //G is normal. Summarizing, if dime¢ =1,thenD //Giis
normal if and only if I's is non-trivial. For example, if —1 € W then ' is non-trivial.
For the remaining cases we check Howlett’s tables.

Next we restrict to the case where g is exceptional and 1 < dime¢ < r. If [5is
a reflection group but not irreducible, then k[c]™s has either a linear invariant or two
independent quadratic invariants. Since k[t]" has no linear W-invariant and no pair of
independent quadratic invariants, it follows that the map between invariant rings is not
surjective and so D //G is not normal. Suppose next that I is an irreducible reflection
group. If itisof type A, B, Cor D, thenI's has at |east adegree 3 or adegree 4 generating
invariant. But W does not (since g is exceptional), so D //G is not normal in that case.
So suppose that s is of exceptional type. Then it has a degree 6 generating invariant
(sinceit is not Eg), hence two linearly independent degree six invariants. But if g is of
type Eg, then W has only oneindependent degree 6 invariant, hence D //G isnot normal.
So we assume now that g is not of type Eg. Then the type of I's can only be F4 or Go.
From Howlett's tables it follows that F4 does not occur asal s, and G, occurs 5 times:
For g = Eg and L of type 2A;, for ¢ = E; and L is of type As or of type 3A; x Az and for
g = F4 and both caseswhere L is of type A,. We'll show that in each of these five cases
D//Gisnormal.
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Using the Killing form we can define the gradient of a G-invariant function f on g,
which will be a G-equivariant vector field gradf: g — g. Analogously, we can use the
restriction of the Killing form to ¢ to define the gradient gradg: ¢ — ¢ of al's-invariant
gonc. If f and gradf are the restrictions to ¢, we have that

gradf_: gradf.

We now consider the five cases, where the type of I's is G,. First of al the Killing
quadratic form f, restricts to a quadratic generator g, of k[¢]"s. Let fs be any degree six
generating G-invariant on g. The so-called Richardson nilpotent orbit corresponding to
L is contained in D . Richardson [44] showed that in each of the five cases gradfs does
not vanish on the Richardson orbit. In particular gradfg is non-zero on D = Gc®°, so
necessarily non-zero on ¢. This does not depend on the choice of the generator fs. So
gradfs # 0, and therefore f # 0. Suppose the restriction T is not a I's-generator. Then
fe = cg3, for some constant c. But then fg — cf3 is also adegree 6 generating G-invariant,
but now with grad fs — cf23 = 0, which contradicts Richardson’s non-vanishing result. So
fs isaTl s-generator, and so the map k[g]® ~ k[t]W — K[¢]"s is surjective, and D //G is
normal in all five cases.

Next supposethat g isexceptional,1 < dimc¢ < r andthat I's isnot areflection group.
That can not happen when g = F4. According to Howlett's tables I's contains an index
two normal subgroup I, that acts as a reflection group on ¢ and an order two subgroup
V such that VI, = I's. Suppose that '} is not irreducible, then there is either a linear
and a quadratic generating I, invariant, or two generating quadratic I'; invariants. It is
no harm to assume that both are eigenvectors for the I's /', = {—1. 1} action. One of
the two quadratic I invariants is the restriction of the Killing quadratic form, henceis
already invariant by I's. In either case, there are two independent I s-invariants of degree
4. But there are no two W-invariants of degree 4 on t, hence the map between invariant
ringsis not surjective and so D // G is not normal.

Consider next the special casewhere g = Eg and I}, of type As, then there are at least
two independent degree six I s-invariants (by the same argument as before), but only one
degree six W-invariant. Hence non-normality. Apart from this special case, it follows
from Howlett’s tables that there are only two remaining casesto be considered.

The first is where ¢ = Eg and L of type A;. Then I} is of type Es. There are
two generating invariants for I'; of degree five and six. If ['s/I"; does not act trivially
on either of them, then it acts trivially on its product. Since k[t]" contains no two
independent elements of degree six nor invariants of degreefive or elevenit follows that
K[t]W — Kk[c]"s cannot be surjective, and so D //G is not normal.

The last remaining case to be considered is where ¢ = E7 and L of type A, (roots o
and a3). Here T is of type As. There are two generating invariants for ', of degreethree
and four. If I's/T'; does not act trivially on either of them, then it acts trivialy on its
product. Since k[t]V contains no two independent elements of degree four nor elements
of degree three or seven it follows that k[t]" — k[c]™s cannot be surjective, and so
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D // G isnot normal. We have now considered all possible cases, hence the proof of the
classificationin (ii) is complete. B
We saw that whenever I's is not areflection group, then D //G is not normal, whence

(. n

REMARK. Wegivethetype of thereflection groupsI” s coming up in the classification.
If L isamaximal torus, then s = W. If L = G then s = {1} and if the semisimple rank
of Lisr—1,thenls = {1, —1}. For the exceptional Lie algebrasthere remain five cases,
and in each of these cases, thetype of I's is G,. For the classical Lie algebraswe get that
incase (a) s is of type A1 and, in case (b), (c) and (d), I's isof type By(= Cy).

Even when D //G is not normal it can happen that the normalization map is still
a bijection, so that ¢ /T's still parametrizes the closed G-orbits in D. This situation is
described in the next lemma.

LEMMA 3.2. Letx € D and L := G,.. Let z € ¢ with stabilizer M := G,. The following
three statements are equivalent. _

(i) Thevariety D //Gisunibranchat 7(2), i.e., thefibre of 7(z) € D //G under the
normalization map v: ¢ /s — D //G consists of only one element;

(i) WehaveGzNc¢ =Tsz

(iiiy For any g € G such that gLg™* C M there exists an m € M such that
mgL(mg)~! =L, i.e., such that mg € NgL.

PrOOF. Itisclear that thefibre of 7(z) consistsexactly of thes-orbitsin GzNc, so (i)
and (i) areequivalent. Suppose(ii) holdsandthat gLg™* C M. ThenL C g~*Mg = Gy 1,,
i.e., g%z € ¢. By assumption thereisan n € NgL such that g~z = nz, or gn € M. Take
m:= (gn)~?, then mgL(mg)~* = n~1Ln = L. So (iii) follows.

Suppose (iii) holdsand Z := gz € ¢. ThenL C G, = gMg~?%, or g"'Lg C M. By
assumption there existsanm € M suchthatn:=mg=! € NgL, s0Z = gz=gm 'z =
n~1z € NgLz Hence (i) holds. .

REMARK. Thecondition (iii) isoften easy to check. It holdswhen M containsonly one
conjugacy class of Levi subgroupsisomorphic to L. For example, if L is of semisimple
type A1 X Ap X Ag in G of type Ag, then the normalization map ¢ — D //G is bijective
(here g istrivial), but not an isomorphism.

4. Collapsing of a vector bundle.

4.1. Indicatorsand notation. A decomposition classis completely determined by giv-
ing aLevi subgroup L and anilpotent NgL-orbitin[[. (], whereL isonly determined up to
conjugacy. Nilpotent conjugacy classes Ge in g were classified by Dynkin and Kostant,
using certain weighted Dynkin diagrams constructed from s[,-triples. The weighted
Dynkin diagram determines a parabolic group P and a nilpotent ideal n C p together
with a collapsing map G xP n — Ge which happensto be a resolution of singularities.

We shall call an indicator any sequence [Nz, hp, ..., n] of r numbersin {0, 1, 2},
where additionally some of the n;’s are underlined, and where the non-underlined n; have
value 2.
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Any indicator determines a decomposition classin the following way. The underlined
indices correspond to the simple roots of aLevi subgroup L. Let ¢° be the collection of
points in g with stabilizer L. The values n; at underlined positions define a graded Lie
algebra structure [ = &; (;, by imposing that a simple root vector of [ corresponding to
the simple root o; has degreen;. Thereis anilpotent ein nq := @;>, [; with the property
that the intersection nj of Le with n; isdensein ny. Then we defineD = G(¢c° + €) as
the corresponding decomposition class.

For agiven decomposition classthere may be many different indicators. For example,
take g = 3(3. Theindicator [2, 2] definesthe decomposition class of regular semisimple
elements, [2, 2] that of the regular nilpotent elements and [2, 2], [2, 2] both define the
class of non-semisimple, non-nilpotent, regular elements. The indicators [2, 1], [1, 2],
[2.0], [0, 2], [1,1], [1, 0], and [O, 1] al define the non-zero, non-regular, nilpotent orbit,
and [0, 0] defines the zero-orbit. The indicators [2, 1], [1. 2], [2, 0] and [O. 2] all define
the decomposition class of non-zero, non-regular, semi-simple elements.

An indicator determines much more than just a decomposition class. We introduce
more notation. p; := @i>o [; isaparabolic subalgebrain [ corresponding to a parabolic
subgroup P; C L. Define analogously agrading on g by using al nj’s. Write

n=PgCcpr=Pg

i>2 i>0

with corresponding parabolic subgroup P C G. Next write v := ¢ + n, where ¢ is the
center of (. Generally the Levi factor of Pisnot L.

If we change the indicator by putting all underlined n; equal to zero, we get a new
attached parabolic subgroup P, C G this time having L as Levi factor. Let n, be the
nilradical of p,, so

n=nq1®P ny.
We get several collapsing maps of homogeneous vector bundles:
YL xPng — (igxy— gy,

with image Le, and
G xPr—gigxy— gy.

with image D,i.e, D = Gr, wherethe decomposition class D = G(c° + €) is as defined
before. Both collapsings are proper morphisms. We write

Y =G xFr,

and define amap
0:Y —c:gx(s+u)—s,

forge G,secandu € n.
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We write X for theimage of Y under the product map (6.7): Y — ¢ x D;itisclosed
and an irreducible component of the Cartesian product V := ¢ X, /g D:

Y — X cVv — D

L oa |

¢« — DJ/G.

ThenV containsV° (asdefinedin Proposition 2.3) asan open, smooth (but not necessarily
dense) subvariety.

Recall va: A — Aisthe normalization map of any variety A. SinceY is smooth, any
morphism ¢: Y — A factorizes over A as

Y LAV—AHA.

for auniquemap ¢: Y — A, i
Let X betheimageof Y under the product map ((j,“?): Y — ¢ xDjitisclosedandis
an irreducible component of the Cartesian product V := ¢ x5 /G D from the following

diegram: Y — X c V — D
s |
¢ — D//G.

Then V contains V°, as defined in Proposition 2.4, as a dense smooth subvariety.
The algebrak[Y ] ~ K[G x t]" of global regular functionson Y isfinitely generated
and definesa normal affine variety Y, the affinization of Y . Let

a:Y — Y := Speck[Y ]
be the canonical map, which is proper and birational. We have the property that any
morphism ¢:Y — Aof Y to an affine variety A factorsthrougho: Y — Y as
Y LyYZA,

for a unique morphism ¢, Y — A. In particular we get surjective maps 6,:Y — ¢,
YooY = D, 72 Y =D, (0.a: Y — X and (0, V)a: Y — X.

All these varieties and morphisms are determined by a single indicator. We shall
consider how much only depends on the decomposition class.

4.2. Good indicators. We shall single out among all indicators the most useful ones.
We shall cal aindicator good if the collapsing v1:L x™ n; — Le is birational, or,
equivalently, if Le C P1 or, equivalently, if v restricts to an isomorphism

L xPnj ~Le.

The indicator corresponding to the weighted Dynkin diagram of a nilpotent orbit (all
indices underlined) is a good diagram for this orbit, but there might be more good
indicators.
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LEMMA 4.3. Any decomposition class D is associated to at least one good indicator.

PROOF. To defineone, pick an x = xs + X, € D, and defineL = G, and ¢° as before.
Then n; will be underlined iff o isaroot of [, and we'll put nj := 2 whenever o ishot a
root of L. The nilpotent orbit Lx, has an ordinary weighted Dynkin diagram, as defined
by Dynkin and Kostant. These give the underlined n;, corresponding to the simple roots
of [. Then D correspondsto thisindicator. It follows from the general theory of nilpotent
orbits, that such an indicator is good (see [16]). Such an indicator for a decomposition
classis not uniquely determined, but it only depends on the choice of L O T and on the
choice of acomponent of NgL - e. n

4.4. Description of an open set of Y. From now on we shall fix a good indicator and
all the notation that comes with it. We show that an open subset of the vector bundle Y
can be identified with the variety V° defined in Proposition 2.4 and that the map 6° (also
defined there) identifieswith the restriction of ] (defined in Section 4.1).

PrRoOPOSITION 4.5. We fix a good indicator and corresponding notation asin Section 4.1.
Then:

(i) Theopendensesubset Y © := G xP (¢c° + n§ + np) of Y := G xP ¢ isisomorphic
to the -stable irreducible component V° = G xb (¢° + Le) of V° = G xL (¢° + NgL - €)
(see Proposition 2.4), where e is any element of nj. _

(i) 'Y ° identifies with the preimage of D under the collapsingy:Y — D,

Yo — D
N O N
Y — D,

andtherestrictionto Y ° of the collapsingy is a Galois covering of D with Galois group
I.
(iii) The commutative diagram

Yo — D

|

¢ — /I
identifies with the Cartesian squarein Proposition 2.4(ii).

ProoF. With N, the unipotent subgroup of P, with Lie algebran,, we claim that the
following map is an isomorphism

N X ¢® X nj —— ¢® x nj x nz:(N.2) —n-z

We shall prove the claim first. Let (s,y) € ¢® x ng. Since N, is unipotent, the orbit
Nz - (S.y) C (s,y) x n2 is closed by the Kostant-Rosenlicht lemma. Let n € N, bein
the stabilizer of (s,y). By the unicity of Jordan decompositionsit follows that n fixes s
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and y separately. Son € N, N L and hence n is trivial. It follows that the orbit equals
(s.y) x nz and that the map in the lemma s bijective. Since both varieties are smooth
the claim follows.

We have the following sequence of isomorphisms:

Gxh(c°+Ly) ~ Gx"(c°x L x™nY)
~ G xPr(c°+n3)

~ G xP (c°+nj+ny).

Here the first isomorphism comes from the goodness of the indicator, and the last
isomorphism follows from the claim. This shows (i). The remaining statements follow
from Propositions 2.3 and 2.4. ]

COROLLARY 4.6. Themaps (0,7)a: Y — X and (6,7)a: Y — X are normalization maps.

PROOF. From the proposition it follows that these maps are birational, and Y is
normal. n

Thefollowing corollary is very important in applications.

COROLLARY 4.7. Theopensubset Y ° of Y and the varieties X and Y do not depend on
the choice of a good indicator, but only on the associated decomposition class.

Proor. That Y ° does not depend on the choice of agood indicator follows from the
proposition. The preimage of D under the projection V — Dis independent of the good
indicator, and identifies with Y °. Theimage of Y in V is X, which identifies with the
closure of the preimage of D, and hence does not depend on the good indicator. Since Y
is the normalization of X, it does not depend on the good indicator either. ]

4.8. The normalization of D asthe I'-quotient of Y. In particular, it follows from the
last proposition that I” acts on the open set Y °. This action does not extend to the whole
variety Y , but I does act on Y, commuting with the G x k*-action. This fact is very
useful for obtaining information on D from information on'Y, and vice versa.

THEOREM 4.9. (i) Yadmitsa G x I' x k*-action such that the G-quotient map 65: Y — ¢
isl" x k*-equivariant. _
(il) Themapa:Y — D, induced by the collapsing: Y — D, can beidentified with
the I"-quotient map of the M-action on Y; in particular Y/ ~ D.
(iii) The G-quotient map A,: Y — ¢ induces (by taking I'-quotients) the G-quotient
map 5
7D —¢ /T.
PrROOF. We consider the commutative diagram
y =, D

Gal Jfr

¢ — ¢/rI.

R
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I's acts on the Cartesian product V by pulling back the I's-action on ¢. By the foregoing
proposition the subgroup I acts on an open set of X isomorphic to Y °, and therefore
on its closure. The surjection of Y onto X is the normalization map, and so the I"-action
extends to Y as well. Since the surjection V — ¢ is 's-equivariant, it follows that 6,
is C-equivariant. By the previous proposition, Y,: Y — Dis generically a Galois cover
with Galois group I'. Since D is normal it follows from Zariski’s main theorem that ¥,
is the M-quotient map. It follows that the natural map Y/T = D—e¢ /T induced by the
G-quotient map 6, is the G-quotient map of D. ]

5. Regular elementsin decomposition varieties. Although the -action on Y °
doesnot extendto Y , it doesextend to the union Y ' of all orbits of maximal dimension,
and this subvariety is also independent of the good indicator.

For anirreducible G-variety W we denotethe open set consisting of orbits of maximal
dimension by W', and call it the set of regular elementsin W . If V isa subset of W,
we denote the open (possibly empty) set V "W ' by V'; it should be clear from the
context what the corresponding variety W is. This open set is of interest in the theory of
sheets. If D isthe closure of some sheet, then this sheet isjust D'. A useful property is
that the regular partsof Y and Y coincide, hence Y' is smooth. Next we get information
on the normalization of D', sinceit is the [-orbit space of Y. B

_ The decomposition class D is contained in the subvariety D" of regular elementsin
D, but in general the inclusion is strict. We shall need the following lemma.

LEMMA 5.1 Let:Y ' — X' C ¢ x D' (resp. fi: YT — X' C ¢ x D) be the restriction
of (8,7) (resp. (6,7)). For anyy € Y ' the tangent map duy (resp. dfiy) is injective on
TyY r-

PROOF. Wecanassumey = 1xa,witha € v. Write X; := {1x(st+a) € Y ";s € ¢ }; this
isan open subset of an affinespacein thefibreaboveP € G/P. Put X, := Gy; then X; and
X, are smooth varieties. Restricted to Xy, the map 6 is an embedding, but X, maps onto
asingle point. Since dimX; +dimX; = dimY ', thisimpliesthat T,Y ' = T,X; & TyXo.
Since Kerduy = Kerddy, N Kerdvy it follows also that Kerduy is equal to the kernel
of the restriction of dv, to TyX,. But since 7 restricted to X; is just afinite covering of
one G-orbit by another of the same dimension, it follows that this kernel is trivial. The
statements involving normalizations are proved the same way. ]

5.2. The(1-1)-condition. Thefollowing corollary and its proof are inspired by unpub-
lished work of Brylinski-K ostant [14].

COROLLARY 5.3. (i) The affinization map o:Y — Y restricts to an isomorphism
o:Y " ~ Y on the open subsets of regular elements. It follows that Y ' is indepen-
dent of the good indicator and the l-actionon'Y © extendsto Y '.
(if) The following statements are equivalent.
(1-1.1) p:Y " — X isinjective;
(1-1.2) p:Y " — X" isanisomorphism;
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(1-1.3) Thefibrev*(e) of 1Y — D consistsof a single point for any nilpotent element
einD".
(iii) Thefollowing statements are equivalent.
(1-1.1) Y " — X isinjective;
(1-1.2) fi:Y " — X isanisomorphism;
(1-1.3) The fiorey~*(e) of 7:Y — D consists of a single point for any nilpotent element
einDr".

PrROOF. Since o is the pull-back of the proper map «, it is proper; therefore it is a
finite map by Chevalley’s theorem since it hasfinite fibres. Since Y' isnormal and « is
birational, Zariski’s main theorem implies that o' is an isomorphism. This proves (i).
By the same arguments 1, and i are normalization maps (in the notation of the previous
lemma), hence finite. Since both tangent maps are injective at al points, by Lemmab.1
it follows that (1-1.1) and (1-1.2) (resp. (1-1.1) and (1-1.2)) are equivalent to each other
(see[46, Lemma, p. 136]). Assuming (1-1.3) it follows by the same argumentsthat X' is
normal in (0, €). If Xisnot normal, thenthelocus of non-normal points X™ isak* x Gx I
stable closed subvariety of X. The G-quotient map X™ — X™//G attains its maximal
fibre dimension in the fibre containing (0, 0) which has dimension strictly smaller than
dimG(0, e) = dimGe since (0, e) is anorma point by (ii). So X™ N X" is empty and
henceY " ~ X'. This proves (ii), and (iii) is proved similarly. L]

REMARKS. (i) We shall write (1-1) for the equivalent conditionson D in (i) of the
corollary, and (1-1) for the conditionsin (iii). Usually it is not difficult to check (1-1.3)
in contrast to (1-1), using for example[23]. For g = 3[,, (1-1) is dlways satisfied; thisis
not the case for the other simple Lie algebras.

(i) Letx =[n....,n] bethe weighted Dynkin diagram of any nilpotent variety
N. As remarked by Collingwood-McGovern [17, p. 110], the n; that have values 0 or 1
form the weighted Dynkin diagram of a nilpotent variety for the Levi L defined by the
corresponding «;. Thisis an empirical fact, and an apriori proof would be interesting.
If we define a decomposition variety D by the indicator x where we only underline the
ni’swith value unequal to 2, then D satisfies (1-1) and N is the (reduced) intersection of
D with the full nilpotent variety. In this way one can put any nilpotent variety with 2's
in its weighted Dynkin characteristic in a strictly larger decomposition variety, and try
to study it using information on the generic orbit closures in the decomposition variety
(just like polarizabl e orbits are studied by comparing them to semisimple orbits).

6. Cohomological results. Motivated by theresultthat Y /T = D, wewish to know
more properties of Y that might descend to D. We show in this section that Y hasrational
singularities using results of Hinich and Panyushev. By a theorem due to Boutot, this
property descends to D. Rational singularities implies Cohen-Macaulayness. It is also
truethat Y is Gorenstein, but this property does not always descend to D. Weshall also
give someinformation onthe minimal resolution of k[Y] asamodul e over the polynomial
ring R of regular functions on g, and that information also descendsin principle.
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6.1. Coverings of nilpotent varieties. Let N be any nilpotent variety. Panyushev and
Hinich showed that the normalization of N has rational singularities. This is a very
useful result, which we will show also holds for decomposition varieties. To prove this
generalization we need a small extension of the Panyushev-Hinich result, saying that
finite coverings of N have the same property. We need the following general result,
proved using aresult of Flenner [19]. Recall that our base field has characteristic zero.

THEOREM 6.2. Let f:Z; — Z, be a finite morphism between two normal varieties, and
let Z5 C Z, be an open subset of smooth points with complement of codimension at least
two. Suppose the restriction of f to Z; := f~1(Z3) is étale. Then if Z; is Gorenstein with
rational singularities, Z; is also Gorenstein with rational singularities.

PROOF. SupposeZ; is Gorenstein with rational singularities. Since the statementsin
the theorem are local we can assume that Z; and Z, are affine and that the Grothendieck
dualizing sheaf wz, istrivial (by the Gorenstein property), with generating global section
s. So the restriction wz; istrivial too, and also wz; by étaleness. By the normality of Z,
and the codimension condition it followsthat wz, = i*wz; isalsotrivial, wherei: Z; — 73
is the inclusion map. Put another way, f*wz, = wz, isisomorphic to the structure sheaf.

Let

p2:22 — 2

be aresolution of singularities. Since Z, hasrational singularitieswe have 2w = wz,.
2

Identifying Z5 with an open subset of Z,, we see that the restriction of sto Z5 extendsto
aglobal regular section 3 of Wy i.e., to aglobal regular differential form on the smooth
2

variety Zs.

We can identify Z5 with an open subset of the cartesian product Z, xz, Z;; write Z
for its closure. Let f: Z; — Z, and p2: Zy — Zy bethe corresponding projections. Taking
aresolution of singularities

p1: Z— ZAl«,

we then obtain the following diagram:

.
Z

o

z % 7

In the above, the composition p; := p2 o p1 isaresolution of singularitiesfor Z;, and the
composed map fi=fo p1 is amorphism between smooth varieties.

The pull-back f*(3) is a global regular differential form on Z3, extending the global
section f*() of wz:, where Z; isidentified with an open subset of Z;.

In general we have an inclusion p1~*wz~1 C wz,. But wejust saw that the generator of

wz, extendsto aglobal regular differential formon Z1, sothisinclusionisanisomorphism.
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To sum up, wyz, isinvertible and LW = wgz,, Where p1: Z, — Z; isaresolution of
1

singularities. These are exactly the conditions of a theorem of Flenner [19], implying
that Z; is Gorenstein with rational singularities. n

Theslight extension of theresult of Hinich [24] and Panyushev [41] isthen asfollows.

COROLLARY 6.3. Let N C g be the closure of a nilpotent orbit. Supposev: N— Nisa
finite G-equivariant covering. Then the normalisation of N is Gorenstein with rational
singularities.

PROOF. Let Z; bethe normalization of N, Z, the normalization of N and f: Z; — Z,
the associated finite G-equivariant map. All orbits on N and therefore on Z, and Z; are
even dimensional, and both Z; and Z, are the closure of one orbit, so we can take Z,
to be that orbit. By the result of Hinich and Panyushev, Z, is Gorenstein with rational
singularities. By the above theorem it follows that Z, also is Gorenstein with rational
singularities. ]

REMARK. If | remember correctly, the idea of this proof came up in a conversation
with F. Knop around 1991 in Basel after discussing Hinich and Panyushev’swork.

6.4. Syzygies. G acts on the graded coordinate ring R := k[g]. This we extend to a
G x I' actionwhere[ actstrivially. Consider k[ Y] asagraded R-modulewith compatible
G x I action. Since G x I islinearly reductive, k[Y] hasa G x IM-equivariant minimal
resolution by finitely generated, free, graded R-modules of the form

-+ — R@k Mz — R@k M1 — R®x Mg — K[Y] — 0.

where each M; is a finite dimensional graded G x '-module. Here minimality means
that all maps become zero after tensoring with k—), where kg is the quotient of R by its
maximal graded ideal. The G x I's-modules M; are uniquely determined and isomorphic
to the finite dimensional doubly-graded associative Tor-algebra TorX(ko. k[Y]). In fact,
forall i,

M; ~ TorR(ko, K[Y])

asagraded G x '-module.
By taking I-invariants of a minimal resolution of k[Y],

~--R@&x M) — R@x Ml — Rex M§ — K[Y]" — 0,

we get a minimal free G-equivariant resolution of k[D] ~ K[Y]" (see Theorem 4.9) by
graded R-modules.

Remarkably enough, these Tor-modul es can be cal cul ated as sheaf cohomol ogy groups
of certain homogeneousvector bundieson G/P. If M is aP-module, we write L /p(M)
for thelocally free sheaf of sections of the homogeneousvector bundieG xP M — G/P.
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THEOREM 6.5. Notations as before.
(i) We have G-module isomorphisms

(Torf(ko. KIYD) ., ~ H'(G/P. A Layla /1) ).
and 3
Torf(ko, KID1) = (Torfi(ko. KIVD)) "
(ii) We have the vanishing results

) Hi(G/P./j\LG/p(g/r)*) =0 fori>j,and
2 HYY.Oy)=0 fork>1.

PrROOF. Given the vanishing results of (ii), the same proof as[10, Lemma3.9] gives
thefirst statement of (i); the second follows from the remarks made before the statement
of the theorem.

Since the indicator is assumed to be good, it follows that the dimensions of Gn
and G x” n are the same, so Speck[G x" n] is anormal finite covering of Gn. From
Corollary 6.3 it follows that Speck[G xP n] is Gorenstein with rational singularities.
Since the affinization map

G x"” n — Speck[G xP n]

is a resolution of singularities, it follows that the higher cohomology groups of the
structure sheaf of G x” n vanish.

Consider the graded K oszul complex associated to theglobal section s: g«Xx — g(X, X)
of the vector bundle

GxP(@xg/n)—GxPg~G/Pxq.

The scheme of zeros of the sectionsisjust G xP n. Using the two spectral sequencesof
hypercohomology of this complex, an argument asin [10, Section 2.12] shows that the
higher vanishing of the structure sheaf of G xP n implies that

Hi(G/P./J\LG/p(g/n)*) =0 fori>j.
The short exact sequence
O—r/n—g/n—g/r—0
inducesthe long exact sequence(using thetriviality of thebundle L /p(r /n)* ~ Og /p®
¢*, since P actstrivialy onr /n ~ ¢)
0— /l\LG/P(EI/f)* - /I\ LG/P(EI/”)* - 7\1 LG/P(Q/“)* ® S —

i—2 ! !
A Lg/P(G/H)* @S — LG/P(Q/H)* ® Sk — OG/p ®Sc* — 0.

By breaking this up into short exact sequences and using the vanishing results for
N Lg sp(a/n)*, the proof of (ii) follows straightforwardly. "
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REMARKS. (i) The theorem implies that the cohomology of certain homogeneous
vector bundles carries a remarkable G x I action. Let k = C, the field of complex
numbers, K be acompact form of GandH C K be suchthat K /H ~ G /P as manifolds.
Then I's acts naturally on the manifold K /H; can we lift this action (or restricted to I')
to the complex vector bundle G x” (g /r)* — K /H and to its cohomology groups? This
ispossiblefor P =B and r = 0. In that case, this bundle is just the complex cotangent
bundle.

(ii) One can get an explicit upper bound for the dominant weights occurring in
TorR(ko, k[Y]) asin [10, Lemma2.10].

6.6. Y has rational singularities. As afirst corollary, we find the key result of this
article, namely that Y is Gorenstein and has rational singularities.

COROLLARY 6.7. The affine variety Y is a rational Gorenstein variety with rational
singularities and with resolution of singularitiesa: Y — .

PROOF. From Bruhat'slemmait followsthat G/P isrational, and thereforealso Y is
rational, sinceit is the total space of avector bundleon G/P. SinceY' ~ Y ', it follows
that Yisrational. Since « isaresolution of singularities of Y, the corollary follows from
the theorem and the definition of rational singularities. ]

REMARKS. (i) Inthecaseof decomposition classesof semisimpleelementsthisresult
together with its non-commutative analog was already known, using an observation of
Elkik (see [49, Proposition 10]). For the decomposition classes of nilpotent elements it
is due to Hinich and Panyushev.

(i) Suppose we have an indicator with the property that L xP n§ — Leisonly a
finite covering. Then the corresponding affine variety Y is still a Gorenstein variety with
rational singularities, and the full proof extendsto this case.

6.8. Identification with X. Asa second corollary (of the proof), we derive that Y iden-
tifieswith itsimage X in ¢ x g if and only if (1-1) is satisfied and the nilpotent variety
Gn isnormal. These hypothesesare always satisfied in case g = 3[,,.

COROLLARY 6.9. (a) The following five statements are equivalent.
(i) Thevariety Xisnormal,i.e, Y ~ X;
(if) Thevariety X is Cohen-Macaulay and (1-1) is satisfied;
(iii) Thenilpotent variety Gn isnormal and (1-1) is satisfied;
(iv) Thefollowing holds:
i i A [k ifi=0;
HI<G/P'/\LG/P(Q/H) ) N {O, otherwise;
(v) GactstriviallyonTorg(ko. k[Y]),i.e., GactstriviallyonH'(G/P. A' Lg p(a/1)*),
for all i.
(b) Suppose the stable class D_satisfies the conditions in (a) and that D //G is

unibranch (see Lemma 3.2). Then D is unibranch, and D isthe underlying variety of
the pull-back ¢ /T's x5 6 D.
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PROCF. SinceY is Cohen-Macaulay, (i) implies (ii). If we assume (ii), then the non-
smooth locus of X is of codimension at least two. Serre’s normality criterion shows that
Xisnormal, hence (i).

By avariation of [10, Lemma 3.9] the conditions in (iii) and (iv) are equivalent. It
follows from Theorem 6.5(i) that k[Y] is a quotient of k[c] @k K[a] = K[Y]® @k K[g] if
and only if H'(G/P. \' Lgp(g/1)*) consists only of G-invariants for all i. It follows
easily that (i) and (iv) are equivalent. The equivalence of (i) and (v) follows from the
theorem. Finally, (b) follows directly from (a). ]

LEMMA 6.10. The pull-back variety V is irreducible with underlying variety X, ie,
X = Vies. Moreover X is normal, i.e. Y ~ X, if and only if X is Cohen-Macaulay and
(1-1) holds.

ProoF. Consider the following commutative sguare of quotient maps:

Y — D

l l

C—>L‘/|_

Lets € ¢ haveimages:= k(s). ThenT actstransitively on the (closed) points of thefibre
x~1(S). Since all fibres of 6, areirreducible by Theorem 6.12(iv), I's acts transitively on
the set of irreducible components of the fibre 9;1(/(1(5)). This implies that the fibre
7-1(3) isirreducible. So all fibres of V — ¢ areirreducible of the same dimension and
Vied = X. The proof of the second statement uses the same argument as the one used in
the previous proof. n

6.11. Fibres of the G-quotient map of Y. In the next proposition we assemble some
more results on Y and its G-quotient map.

PROPOSITION 6.12. (i) Y % Y23 D isthe Stein factorization of the collapsing 7.

(i) Themap8:Y — ¢ issmooth.

(iii) The G-quotient map 6,: Y — ¢ isflat. Its fibresare irreducible, reduced, Goren-
stein, have rational singularities and contain a dense open G-orhit.

(iv) For s € ¢, the denseorbitsin 6~1(s) and 65 *(s) are isomorphic and the induced
map 0~1(s) — 6;%(s) isaresolution of singularities.

ProOOF. (i) is standard (see [22]). The map ¢ factors through the smooth maps of
vector bundles
Y -GxPr/n~G/Pxr/n

and the smooth projection G/P x r/n — 1 /n ~ ¢. Thus § is smooth.

Since k[G xP n] does not contain non-constant G-invariants, it follows that k[Y]® ~
k[c]. It follows that the isotypical components of k[ Y] are finitely generated maximal
dimensional Cohen-Macaulay graded modules over the ring of invariantsk[c], whichis
a polynomial ring. From the Auslander-Buchshaum equality (see [39, Theorem 19.1])
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it follows that the isotypical components are projective, hence free. So K[ Y] is k[¢]-free
and 4, is flat. (One can also use [21, Proposition 15.4.2] directly.) Then from general
theorems (see [39, Theorem 23.4]), flatness of 6, impliesthat Y is Gorenstein if and only
if the special fibre Yy is Gorenstein.

Since f:071(s) — 6;%(s) is a pull-back of «, it is proper, surjective with connected
fibres (by (i)). Each fibre of 6 and 6, is a complete intersection by global G-invariant
regular functions, and all havethe samedimension. It followsthat f isgenerically one-to-
one. By thevanishing of higher conomology of Oy , it followsthat k[~(s)] ~ k[0;%(5)],
in particular ;1(s) is normal, and the higher cohomology of 0971(3) vanishes. Hencef is
a generically finite map with connected fibres between normal varieties, so by Zariski’'s
main theorem, f is birational. Since 6~1(s) ~ G xP (s+ n) is smooth, f is a resolution
of singularities and 6;1(s) hasrational singularities. To show that these fibres contain a
dense open G-orbit, it is enough to show that #71(0) = G xP n contains a dense orbit
(compare[32, p. 130]). Since G x” n and Gn have the same dimension and Gn contains
an open, dense orbit of nilpotent elements, it followsthat G x” n has a dense open orbit.
This finishes the proof of (iv). ]

7. Fibres of the G-quotient map of D. In the last section we derived various
very good properties for Y and its G-quotient map. Now we shall try to induce those
properties on D andonits quotient map. Fibres of the quotient map remain irreducible,
but no longer need to be reduced. We shall give several characterizations of when all
fibres are reduced.

Wefirst show that D hasrational si ngularities and study some properties of the fibres
of the G-quotient map 7:D — ¢ /T

THEOREM 7.1. (i) The normalization of any decomposition variety has rational singu-
larities. FurthermoreD ~ Y/ and D" ~ Y /T

(ii) The fibres of the G-quotient map 7: D— ¢/I" areall irreducible containing a
dense G-orhit.

(ii) Recall that k:c — ¢/I is the quotient map. Then G acts trivially on
TorR(ko, K[Y]) if and only if D is the image of (x o 6,7):Y — ¢/I x D. In par-
ticular, thisis the caseif (1-1) is satisfied and Gn is normal.

(iv) D isnormal if and only if TorX(ko, K[Y])" = k.

PROCF. SinceY hasrational singularitiesby Corollary 6.7, (i) followsfrom Boutot's
theorem [9] and Theorem 4.9. In the proof of Lemma 6.10 we already showed (ii). And
(iiii) follows from Corollary 6.9 and (i). If D = D then k[D] is aquotient of R and vice
versa, this proves (iv). ]

REMARK. It followsthat ¢ /" parametrizes the regular orbits of D, by associating to
¢ € ¢ /T the dense orbit in the fibre of 7, and we at least get a surjection of ¢ /T on the
orbit space D" /G. If D" is a sheet (and so I = I's), then the main result of Borho [5]
givesthat ¢ /T also parametrizesthe orbits of D". If the normalization map Dr—Dris
bijective, thisis obvious, but | don’t know whether an analogousresult istruein general.
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Katsylo [27] proved that the orbit space Dr /G has the structure of an algebraic variety
for any decomposition class D.

7.2. Conditionsfor flatnessof 7. If Aisan affine G-variety, the G-multiplicities are the
multiplicities of simple G-modulesin K[A], ranging over all simple G-modules.

LEMMA 7.3. (i) Thefollowing conditions are equivalent.
(1) The G-quotient map 7:D — ¢ /T isflat;
(2) The G-multiplicities are constant along the fibres of 7: D— ¢/T;
(3) The G-quotient map V — ¢ isflat;
(4) The G-multiplicities are constant along the fibresof V — ¢;
(5) V is Cohen-Macaulay and reduced (i.e., X = V).
(i) If (refl) is satisfied, then the conditionsin (i) are also satisfied.
(iii) If Dr is smooth, then the conditionsin (i) are satisfied if and only if (refl) holds.

PrOOF. The coordinate ring k[f)] considered as a graded module for the invariant
ring k[If)]G ~ K[c¢/I] is adirect sum of its G-isotypical components. By Nakayama's
lemma for graded modules, it follows that the rank of any isotypical component as a
graded k[D]G—moduIe isequal to the minimal number of homogeneousgeneratorsif and
only if the isotypical componentsare free. So (1) < (2). Analogously (3) < (4).
SinceV — ¢ isapull-back of 7, it follows that the corresponding fibres are isomorphic.
Hence(2) < (4). If V is Cohen-Macaulay, then V — ¢ isflat, so (5) implies (3).

For any irreducible G-character A, there is a K[c]-linear map between isotypical
components
(3) fu:k[V], — KIX]y = KIY.

whereKk[Y], isfree by the flatness of 6, (see Theorem 6.12(iii)). Let s € ¢° and let ks be
the correspondingk[c]-moduledefinedby f -t := f(s)t (f € k[c]). Theopenorbitsinéz1(s)
and the fibre of s under V — ¢ are isomorphic, by Proposition 4.5, so the singularity
locus of the latter fibreis at least of codimension two (all orbits have even dimension).
Assuming flatness of 7, then both fibres are Cohen-Macaulay, and, by Serre's criterion,
both are normal and hence isomorphic. So there is an isomorphism of vector spaces

f, @ ks K[V], @ ks ~ K[Y], @ Ks.

This shows that the three isotypical componentsin (3) all have the same rank as k[ ¢]-
modules. Again, by the flatness assumption on %, we have that k[V], is free for all
A. Since free modules are torsion freeg, it follows that f, is injective for all A. Since
k[V] — K[X] is surjective it follows by Theorem 7.1 that it is an isomorphism, i.e.,
X =V. Sincec /I and D are Cohen-Macaulay, it follows from the flatness of 7 that all
its fibres are Cohen-Macaulay. This also holds for the fibres of the pull-back V — ¢, so
V is Cohen-Macaulay. Hence (1) implies (5) and we have finished the proof of (i).

Assuming (refl.3), it follows from the Cohen-Macaul ayness of D that 7 isflat (apply
[21, Proposition 15.4.2] or [39, Theorem 23.1]). Hence (ii).

Suppose Dr issmooth, then flatness of 7 impliesthat ¢ /T is smooth. Hence (iv). =
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7.4. Grothendieck simultaneous resolutions for 7. The usefulness of the following
theorem lies in the fact that very often we can check condition (cart.3). But oncethisis
satisfied, many other very desirable properties follow.

THEOREM 7.5. (i) The following statements are equivalent.
(cart.1) Thezerofibre #1(0) of #:D — ¢ /T isreduced;
(cart.2) All the fibresof 7 arereduced and irreducible, are Gorenstein and have rational
singularities;
(cart.3) wisflat and (1-1) is satisfied;
(cart.4) Y ~ X ~V, i.e., thefollowi ng diagram of quotient mapsis Cartesian

Y — Y — D

| o |

¢ — ¢/rl.

(i) Supposethe conditionsin (i) are satisfied. Then D is Gorenstein and the smooth
locus of D' is the preimage under 7 of the smooth locus of ¢ /T. In particular Dris
smooth if and only if (refl) is satisfied.

PROOF. Obviously, using Proposition 6.12, both (cart.2) and (cart.4) imply (cart.1).
Assume (cart.1), so the specia fibre of 7 is reduced (and irreducible). The map that
surjects the normal variety 6;1(0) onto %‘1(%(0)) is in fact the I'-quotient map, from

which it follows that ( _1<7r(0))> = (%‘1(%(0))) is normal. Then it follows from
Borho-Kraft'sassociated cone constructlon (see[32, 11 4.2)) that all the (closed) fibresare
reduced, irreducible and normal and that the multiplicities along the fibres are constant.
Hence by (ii) 7 isflat. By applying [21, Corollaire 12.1.7], it follows that the collection
of (not necessarily closed) points z in D such that z is normal and reduced in the
(not necessarily closed) fibre %*1(7?(2)) isopen and G x k*-stable. Its complement is a
closed G-stable cone. Supposeit is non-empty. Then it contains a point in the zero-fibre
%*1(7?(0)) , Whichisnormal and reduced. Thisisacontradiction, henceall fibresof 7 are
reduced and normal.

By pulling back (see[21, Proposition 6.8.2]), we see that the quotient map V—e¢
hasthe sameproperties. It followsthat V is reduced and normal (see[21, Corollaires6.4.2
and 6.5.4]). Because Y — V is the normalization map it follows that Y ~ X ~ V, i.e.
(cart.1) implies (cart.4). Using the equivalence of (cart.1) and (cart.4), it also follows
that (1-1) is satisfied. So (cart.1) also implies (cart.3).

Assume (cart.3), then by the lemma before we have that X = V is reduced and
Cohen-Macaulay, and by Corollary 5.3that Y ' ~ Y" ~ X'. Let X® be the singular locus
of X, then X® has codimension at least three, since dimX®//G < dimX//G = dimc¢
and dimd,*(s) NXe < dimg;(s) N (X \ X7) < dimé;%(s) — 2, all orbits having even
dimensionin X. SoV = X is Cohen- Macaulay and smooth up to asubset of codimension
at least three. Then it follows from Serre’s criterion for normality that X is normal. Thus
Y ~ X and (cart.4) follows. Hence (i).
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If the conditions are satisfied, then D is Gorenstein since all the fibres of 7 are
Gorenstein. In addition, all the fibres of the flat map 7": D" — ¢ /I are smooth. Now
apply [39, Theorem 27.7] to get (iii). n

REMARKS. (i) We shall say that (cart) is satisfied if one of the equivalent conditions
in (i) of the theorem is satisfied. If that is the case, the commutative diagram

Y — D

l |

¢ —— ¢/I

isasimultaneousresolution of theflat quotient map D¢ /T (see[48]). (cart) isalways
satisfied if g is of type A;.
(i) Asremarked in the proof, the Killing form restricts to a non-degenerate form on
¢. It follows that the induced quadratic invariant on g vanisheson D if and only if ¢ = 0.
(iii) In general D need not be Gorenstein, evenif D = D (see example Section 9.5).
(iv) Let T’ bethe (normal) subgroup of I' generated by the reflectionsin I". Suppose
(1-1) holds; then the same arguments show that Y is isomorphic to the pull-back ¢ Xe/r
Y/ and Y/T" = (¢ /T X jr D)rea.
7.6. Grothendieck simultaneousresolutionsfor 7. We describe next the situation where
D itself is part of a Grothendieck simultaneous resolution. The conditionsin (b) arein
general easy to check, using tables already published in the literature.

THEOREM 7.7. Let D be a decomposition class.
(i) The following two statements are equivalent.
(1) Thequotient D //Gisnormal andV =Y, i.e.,, we have a Cartesian diagram

Y — Y — D

| o |

¢ —— ¢/I.

(2) D isstable, satisfies (1-1), and both D //G and Gn are normal.

(i) Suppose the conditions in (i) are satisfied. Then D has rational singularities,
is Gorenstein; its quotient D //G ~ ¢/I" is smooth; its quotient map 7 is flat with
irreducible, reduced, Gorenstein fibres having rational singularities, and D" is smooth.

PrOOF. Suppose (1) is satisfied. Then Y = X, hence (1-1) and normality of Gn (see
Corollary 6.9). Since V_= Y isirreducible, V° is aso irreducible, and D is stable (see
Corollary 2.7). HenceD = Y/T = D is normal and ¢ /T is smooth by Theorem 3.1(i).
Hence (2).

Conversely, suppose (2) is satisfied. (1-1) and normality of Gn imply that Y = Xisan
irreducible component of V, and I's = I" actson Y with quotient D. From D //G =~ ¢ /T's
it follows again that (refl) holds, and the group I's also acts on V with quotient D. So D
isacomponent of D, hence D isnormal. SoV =V = Y by Theorem 7.5.

Hence (i), and (ii) follows from Theorem 7.5. ]
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_ REMARKS. (i) Assuming only the condition Y = V does not imply the normality of
D //G (see example Section 9.3). But then D is normal if and only if D" is normal if
and only if D //Gisnormal.

(i) The conditionsin the theorem are satisfied for any stable decomposition classin
A, = &l+1 suchthat the type of [ is pAq with p(q+1) =r + 1, (see[34]).

(iii) Another equivalent conditionisasfollows.Y = VandD //Gisnormal if andonly
if dim Torf(ko. K[Y]) = #T if and only if the representation of I's on Torf(ko, K[Y])" isthe
regular representation. The ordinary Grothendieck simultaneous resolution was used by
Slodowy [48] to define aW-action on the cohomol ogy of thefibresof v using monodromy.
These actions turned out to be equivalent to Springer’s famous W-representations. One
might ask whether Slodowy’s method generalizes to obtain M-actions on fibres of 7, at
least in the situation of the last theorem.

7.8. Classification of Dixmier sheets where Y = V and the closure is normal. The
following theorem classifies the Dixmier sheets that resemble most the regular sheet in
the sense that its closure is normal and that there is a natural simultaneous resolution
for the quotient map of D. The classification is complete only up to normality results of
nilpotent varietiesin Lie algebras of type E;.

THEOREM 7.9. Let g besimple. Supposethe decomposition class D containsa semisim-
ple element x with stabilizer L so that D" is a Dixmier sheet.
ThenD //Gisnormal and Y = V if and only if L is either a maximal torusor L = G
or
(a) itstypeispAq, withg>O0andr+1=p(q+1),ifg=A;
(b) itstypeispAq + Bj, withq,j >0, r =j+p(g+ 1) and2j > q,if g = By,
(c) itstypeispAq+ Cj, withq,j >0, r =j+p(g+ 1) and2j <qg+1,ifg=C;
(d) itstypeispAq+Dj,withg>0,j > 2,r=j+p(g+1)and2j > g+ 1oritstypeis
pAg, withqodd andr = p(q + 1), if g = Dy;
(e) the typesin Theorem 3.1(e6) (resp. (€7), (e8)) where the nilpotent variety Gn is
normal (we conjecturethat these areall normal), if g = E;.
(f) itstypeis A, (shortroots), A + A, (short roots and one long simpleroot) or Cs, if
a =Fy;
(g) itstypeisA; (corresponding to the short simple root) if g = Go.

PrOOF. Since we require D //G to be normal, we only have to consider the types
given in Theorem 3.1. Among those types we have to consider which satisfy both (1-1)
and that Gn is normal. For g = A, both conditions are satisfied for the given types, by
Kraft and Procesi [34], which gives (a).

Let g beclassical. Then we can check (1-1) using Hesselink [23] and normality using
Kraft-Procesi [35]. Let g = $0x+1 and L of type pAq+ Bj, wherer = p(q+1) +j. Order the
sequence ((q+ 13,2 +1) to obtain apartition of 2r +1 and then take the dual partition and
obtain A. From aresult of Hesselink [23, Theorem 7.1] it follows that (1-1) is satisfied if
andonly if X isthe partition of anilpotentin sozr+1. If 2) > gthen A = ((2p+1)%1, 1279)
is the partition of anilpotent (i.e., al even parts occur an even number of times), hence
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(1-1) is satisfied. To check normality, we have to find the minimal e-degenerations of
A. Then normality fails if and only if aminimal e degeneration of type (€) occurs (see
Kraft-Procesi[35, Theorem 16.2)]). In this case, type (€) does not occur, hence normality
holds for Gn. If g > 2j, then A = ((2p + 1)2*1. 20%%). If g is odd this is not a partition
of anilpotent, hence (1-1) is not satisfied. But if g iseven, it isa partition of a nilpotent,
hence (1-1) is satisfied. But then there is a minimal degeneration of type (€), hence
non-normality. This handlestype B;.

Type C; issimilar. Here L is of type pAq + Cj, wherer = p(q+ 1) +]. If 2] > g, then
we get (1-1) and normality. If g > 2j, then (1-1) is satisfied if and only if qis even. But
if giseven, normality fails. This handlestype C;.

Let g = 30y. Here Procesi-Kraft's normality criterion only holds for partitions that
are not very even. First consider the case where the type of L is pAq + D;, wherej > 2
andp(q+1)+j =r.1f2j > q+1, weobtainthat A = ((2p+ 1), 13-(@1) {s a partition
of anilpotent, hence (1-1). Thisis not very even and there is no minimal degeneration
of type (€), hence normality. If 2j < q+ 1then A = ((2p +1)3, 2pq"1*21). Thisis a
partition of a nilpotent (hence (1-1) holds) if and only if g is odd. But if g is odd, then
the partition is not very even but adegeneration of type (€) occurs, hence non-normality.
Now consider the second case where L is of type pAq, where p(q+ 1) = r and g is odd.
Now the partition A = ((2p)**?) is the partition of a nilpotent, hence (1-1) holds. This
time the partition is very even and we can use Kraft-Procesi [35, 17.3 Theorem (b)] to
conclude the normality of Gn. This handlestypeD;.

For F,4 the following cases given in Theorem 3.1 are ruled out: A, (long roots) since
Gn is not normal; Ay + A; (long roots and one short simple root) since (1-1) is not
satisfied; Bz since Gn isnot normal. The remaining cases satisfy (1-1) and the normality
condition: see[12].

For G, we only have to check both rank one cases. In any case the closure of the
nilpotent orbitin D" isnormal (Kraft), and (1-1) is satisfied if the simple root in the Levi
factor of P isshort.

For E;, the cases given in Theorem 3.1 all satisfy (1-1). ]

REMARKS. (i) Many of the cases of sheets studied by Rubenthaler [45] occur in the
list above. A special casewasstudied by Brylinski-K ostant [ 14], wherethe decomposition
class contains an element h that is part of an even 3(,-triple {e,f, h}, such that Gy, is
of semi-simple rank r — 1. In general Rubenthaler's D and Ge need not be normal.
For example, in type C4 with Levi group L of semisimple type A; x Cy, or in type F4
with Levi of semisimple type Bs. But we conjecture that they are always normal in the
simply-laced case.

(i) If g = Ay, then all sheets are smooth (due to Peterson and Kraft-Luna, see [4]).
Alsofor the other classical typesit is conjectured that all sheets are smooth, so we could
forget about the normality condition on D //G. So far only one non-smooth sheet has
been found (the subregular Dixmier sheet in G, corresponding to along root, found by
Borho and Kraft), but in that case (1-1) is not satisfied. One might ask whether there are
non-smooth Dixmier sheetswhere (1-1) is satisfied.
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(iii) Here is a remark on the classification of normal nilpotent varieties. In 1989
Kraft [33] gave a summary of what was known about normality of nilpotent varieties.
For the classical simple Lie algebras and for G, this remains up to date, but for the
exceptional Lie algebras some new results appeared. In [11], we showed that certain
nilpotent varieties are normal, and in [12] we completely handled the case of type F4.
We obtained the normality of the following nilpotent varieties.

In Eg those with Bala-Carter labels: Es, E6(a1), Ds, E@(ag), 3A1, 2A4, Ay, Ag. In E7
those with labels E7, Ez(a1), E7(a2), E7(a3), Es, Es(as), 4A1, (3A1), (3A1)”, 2A1, Ag, Ao.
In Eg those with labels Eg, Eg(a1), Es(az), Es(as), Es(as), 4A1, 3A1, 2A1, A1, Av.

Richardson [44] calculated the multiplicity of the adjoint representation in the co-
ordinate ring of any nilpotent variety. For some nilpotent varieties he also calculated
the multiplicity of the adjoint representation in the coordinate ring of the normalization.
If these multiplicities are not equal, then obviously the nilpotent variety is not normal.
We calculated the multiplicity of the adjoint representation in the normalization of any
nilpotent variety in the exceptional Lie algebras. We used the methods exposed in [12],
and cal culated most cases by hand and some with the help of acomputer (and found that
Richardson made some errors). Eric Sommers independently programmed a computer
and obtained the same multiplicity results. In this way the non-normality is detected for
the following nilpotent varieties in type E;.

In Eg those with labels: A4, Az + Aq, Az, 2A; and A, + A;. In E7 those with labels
De(a1), Ds(a2), (As)”, Aa, Az + Ag, Da(as) + Ar, Ag + 2A1, (A + A1), (As + A1)”, As. In
Eg those with labels E7(a1), E7(22), D7(au), E7(as), Es, Ds, Es(a1), E7(24), Ds(a1), Aes,
Ds+Aq, E7(as), Es(as) +Aq, De(a2), Ds(an) + Az, As+Aq, Ds, Eg(as), Dat+Az, Ds(ay) +Aq,
As, Ds(a1), Da + Aq, Ag, Az + A, Az + 2Aq, Dy, As + Ag and Ag.

In general the normalization map of a nilpotent variety N is not bijective. For type
E, Beynon-Spaltenstein [3] provided a table saying exactly how many points lie over
a given point in N. In this way the non-normality of two more non-normal nilpotent
varieties can be shown, namely in Eg those with labels 2A; + A; and Dy(ay).

We expect that the remaining nilpotent varieties in E; are all normal. At least they
areall unibranch, i.e., the normalization map is bijective (Beynon-Spaltenstein), and the
multiplicities of the adjoint representation in C[N] and C[N] are the same.

For any semisimple Lie algebra we conjecture (together with Panyushev and Som-
mers) that all distinguished nilpotent varieties (in the sense of Bala-Carter) are normal.
Thisis correct at least for the classical Lie algebras and for Eg, F4 and G,. For E7 two
cases remain to be settled and for Eg six cases.

8. Non-commutative analogs. The decomposition varieties allow non-commuta-
tiveanalogs, at least when they allow agood, evenindicator. Inthat case t = ¢ + n with n
the nilradical of p. We shall assume also that D is stable. Thereis a connected subgroup
F < Gwith the propertiesthat (P, P) < F < P, P/F = A atoruswith Liealgebrac, and
(a/7)* can be identified with r using the Killing form. Let | be the annihilator in U(g)
of the left-module

U(a) @u(i) C—2pp-
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whereC_,, = A'"(g/) = A'(g/p), hence 2pp isthe sum of all rootsin b (or n). Then
k[D] is the associated graded ring of the Poincaré-Birkhoff-Witt filtration on U(q)/1.
Here U(g) isthe universal enveloping algebra of g.

Also, the other varieties associated to such agoodindicator, such as Y, D, v. V. D //G,
etc., have non-commutative analogs as we shall indicate. If Z is any smooth variety we
denoteits ring of global algebraic differential operators by Dz. If G actson Z, the Lie
algebra g acts by global vector fields on Z, and therefore we get an operator represen-
tation w: U(g) — Dz, where the elements in the enveloping algebra are interpreted as
differential operatorson Z.

The following results are due to or follow easily from work of Borho-Brylinski and
Soergel.

THEOREM 8.1. Fix a good, even indicator. The completely prime ideal | defined above
isthe kernel of the operator representation w: U(q) — Dg /¢ induced by the G action on
G/F. Theaction of Aon theright of G/F inducesaninclusion U(c) — Dg . Wite U,
for theimage of U(g x ¢) in Dg/r, itis contained in the ring of A-invariant differential
operators D := Dg . The centers of D and U, can both be identified with U(c). D is
flat as a module over its center.

Let K bethefraction field of U(c). Then the ring of A-invariant differential operators
D istheintegral closureof U, in Dk = (U, )k, i.e., D isequal to

{x € Dk | the subalgebra of Dk generated by U, and x is a finitely generated
U, -bimodule}.

The associated graded ring of D with respect to the operator filtration isk[Y]. The
associated graded ring of U := U(q)/1 with respect to the PBW-filtration isk[D] and
the associated graded ring of Z := Z(q)/ (1N Z(q)) isk[D //G]. The associated graded
ring of the image U, of U(g x ¢) in D with respect to the PBW-filtration is k[X]. The
associated graded ring of U(¢) @5 U isk[V].

PROOF. See Borho-Brylinski [6] and Soergel [49]. There the algebra D, 5 of global
differential operators on any homogeneous space G/S is studied. It allows a faithful
representation on the local cohomology M = H(G/S Og ), wheren = dimG/Sand
x=S€ G/S Itsrestriction to U(g) can be identified with the induced module

M = U(q) @ug /n\(ﬂ/?’)-

Apply this to the homogeneous space G/F. Let Q C G x A be the image of P —
G x A:p— (p,pF). Then

G/F=(GxA)/Q. .
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8.2. Anactionof ' on D. To give a non-commutative analog of D, we need to define
atwisted action of 's on ¢ (or on ¢* and using the Killing form). The extension of this
action to D hasn’t been explicitly used in the literature before.

The e-action of W on t* is defined by

wWe p =W +p) — p.

where p = pg is half the sum of positive roots. The projectiong = u- ®tdu — t
induces alinear map from U(g) — U(t) and an algebra homomorphism

¢:Z(g) — U(t).

For every z € Z(g) thereisaZ € U(g)u suchthat z = ¢(2) + Z. Harish-Chandrashowed
that ¢ induces an isomorphism of the center of U(g) onto the invariant ring by the
e-action of Won U(t) ~ k[t*].

Let p. be half the sum of positiverootsin L and pp = p — p. half the sum of rootsin
n. The surjection j*:t C p — p/f ~ ¢ inducesan injection j: ¢* — t*. Write

juet =t JL) =i — 2oL

with comorphism
it:Ut) — V().

Let I be the normalizer of this affine subspaceji (¢*) C t* for the e-action of W. Let
Nw(c*) bethe normalizer of ¢* and Cy(c*) itscentralizer for the ordinary W-action. Then
the finite group I's identifies with the quotient Nw(c*) / Cw(c*) (by identifying t and t*
using the restriction of the Killing form). Howlett [25, Corollary 3] showed that I~ isjust
the subgroup of Nw(c*) permuting the positive roots of L, and Ny(c¢) = Cw(c) - T

Thereis an involution commuting with the e-action of W defined by

vttt —t* (N ==\ —2p.

Write .*: U(t) — U(t) for the comorphism.
The operator representation w: U(g) — U, restricts to a homomorphism of centers,
i.e., amorphism wz(): U(g) — U(c).

LEMMA 8.3. Therestrictionwz( of theoperator representationto Z(g) can beidentified
with j¥ o /* o ¢. Itsimage is contained in the ring of invariants U(c)™* for the e-action
of .

PROOF. See Soergel [49, Proposition 16]. By Borho-Brylinsky, there is a faithful
action of U(g x ¢) onM = U(g x ¢) @u) A"(g % ¢)/q, with notation asin the previous
proof. Let v be agenerator for A"(q x ¢)/q, wheren=dimG/S.

Fort € t we have

tov=[{*0+1) —*O] o v=[-2oe0) - *O] © v=J{ (") V.
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So, forevery t € U(t), t@ v=jf (1) o v.
For ¢ € Z(g) andu € U(g x ¢), we then get that

CU®V=UC®V=Ug(C) @V = Uujf (L#(gb(c))) ov=jl (L#(qS(c)))u @ V.

S0 ¢ acts in the same way asjf_‘(ﬁ(¢(c))) on the faithful module M. This proves the
lemma. ]

8.4. Now we can extend the e-action of I on U(c) to D = DG/F Its ring of invariants
is a non-commutative analog of D.

THEOREM 8.4. Thereis a natural [ -action on D = Dé = preserving the filtration. The
associated graded I's-action coincides with the action on k[Y] defined earlier in the
paper. The associated graded of the ring of invariants D" is k[D] The center of D' can
beidentified with the invariant ring U(c)™*. D istheintegral closureof U @5 U(()r .
modulo U(c)r *-torsioninthering obtained by localizing inthe quotient field of U(L)r *=
KI’ .

PROOF. The e-action of [~ extends natural ly to an action on the tensor product U] ®7
U(c). We get an action on the quotient R, obtained by dividing out the U(c)-torsion
(see Soergel [49, Corollar 20]). If K is the quotient field of U(c), I also acts on the
localization (R )k and therefore on the integral closure R. of R. in (R )k defined in the
following sense:

R: := {x € R | the subring of (R.)x generated by R. and x is finitely generated as
R.-bimodule}.

According to Soergel [49, Theorem 13] this is just D, hence we have extended the
[-action.

The remaining statements follow from the results in this article by considering asso-
ciated graded rings. ]

REMARK. It would be interesting to get a direct definition of the I"-action on D; for
the classical case of the decomposition class of regular semisimple elements over the
complex numbers this was done by Gel’ fand-Kirillov (see [20, Remark 10.3]).

We give a sample of immediate applications.

COROLLARY 8.5. (i) Assume the conditions in Corollary 6.9 are satisfied. Then the
operator representation
w:U(g x¢)—D
is surjective.
(if) Assume the conditions (cart) in Theorem7.5(i) are satisfied, then D isflat over
its center and D ~ D" @y (- U(¢). For each maximal ideal m of U(c)"*, the ring
D" /mD" isan integral domain.
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(iii) If the conditionsin Theorem 7.7 are satisfied then
D~ U @7 U().
In particular, those conditions are satisfied in the situation of Theorem7.9.

PROCF. (i) isdueto Soergel [49, Theorem 30]. The other assertionsfollow from the
results of this article by considering associated graded rings. ]

9. Examples. In this section we give various examples and counter-examples.

9.1. Type A; over fields in any characteristic. We shall sum up now the results for
al,4+1. In fact, most of the results for this type remain true when we alow k to be an
algebraically closed field of any characteristic. We shall indicate briefly the changes we
haveto make in the proofs.
Suppose ay, . . ., as are the different eigenvalues of x € gl,,; acting on k"™, with
generalized eigenspacesk,;. . . . , . Es of dimensionsey, ..., . 6. We supposethate; > e, >
- > & Therestriction of x — a1 to E; is nilpotent with partition A\j = Ajy > A2 >
of g. Let I's (resp. ') be the subgroup of the symmetric group on {1,2...., s} of
permutations T such that e = & (resp. Ay = A;) for all i.

PROPOSITION 9.2. (GL+1, CHARACTERISTIC K ARBITRARY) Let D be the decomposition
class containing x € gl,,;. Then D is stable if and only if \; = Aj whenever g = g.
D//G isnormal if and only all g areequal. Both k[c]"s and k[¢]" are polynomial rings.

Every decomposition class D has a good, even indicator, i.e., where all labels are
even. It givesa decomposition r = ¢ + 11, where n isthenilradical of p. Gn is Gorenstein
with rational singularities and (1-1) is satisfied.

The normalization D is a normal Gorenstein variety with flat quotient map 7: D—
¢ /I (and hasrational singularities if the characteristic of k is zero). Gn is isomorphic
to the zero fibre of 7, henceisisomorphic to a completeintersectionin D.

The affinization o: Y — Y is a resolution of singularities, the canonical bundle of
Y istrivial, and Y is Gorenstein with rational singularities. Y allows a " action with
quotient D, the quotient map isflat. K[ Y] is a free graded k[D] module of rank #~ with
k[D] as a direct summand.

Thereis a simultaneous resolution of singularities of 7

Y — Y — D

e

¢ —— ¢/l

We have additionally that Y = D if and only if Ai # A; whenever e = g. And Dis
normal if and only if all & are equal and all \; are equal.

Y is an irreducible component of V, and D is an irreducible component of VV /T

Dr isalwayssmooth. If D is semisimple, then the sheet D' is smooth with orbit space

¢/Ts.
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PrROOF. Write
pi=#{j,g =i} and p,=#{j;g =i.)\ = A}

for aninteger j and apartition A of j. Write X for the dual partition of \. Write ; for the
symmetric group on j letters, then

Mg~ HSpi; M~ 1;[5,},”\
| 1,
acting asagroup generated by reflections on ¢. The fundamental theorem on symmetric
polynomials holds true in any characteristic, hencek[¢]™s and k[¢c]" are both polynomial
ringsand k[c]" is adirect summand of k[¢] as agraded k[¢]" -module.
We construct agood indicator asfollows. We underline n; if and only if i is one of the
integerse;. e + e, ..., e+e+---+e 1. Weputn; ;= 2if and only if i isof the form

@+ F A2+ + Ak,

for somej and k. All the other n; are put 0. That thisindicator isgood and that (1-1) holds
followsfrom aresult of Spaltenstein (see[40, Theorem 4.8]). That Gn isGorenstein with
rational singularities is a result of Mehta-van der Kallen [40, Theorem 4.6]. It follows
that Y is Gorenstein with rational singularities.

We show next that k[V] is reduced. It isafree k[f)] module of rank # and it allows a
surjection to k['Y] which becomes an isomorphism after localizing at a generic maximal
ideal of k[D], by the description of V°. By Nakayama'slemmait follows that k[V] and
Kk[Y] areisomorphic.

So K[V] is a free k[D]-module of finite rank, so k[D] is Cohen-Macaulay if and
only if K[Y] is Cohen-Macaulay. And hence by commutative algebrathat 7 is flat with
Gorenstein fibres, hence D is Gorenstein.

That the sheet D" is smooth in any characteristic is aresult of Bongartz [4]. ]

9.3. Complement of the regular semisimple elementsin A,. Peterson’s theorem says
that D" isalways smoothin type A, if D is densein asheet. This does not generalizeto
general stable decomposition classes. Evenif Y =V and D isahypersurface D" can be
non-normal.

Thisis so for example for the decomposition class of

(1 1 0
x=10 1 0 |€esls

0 0 -2
of indicator [2, 2], consisting of regular elements. Its closure is the complement of the
affine open set of regular semisimple elements. This hypersurface is defined by the
homogeneousinvariant F = f3 — 6fZ, where fo(X) = tr(X?) and f; = tr(X3). The quotient
D //G with coordinate ring k[D]® = K[f,. f3] / (f3 — 6Z) is a cusp, so it is not normal
and neither is D. But D is a hypersurface, and so it follows from Serre’s criterion of
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normality that its singularities form a subvariety of codimension one; in fact it is the
cone of nilpotent elements in D. In this case Y equals the normalization D, which
can be identified with a subvariety in g(; defined by the equations tr(X?) = (tr X)? and
tr(X®) = (tr X) and the normalization map D-D identifies with X — X — (tr X/3)I,
where | is the identity matrix. And Y =V = ¢ x5, D, even though D //G is not

normal. Y V=D 5

o |
¢ — D//G.

This example generalizes easily to the complement of the set of regular semisimple
elementsin any 3(,. Compare with Richardson [43, Proposition 9.3].

9.4. Various counter-examples. For a stable example where V is not irreducible, or
equivalently where V° is not densein V, take [2. 2. 0] in Ag. In thisexample

11 0 O -1 1 00
X:(O 1 0 O and X,:(O -1 0 O
00 -1 O 0O 0 10

\O 0O 0 -1 \0 0 01

generate two different regular orbits in the same fibre of 7.

Theclasscontaining x, withindicator [2, 2, O] isunstable. Herel istrivial, I's hasorder
two, andso Y = D, and D can be identified with the hypersurface of the determinantal
variety of 4 x 4-matrices of rank < 2 defined by the invariant 2tr(x?) — (irx)°. The
normalization map is induced by the natural projection gl, — $14.

For a stable example where (1-1) is not satisfied but D is normal till (see example
9.5); for a stable example where (1-1) is not satisfied, where D //G is normal but where
D isnot normal and D" is not smooth take [2, 0] in G,.

For a stable example where (1-1) is satisfied, but where (refl) is not satisfied, take
q = D4 and indicator [2, 0, 2, 2]. Here the generator of I's acts as multiplication by —1
onc¢ and ¢ /I's has only one singular point.

| don’t know of an example where (1-1) is satisfied but where (1-1) is not.

9.5. Determinantal varieties and sp,. In this subsection we give examples of stable
decomposition varieties where (cart) and (1-1) are not satisfied, but where still D is
normal but not Gorenstein and where D" is smooth.

Let g be of type C;, realized as the Lie algebra of 2r x 2r-matrices X such that

XJ +JIXt = 0, with J := (_OI (I)

zero) matrix. Let L be the Levi subgroup of G of type C;, and D the closure of the
corresponding Dixmier sheet. In this case (1-1) is not satisfied (see[23]), but still I's acts
like the reflection group W(C,_)) (see [25]).

Multiplication X — JX induces an isomorphism between g and the space Sym(2r)
of symmetric 2r x 2r-matrices. Both ¢° and itsimage in Sym(2r) consist of matrices of

), where | (resp. O) is the r x r identity (resp.
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rank 2(r —1), so JD C Sym(2r) is contained in the determinantal variety D of symmetric
2r x 2r-matrices of rank at most 2(r — I). Since both varieties are irreducible of the same
codimension I(2 + 1), it follows that D is isomorphic to D. This determinantal variety
is well-studied, e.g., it is normal with rational singularities and its ideal is minimally
generated by the determinants of the 2(r — 1) + 1-dimensional minors of the generic
symmetric 2r x 2r-matrix of coordinate functions, also the higher syzygies are known
(see[26]). Its coordinate ring is isomorphic to the invariant ring associated to the repre-
sentation of the orthogonal group O,y on 2r copies of its natural representation, but it
isnot Gorenstein. It follows that (cart) is not satisfied, that D is normal and that it is not
Gorenstein. B

In the special casewhere| = r — 1, hence where D has dimension 4r — 1, we claim
that Y isisomorphic to the determinantal subvariety D, of gl,, of matrices of rank < 1.
Thisis aso a (4r — 1)-dimensiona affine cone; it is normal Gorenstein with rational
singularities and its ideal in the coordinate ring of g(,, is minimally generated by the
determinants of the 2 x 2-minors of the generic matrix of coordinate functions. The
endomorphism 7:x — Jx'J of gl, isan involution with fixed points space g = 3p,
D, is stable under 7; I's acts on D, as the group generated by 7. Let 8: gl,, — g bethe

projection defined by
A B - 1/A-D' B+B
C D 2{C+Ct —A'+D)’

with A,B,Cand D r x r-matrices. Then 3 is Sp,,-equivariant and constant on I s-orbits.
The s-quotient map V5. Y — D can beidentified with the restriction of 3 to D,. Indeed
the image of D, contains 3(diag(1.0....0)) € ¢°, which implies that this image is
contained in D. For the non-commutative analog of this example see [49, 8.2].

9.6. Determinantal varieties as normalization of decomposition varieties. Let D,_| be
the determinantal variety of matricesin gl,,; of rank a most r — I; it is a Gorenstein
variety with rational singularities. Theimage of D,_, under the projection
, tr(X
Biglipg — 8le1: X— X — %I

isthe closure D of a sheet corresponding to a Levi factor of type A. The restriction of
3 to D,_; isthe normalization map. For the non-commutative analog of this examplein
casel =r — 1see[49, 8.1].

9.7. Pfaffian varieties as decomposition varieties. Let g be of type B, and L a Levi
subgroup of type B, for | < r. The corresponding Dixmier sheet is dense in the stable
decomposition variety D of any semisimple element with stabilizer L, it has Dynkin
indicator [2,2,....2,0,0.....0]. Thenilpotent variety Gn C D hasthe sameindicator
(see[23]), so (1-1) is satisfied. By [25], I's acts like W(B,_;) on ¢, so (refl) is satisfied.
We consider g as the Lie algebra of anti-symmetric 2r + 1 x 2r + 1-matrices. Any
x € ¢° hasrank precisely 2(r — 1), so D is contained in the variety Pf of anti-symmetric
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2r +1 x 2r + 1-matrices of rank at most 2(r — I). Since_lj and Pf both are irreducible of
the same dimension 2(r? — 1%) + (r — 1) it follows that D = Pf.

Thevariety Pf hasbeen well-studied, its coordinate ring isisomorphicto theinvariant
ring associated to the representation of the symplectic group Sp,,_, acting on 2r + 1
copies of its natural representation. The ideal of Pf is generated by 2(r — I) + 2-order
Pfaffians and much is known on the higher syzygies (see [26]). Pf is normal, Gorenstein
with rational singularities. It follows that D has the same properties, (cart) is satisfied,
and the sheet D" is smooth. It also follows that the minimal resolution of the coordinate
ring k[Gn] (which is normal) is the tensor product of the minimal resolution of k[Pf]
(see[26]) and the Koszul complex on fundamental invariants fa, s, . . . . fy.

Analogous results hold for the closure of the sheet in ¢ = D, corresponding to L of
typeD, for2 <l <.

9.8. Subregular decompositionvarieties. Anelement x € g with astabilizer of dimen-
sionr + 2 is called subregular. Let g be simple then there is a unique class of nilpotent
subregular elements, its closureis called the subregular nilpotent variety Ng . We studied
its algebraic propertiesin [10]; for example, we showed it is normal and we described a
minimal set of generatorsfor itsideal.

PROPOSITION 9.9. Let x bea subregular element in thesimple Lie algebra g with decom-
position class D = D(x). Suppose D //G is normal and (1-1) is satisfied. Then D isa
normal Gorenstein variety with rational singularities, the quotient map :D — D //G
isflatand Y = V.

Furthermore, let 6;....,65 be the fundamental degrees of the action (s, ¢) and
di, ..., dr the fundamental degrees of (G, g), arranged in such a way that 6; = d;, for
i < a, and d; is the largest degree. Let ¢ be the height of the short dominant root ¢.
Then the ideal of D is generated by fundamental invariants of degree da1. . . . . d- and
by homogeneous functions of degreeé forming a basisfor a G-module of highest weight
0.

The subregular nilpotent variety Ny isthe completeintersection of D by fundamental
invariantsof degreesd;. . . ., da. So TorR(ko. k[N ]) isthe product of TorR(ko. k[D1) with
an exterior algebra on generatorsof degree 2. 4. ....2r — 6in TorX(ko. K[Ng]).

The only weights occurringin TorR(ko., K D]) arethe zero-weight and short dominant
roots.

ProOF. The proof follows by combining the results of [10] with the results obtained
in this article, as Theorem 6.5. "

The following cases were studied in [10]. If ¢ = B; and x of type [2.2,...,2,2,0];
we get the variety defined by the 2r-Pfaffians studied by Buchsbaum and Eisenbud. If
g = C and x of type [2,2,...,2,0,2] we get avariety also (thoroughly) studied by
Klimek, Kraskiewicz and Weyman in [28]. For D, and x of type[2,2,...,2,2,2,0] we
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find the variety, whose existence we conjectured in [l.c.]. For F4 we can take x of type
[2,2,0. 2] and for G, we take x of type [0, 2].

9.10. Lusztig's special cases. In representation theory Lusztig needed to study some
special decomposition varieties with extremely good properties.

Let g besimple. SupposeL isal evi-subgroup and Lx, anilpotent orbitin[{, [] withan
irreducible L-equivariant cuspidal local system (see Lusztig [37] for the definition). Let
¢ bethe center of [ and D the decomposition variety D := G(c + x,). Lusztig determined
the decomposition varieties arising in this way. See [36] and [37, p. 160] (whenL # G).
He showed normality of D //G, that I' = I's is areflection group, that (1-1) holds, that
thereisan even, good indicator obtainedin thefollowing way. Takethe weighted Dynkin
characteristic of the nilpotent classin D", and underline the indices corresponding to L.
Furthermore, he proved that Y" ~ Y " isisomorphic to the pull-back ¢ ;- D" and hence
that D" is smooth.

Using Kraft-Procesi’s normality results we checked case by case as in the proof of
Theorem 7.9 that whenever G # L that the closure of the nilpotent classin D' is normal.
When G = L (so when the decomposition variety is a nilpotent variety) this is also the
case except maybe for Eg(ay) in Eg or for Ez(as) in E7, where the normality property is
conjectured (see Remark 7.8(iii)) but not yet shown.

So we get additional properties (with possibly at most two exceptions) for Lusztig's
special cases of decomposition varieties arising from cuspidal local systems. They
are normal, Gorenstein with rational singularities and Y = ¢ X r D, ie, thereisa
Grothendieck simultaneous resolution diagram (using Theorem 7.7)

Y—>Y—>5

| o |

¢ —— ¢/l

Finally, there are non-commutative analogs of all varieties in the diagram, with corre-
sponding properties.

9.11. Sheetsin F4. In generdl, if D' is a sheet it is known what the Dynkin diagram
is of its nilpotent orbit. For exceptional Lie algebras these results are due to Elashvili,
see Spaltenstein’s book [51]. If D" is a Dixmier sheet it is even known in all cases
what #G¢/ Pe is, i.e., whether (1-1) is satisfied. Let g be of type F4. Then according to
Howlett [25] the (refl)-condition is always satisfied. Suppose x is semisimple then (1-1)
is not satisfied if and only if the semisimple type is A1 (long root), By, or A; x A, (one
short simple root and the long simple roots). This is checked using Elashvili’s tables
reproduced in [51, p. 174] together with the knowledge of the component group Ge / G,
where eis an element in the dense P-orbit of n (see[16, p. 401]).
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_ We collect some information in the following table. The columns with headings Gn,

D//G and D indicate whether these varieties are normal “+”, non-normal “—"; the
column with heading D" indicates whether the sheet is smooth. We use the normality
results obtained in [12].

type sheet| typeGn | I's |(1-1)|Gn|D //G|D|Y =V|D’
2.2.2.2][[2.2.2.2][ Fa | + |+ | + |+| + |+
[2.2.2.0]{[2.2.0.2]|Bs | + |+| — || = | ?
[0.2.2.2]|[2.2.0.2]|Bs | — | +| — |-| = | ?
[0.2.2.0]{[0.2,0,2]|2A| + |+ | — || = | ?
[20,1,2]][0.2,0.2]| B, | — | +| — |=| — |2
[2.2.0.0]{[2.2.0,0]| G, | + |+ | + |+| + |+
[0.0.2.2][1.0.1.2] |G, | + |—| + |—| — |+
[Q', Z-Q-Q] [0 2, O, 0] A]_ + + + + + +
[0,0.2.0]{[0.2.0,0]| As| — |+ | + |?| — |2
[2.0,0,.2]|[0.2,0,0]| B, | — | +| — |=| — |2
[0.1.0.2]{[1.0.1.0]| A | + |—| + |—| — |+
[29~Q~1-] [2 0, 0, l] A + — + I +
[0.1.0,1]{[1.0.2.0]| Ao | + |—| + |—| — |+
[0.0.1.0][[0.0.1.0]| Ao | + |+ | + [+]| + |+
[2,0,0.01[[2.0,0,0]| Ay | + | +| + |+]| + [+
[0.0.0,2]{[0.0,0.2]| Ac| + | —| + |—| — |+
[0.1.0.0][0.2.0.0]| A | + |+ | + |+| + [+
[0.0.0,1]{[0.0,0,1]| Ao | + |+ | + |+| + |+
[1.0.0.0][[1.0.0,0]| A | + |+ | + [+]| + |+
[0.0.0.0][[0.0.0,0]| Ag | + |+ | + [+]| + |+
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