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We consider the steady flow of a viscoelastic film over an inclined plane featuring periodic
trenches normal to the main flow direction. The trenches have a square cross-section and
side length 5-8 times the capillary length. Owing to the orientation of the substrate, the
film fails to coat the topographical feature entirely, forming a second gas—liquid interface
inside the trench and two three-phase contact lines at the points where the free surface
meets the wall of the trench. The volume of entrapped air depends on material and flow
parameters and geometric conditions. We develop a computational model and carry out
detailed numerical simulations based on the finite element method to investigate this
flow. We solve the two-dimensional mass and momentum conservation equations using
the exponential Phan-Thien & Tanner constitutive model to account for the rheology
of the viscoelastic material. Due to the strong nonlinearity, multiple steady solutions
possibly connected by turning points forming hysteresis loops, transcritical bifurcations
and isolated solution branches are revealed by pseudo-arc-length continuation. We perform
a thorough parametric analysis to investigate the combined effects of elasticity, inertia,
capillarity and viscosity on the characteristics of each steady flow configuration. The
results of our simulations indicate that fluid inertia and elasticity may or may not promote
wetting, while shear thinning and hydrophilicity always promote the wetting of the
substrate. Interestingly, there are conditions under which the transition to the inertial
regime is not smooth, but a hysteresis loop arises, signifying an abrupt change in the film
hydrodynamics. Additionally, we investigate the effect of the geometrical characteristics
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of the substrate, and our results indicate that there is a unique combination of the geometry
and viscoelastic properties that either maximizes or minimizes the wetting lengths.

Key words: interfacial flows (free surface), non-Newtonian flows

1. Introduction

Liquid films are encountered in numerous industrial applications such as coating processes
(Kistler & Scriven 1984; Borkar et al. 1994; Tsamopoulos, Chen & Borkar 1996),
lab-on-a-chip systems (Stone, Stroock & Ajdari 2004) and cooling mechanisms (Serifi,
Malamataris & Bontozoglou 2004; Craster & Matar 2009), as well as in geological
and geomorphological processes (Balmforth er al. 2006). Often, the substrates on which
the films flow possess inherent or intentional roughness manifested through cavities,
pillars, corrugations or residues like arrested particles and droplets. Such topographic
features cause thickness variations of the coated layer but, furthermore, may also
promote air entrapment (e.g. in particularly deep trenches or trenches exhibiting enhanced
hydrophobicity) (Argyriadi, Vlachogiannis & Bontozoglou 2006; Balmforth ez al. 2006;
Wierschem et al. 2008; Al-Shamaa, Kahraman & Wierschem 2023), which may have a
significant effect on the flow dynamics and the quality of the resulting coating of the
solid surface. In such types of flows, the liquids involved are often polymeric solutions or
particle suspensions, which, in general, exhibit non-Newtonian behaviour. The rheology
of the material may affect the flow considerably, giving rise to interesting effects on the
overall flow configuration and the film shape. Accordingly, this study aims to examine how
elastic, viscous, capillary and inertial forces impact the steady flow of a viscoelastic liquid
as it flows over an inclined plane featuring variable topography, resulting in air inclusions.

In the literature, most of the research has focused on understanding the flow
characteristics of films of Newtonian liquids that completely coat the substrate, either
through experimental (Decré & Baret 2003; Argyriadi et al. 2006; Wierschem et al.
2008; Heining, Pollak & Aksel 2012; Al-Shamaa et al. 2023) or theoretical investigation
(Kalliadasis, Bielarz & Homsy 2000; Mazouchi & Homsy 2001; Gaskell et al. 2004;
Scholle et al. 2008). In practice, however, numerous applications involve non-Newtonian
fluids, which introduce unexpected phenomena. Their behaviour is quantified via material
functions, which can be determined by a variety of the so-called rheometric flows; see
Bird, Armstrong & Hassanger (1987). To emphasize the fact that they are not constants
but depend on the local rate of strain, people even avoid calling them material properties.
The most often encountered phenomena are attributed to material viscoelasticity and
shear thinning, which can have a very significant impact on the dynamics of the flow.
Early differential constitutive models that account for viscoelasticity include the upper
convected Maxwell and Oldroyd-B models, which, however, assume the polymeric
chains to be infinitely extensible and do not account for shear thinning, making them
non-realistic. Since shear thinning is a prominent effect of most viscoelastic fluids, later
constitutive models such as the Phan-Thien & Tanner and Giesekus models do account
for it. In the present study, we adopt the Phan-Thien & Tanner (Phan-Thien 1978) (PTT)
model, whose derivation is based on network theory. Other much more complicated
differential and integral models do exist, which, however, increase the computational cost
considerably, without describing much better the most important and frequently arising
phenomena. Pavlidis, Dimakopoulos & Tsamopoulos (2010) and Pavlidis et al. (2016)
considered a viscoelastic film flowing over isolated rectangular trenches; they solved the
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two-dimensional (2-D) flow and they studied the effects of inertia and elasticity even for
very steep geometries. Later, Pettas et al. (2019a) examined the steady flow of viscoelastic
films flowing over surfaces with sinusoidal corrugations of varying depth. Notably, they
found that, under certain conditions, a cusp and a static hump form on the film’s free
surface due to the elastic rebound of the fluid from the wall. The stability of this flow
configuration was addressed in the studies of Sharma, Ray & Papageorgiou (2019) and
Pettas et al. (2019b), who used the Floquet theory to predict the onset of interfacial
instabilities.

The aforementioned studies concerned only fully wet substrates. However, as shown by
Giacomello et al. (2012), depending on the geometrical characteristics and the orientation
of the topography, a range of wetting states can arise, from a non-wetting (Cassie—Baxter)
state to a fully wet (Wenzel) state; in the intermediate states, the liquid—gas interface forms
one or more contact points with the sidewalls of the topographical features. Lampropoulos,
Dimakopoulos & Tsamopoulos (2016) and Karapetsas et al. (2017) performed transient
numerical simulations using the volume-of-fluid method to examine the effect of inertia
on the different wetting states that may arise for Newtonian films over 2-D and 3-D
topographies, respectively, containing isolated trenches. They found that, during the
coating process, the film may detach from the trench wall and form air inclusions inside
the topographical features of the substrate. The most common state predicted in their study
was the capping failure, where the liquid fails to coat the trench by leaving either entrapped
air in its entire bottom or a bubble in its upstream corner. Pettas et al. (2017) and Varchanis,
Dimakopoulos & Tsamopoulos (2017) performed steady-state Newtonian calculations
for the latter two flow configurations, respectively (albeit for periodic arrangements of
trenches). In their analysis, due to the nonlinear dynamics of the flow, multiple steady
states arose, connected via a hydrodynamic hysteresis loop, resembling the teapot effect
that Kistler and Scriven have observed and analysed (Kistler & Scriven 1994).

Again, partial wetting has been mostly studied in the case of Newtonian flow. Only
recently, Pettas, Dimakopoulos & Tsamopoulos (2020) examined the effect of the
rheological properties of the fluid in cases where a viscoelastic film partially wets a
slit. Interestingly, they found that the presence of liquid elasticity suppresses the wetting
of the slit while shear thinning promotes it. This flow arrangement arises when the
depth of the trench is much larger than the film thickness, so only its sidewalls may be
wetted. It is related to a succession of ‘pillars’ often generated on a surface to make it
‘superhydrophobic’, without chemical treatment. Here, we describe a different geometry,
more akin to coating flows over topography, where the flow partially wets both the
upstream sidewall and the bottom of square trenches, arranged in a periodic array. It is
an extension to viscoelastic fluids of the work of Varchanis er al. (2017), who studied
the respective Newtonian flow. The liquid forms two interfaces, inside and outside of the
trench. Here, we will consider a viscoelastic liquid that follows the exponential Phan-Thien
& Tanner (ePTT) constitutive law, allowing for a realistic variation of the shear and
extensional fluid viscosities with the local rate-of-strain tensor, as exhibited by typical
polymeric solutions. Hence, the present case differs from the Newtonian one by the
inclusion of both elastic effects and shear thinning. Compared with the slit case (Pettas
et al. 2020), it will be shown that the present, square-trench case exhibits a richer solution
structure with two distinct steady-state solution families for the most part. The rest of this
paper is organized as follows: in §2, we present the problem formulation and describe
the numerical solution method. The results are presented in § 3, where the effects of
elasticity, shear thinning, zero-shear viscosity and substrate geometry on the fluid flow
are investigated. Finally, concluding remarks are made in § 4.
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Figure 1. Cross-section of the film flowing over a substrate inclined at an angle « to the horizontal (shown as
a = 90° in the figure) and featuring a trench. The total length of the periodic cell is L*, while L] and L} are
the entrance and exit lengths before and after the cavity, and W* and D* represent the width and depth of the
cavity, respectively. Here, H* is the film height at the inlet, and H{ and Hj are the distances of the contact lines
along the upstream and bottom cavity walls from the respective corners.

2. Problem formulation and numerical solution

We consider the steady free-surface flow of a viscoelastic liquid film driven by gravity
along an inclined plane featuring periodic trenches normal to the main flow direction, see
figure 1; for the most part, we will set the inclination angle to o = 90°. In what follows,
a superscript “*’ will indicate a dimensional quantity. The fluid is incompressible with
constant density p*, surface tension ¢ *, relaxation time A* and zero-shear viscosity u* =
wy + u;, where p§ and u;’; are the viscosities of the solvent and the polymer, respectively.
We assume that the flow is periodic, and the periodicity of the flow spans a single cell
of the solid structure (i.e. we do not consider periodic flows with wavelength larger that
the size of the unit cell). The unit cell consists of a single rectangular trench of depth
D* and width W* (but we will only consider square trenches, D* = W*), preceded and
succeeded by lengths L} and L of flat substrate towards the periodic inlet and outlet sides,
respectively — see figure 1.

The primary flow parameter is the volumetric flow rate per unit width normal to the
depicted cross-section, Q*, which determines the thickness H* of the film at the periodic
inlet. Under gravity, the liquid film flows downward along the substrate and may partially
enter the cavity, where it can form a second interface with the air. The inner interface
defines two triple-contact points with the solid wall, one at the upstream sidewall of
the trench and the other one at the bottom of the cavity (for cases where the second
contact point lies on the downstream sidewall, see Pettas et al. (2020)). Their location
is determined by liquid properties and flow conditions along with the apparent contact
angles 81 and 6, respectively. At the contact line, there is a sudden change from adherence
at the solid surface to no shear along the free surface, which induces a local singularity
known to be logarithmically weak and integrable (Michael 1958; Richardson 1970). The
apparent contact angle is accepted as an overall measure of solid wettability (Kistler &
Scriven 1994), although different effects may influence this wetting measure (Decré &
Baret 2003).
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Dimensionless number Symbol Definition
Reynolds number Re p*O* u*
Weissenberg number Wi A*Q*/ H,"\‘,2
Viscosity ratio B Wi /¥
Capillary number Ca w*Q* /o *Hy,
Elasticity number El ¥ p*1/3g¥2/3 11 #1/3
Kapitza number Ka o*p*1/3 ) g*l /3 x4/3
Weber number We p* U]’ffH;f, Jo*
Wetting lengths Hi» HY L/l
Geometric lengths Ly, L, W,D Ly, Ly, W*, D* /I

Table 1. Definitions of dimensionless parameters and numbers, * = (o*/p*g*)'/? is the capillary length.

2.1. Governing equations
The governing equations are solved in a non-dimensional form where, as is customary for
such flows, lengths and velocities are scaled by the Nusselt flow film thickness, HY,, and
mean velocity, ;\k, respectively,

3% 1/3 * ko 1/3
- () e o (P e
p*g* sina 3u

The dimensionless continuity and momentum equations are then
V.u=0, (2.2)

Reu-Vu—I—Vp—V-r—,ig:O, 2.3)
sina
where u = (uy, uy) is the velocity vector (x being the direction parallel to the substrate), p
is the pressure, T = By + T, is the extra stress tensor which can be split into a Newtonian
(solvent) part By and a polymeric part T, and g = (sinc, —cos «) is the unit vector in the
direction of gravity. The polymeric stress 7, evolves according to the dimensionless ePTT
constitutive equation

Vv .
Y(rp)tp, +Wit, — (1 - B)y =0, 2.4)
where

Y(z,) = exp (ﬁ Witr(rp)) , 2.5)

with tr() being the trace function, while ¥p =u-Vi,—1,-Vu-— (Vu)T . T, is the
upper convected derivative.

The dimensionless numbers in the above equations are the Reynolds number (Re), the
Weissenberg number (Wi), the solvent-to-total viscosity ratio f and the ePTT parameter ¢.
The definitions of these numbers are presented in table 1. Finite values of the parameter &
introduce elongational and shear thinning to the fluid model, and set an upper limit to the
elongational viscosity.
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2.2. Boundary conditions

At the inlet and outlet, periodic boundary conditions for velocity and stress are imposed.
At the two air—liquid interfaces, a local interfacial stress balance between the capillary
force and the stress field is applied, together with the kinematic condition

dr
—pn+n-t=—psn+ Ca_la, (2.6)

n-u=>0. 2.7

In the above equations, n is the outward unit normal vector to the free surface, p,, is the
air pressure, which can be set to zero for both interfaces without loss of generality (see
Varchanis et al. 2017 for a discussion of this issue — they found that moderate variations of
the pressure inside the air inclusion did not produce any significant changes in the physical
phenomena under study), ¢ is the unit tangent vector pointing in the direction of increasing
distance ‘s’ along the free surfaces (Ruschak 1980) and Ca is the capillary number (see
table 1).

Along the walls of the substrate, we impose the usual no-penetration and no-slip
boundary conditions

n,-u=20, (2.8)
ty-u=0, (2.9)

where n,, and ¢,, denote the unit vectors normal and tangential to the wall, respectively.
Additionally, at the intersections of the inner interface with the upstream wall and the
bottom of the cavity, appropriate boundary conditions for the contact angles need to be
imposed. Under steady-state conditions, as in our case, it suffices to define that the contact
line is governed by the static angle equations

ny1 - ng = cos 6, (2.10)
n,n - nyp = COS 92, (2.11)

where 6 and 6, are the equilibrium contact angles. Furthermore, it will be assumed
that 0; = 6, = 0, the equilibrium angle characteristic of the particular liquid/solid
combination.

For the completeness of the physical model, the film height at the entrance of the unit
cell, H*, is determined by demanding that the dimensionless flow rate is equal to unity.

2.3. Additional dimensionless numbers

The first four dimensionless parameters in table 1 arise in the dimensionless form of
the governing equations and completely define the problem, when the Nusselt thickness
(2.1) is chosen as the characteristic length. In several previous parametric studies (e.g.
Wierschem et al. 2008; Pavlidis et al. 2010, 2016; Varchanis et al. 2017; Sharma et al. 2019)
the parameters Re, Ca and Wi (for viscoelastic flows) and the geometric ratios L/H}, and
W/Hy, were varied individually to determine their effects. While this could be acceptable,
it is rather unintuitive and hard to translate into a dimensional experimental setting where
it is easiest to vary the flow rate while keeping the same fluid and substrate. The problem is
that all of these parameters depend on the flow rate; varying the latter changes all of them.
This holds true even for the dimensionless lengths setting the trench geometry. Due to the
dependence of the Nusselt flow thickness H]f, (2.1) on the flow rate Q%*, the dimensional
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geometry would vary when the flow rate varies, which is not realistic. Hence, in the present
work (as also in previous works Pettas et al. 2017, 2019a,b; Marousis et al. 2021), we opted
to present the results in terms of alternative dimensionless parameters that are easier to
vary individually in an experimental setting.

In particular, for our preferred parameters we have retained the Reynolds number but
replaced the capillary (Ca) and Weissenberg (Wi) numbers by the Kapitza (Ka) and
elasticity (El) numbers, which depend only on the fluid properties and not on the flow rate
(table 1). Similarly, distances and dimensions are non-dimensionalized by the capillary
length I¥ = (0*/p*g*)!/2, which, contrary to the Nusselt thickness H7,, does not depend
on the flow rate. The resulting non-dimensional substrate dimensions are denoted as L1, L,
and W (table 1). Concerning the results, we are particularly interested in the distances HY
and H} of the contact lines along the upstream and bottom cavity walls from the respective
corners, as shown in figure 1. The corresponding non-dimensional distances, scaled by the
capillary length [*, are denoted as H; and H» (table 1). In addition, for the discussion that
will follow in the results section, it will be useful to define the Weber number, We, which
is a measure of the liquid inertia to the capillary force and takes the flow rate into account
(see table 1). Of course, these alternative dimensionless numbers are derivable from the
original ones, and [}, is related to Hy,, as follows:

wi (3 \*?
We = CaRe, El = W(m) y (2120)
Re*? [sina\'/3 I* Kal’? [sina
Ka = , —C* =5l ) (2.12b)
Ca 3 HY,  Re 3

A main part of the results to be presented concerns holding Ka, El and the geometric
ratios L1, L and W constant and recording the variation of the wetting distances H{
and Hj as Re is varied. In an experimental setting, this could be carried out by simply
varying the flow rate, using a given fluid and a given substrate. However, it is interesting
to note that, due to the dependence of Hy, on Re expressed by the second of (2.12b), if one
wished to hold constant the geometric ratios L/Hy, and W/H}; instead, then they would
have to enlarge the substrate at the same time as the flow rate is increased. This is clearly
impractical and highlights the relevance of our alternative non-dimensionalization.

Since the densities of liquids, and even the surface tension, mostly fall within relatively
narrow ranges, whereas the viscosity and relaxation time can vary by orders of magnitude,
the Kapitza number, Ka, can be viewed roughly as the reciprocal of a dimensionless
zero-shear viscosity, and the elasticity number, El, as a dimensionless relaxation time
of the fluid. The effects of surface tension can be explored through the capillary length
I =(o*/ p*g*)1/2, by increasing or decreasing the dimensionless size of the substrate
(Ll, Ly and W)

2.4. Numerical solution

To solve the above set of equations numerically, we employ the mixed finite
element/Galerkin method combined with an elliptic grid generator (Dimakopoulos &
Tsamopoulos 2003) to account for the highly deformable flow domain. Due to the
hyperbolic character of the constitutive equation and to preserve the numerical stability
of the scheme, we employ the SUPG/DEVSS-G (Guénette & Fortin 1995) method that
has been successfully used in the past for the solution of viscoelastic flows (Pettas et al.
2015; Varchanis et al. 2018, 2019, 2020, 2021). Finally, to trace the steady-state solution in
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parameter space, pseudo-arc-length continuation is employed. According to this method
the continuation step in one of the parameters is not constant, but is implicitly calculated
by requiring the next state to have a constant arc-length distance from the previous
one, see Pettas er al. (2017) and Varchanis et al. (2017) for more information. The code
employed is similar with the one used for our previous study that concerned flow over
a slit rather than trench geometries (Pettas et al. 2020). The presently employed mesh
resolutions were selected based on our previous experience. We refer the reader to the
previous study (Pettas et al. 2020) for mesh convergence results and validation of the
code by comparison with previously published results that were obtained using an entirely
different solver (OpenFOAM, employing the volume-of-fluid method and transient finite
volume simulations). Despite the presence of sharp corners, where stress magnitudes are
theoretically infinite but integrable, the effect of these corners is highly localized and does
not significantly impact grid convergence. Some indicative grid convergence results are
presented in Appendix A.

3. Results and discussion
3.1. General pattern

We begin with a presentation of the general pattern of Newtonian flow and its dependence
on the flow rate as reflected by the Reynolds number in figure 2 (note the increase of the
film thickness at the inlet of the domain with Re in the insets). This will help the reader
become familiar with the flow and serve as a basis for comparison for the non-Newtonian
results to follow. We will not discuss this figure in detail since extensive Newtonian results
can be found in Varchanis et al. (2017). Figure 2(a,b) shows the dependence of the wetting
lengths Hy and H> on the flow rate (reflected in the Re), along with a few representative
film shapes and streamline patterns at specific Reynolds numbers. The problem parameters
are: vertical substrate (¢ = 90°), contact angle of § = 60°, Ka=2 and square trenches
with W=D =L =L, =7. At least two independent equilibrium states coexist for most of
the range of Re for which simulations were performed; they will be referred to as the upper
family (drawn in dashed line in figure 2) and the lower family (drawn in continuous line).
In figure 2 and similar figures, solution families are represented by lines of varying styles
for easy differentiation, while line colours indicate different constant parameter values as
Re is varied. These lines are created by interpolating between successive solution points
obtained through the arc-length continuation procedure. However, the interpolation error
is negligible due to the close spacing of the data points — see Appendix B for an example.
Concerning the upper family, at very small flow rates, the liquid enters deeply into the
topographical feature, leading to almost full coating; only a tiny air inclusion remains
close to the upstream wall, as can be seen in the inset (i) of figure 2. In fact, increasing the
flow rate causes the air inclusion to contract even more, with the inclusion size thereafter
remaining approximately constant in the range 0.5 < Re <5 — see inset (ii) of figure 2.
For Re <5, apart from the small air inclusion, the flow configuration resembles liquid
films over fully coated substrates, with the outer interface exhibiting a large depression
into the trench. This penetration and near-full coating is caused by surface tension, which
gives rise to an inward pressure gradient due to the interface curvature at the entrance
corner by the adhesive force at the contact lines. This flow configuration is, therefore,
shaped mostly by capillarity and gravity, and we will refer to the set of such flows as the
‘capillary-gravity’ region (Re < 5 in this case), following Varchanis et al. (2017).
However, an increase of the flow rate above this range (Re > 5) brings about a dramatic
change in the flow configuration, with the main flow stream becoming detached from the
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Figure 2. Map of the steady-state solutions for a Newtonian liquid in terms of the wetting lengths at the (a)
upstream wall, Hy, and (b) downstream wall, H,, for Ka = 2,60 = 60°, L = L, = W = D = 7. The lower and
upper solution branches are drawn in different line styles, ( yand (—-—-— ), respectively. Insets (i)—(vi)
depict the flow patterns at the points marked by symbols in the main diagrams.

bottom of the cavity, as seen in inset (iii) of figure 2, as the momentum of the liquid is
now too large for capillarity to deflect it. Nevertheless, the space between the main liquid
stream and the bottom of the trench becomes occupied by a large zone of recirculating
liquid. Hence, the drastic change of the flow configuration is not so much reflected in the
variation of the wetting lengths H and H> in figure 2. The recirculation zone at the bottom
of the cavity moves so as to stretch the air inclusion in the y-direction causing it to expand
along the upstream wall — see inset (iii) of figure 2. The vortex, whose strength increases
with increasing Re, contains fluid that is not replenished, while the rest of the flow bypasses
the bottom of the cavity, due to the effect of inertia and it being pulled across by gravity.
Because the factors that mostly determine this flow configuration are inertia and gravity,
this flow regime will be called the ‘inertia-gravity’ regime (Varchanis et al. 2017).

Very different flow patterns are observed in the lower solution family, characterized by
much larger air inclusions. At low values of Re the liquid wets only slightly the upstream
wall of the cavity while the film falls almost vertically under the action of gravity, forming
a thin, almost straight liquid bridge across the gap — see inset (iv) in figure 2. This film does
not penetrate deep along the upstream wall but flows towards the outlet. The downstream
wall is, however, fully covered by a layer of liquid, but most of it recirculates in the form
of a sequence of vortices and is separated from the main flow. The effects of inertia are
negligible, and this flow configuration is determined by a balance of gravity, capillarity
and viscosity. As the Reynolds number is increased beyond Re = 1, the contact line of the
upstream wall begins to move deeper into the cavity, as the pressure gradient due to the
interface curvature at the trench entrance corner causes the liquid to travel along to the
upstream sidewall up to a point, with H; reaching a maximum value of Hj j,, = 2.48 at
Re =~ 3.25, see figure 2. The liquid bridge also penetrates deeper into the cavity, and the
wetting length H; increases as well, reducing the volume of trapped air — see inset (v) in
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figure 2. However, a further increase of the flow rate beyond this value causes a reversal of
the previous trend, with H| decreasing again. Furthermore, at Re ~ 3.79 and 3.61 two
successive turning points arise, see figure 2, defining a hysteresis loop that resembles
the hydrodynamic hysteresis observed by Kistler & Scriven (1994) in the so-called teapot
effect. For a narrow range of Re (3.61 < Re < 3.79), three different steady states coexist
within this lower solution family, with distinctly different flow patterns. At even higher
flow rates (inset (vi) in figure 2), the upstream wall is almost completely dry, as the fluid
inertia is too large for the pressure gradient to handle, merely causing the film to fall
at an inward angle but not being able to force it to adhere to the upstream sidewall. The
momentum of the liquid bridge across the gap intensifies and takes the form of a jet, which
impinges on the vortex at the downstream bottom corner of the cavity causing it to swell,
increasing the wetting length H,. Due to the high momentum of the falling film, a cusp
forms at the point of intersection of the film with the rotating vortex, whose sharpness
creates numerical difficulties that did not allow us to advance the parametric continuation
on the lower family beyond Re = 7.12.

We can apply the same flow characterization to the lower solution family as well. At
low flow rate values (Re < 1), capillarity prevails since inertia is relatively weak, with
the Weber number having very small values. This region is called the ‘capillary-gravity’
region in Varchanis et al. (2017), since the position of the contact lines is an outcome of
a balance between surface tension and gravity. On the other hand, at high values of flow
rate (Re > 4) inertia, which tends to dewet the upstream wall, dominates over capillarity
and the wetting distance over that wall is minimized. As previously mentioned, the flow
pattern changes abruptly as we pass through the hysteresis loop. Interestingly, Varchanis et
al. (2017) found that the second turning point of the hysteresis loop arises under constant
values of the Weber number, indicating that there is a delicate balance between inertia
and surface tension that signifies the onset of the ‘inertia-gravity’ region. At intermediate
values of Re (1 < Re < 4), neither inertia nor surface tension dominates the flow, however,
and the interplay between the capillary, viscous and inertia forces pulls the film inside the
cavity. In the rest of the paper, we will examine how the introduction of non-Newtonian
effects impacts the flow configuration and the wetting lengths in particular.

3.2. Effect of fluid elasticity

In figure 3(a,b), we present the variation of the wetting lengths H; and H», respectively,
as a function of Re for various values of El < 1, while the other rheological parameters
are held at ¢ = 0.1 and 8 = 0.1. As mentioned, the rheological parameter ¢ of the ePTT
model imparts both elongational and shear thinning to the fluid, and it establishes an upper
limit for the elongational viscosity. However, for low values of El such as these (El < 1)
shear thinning is notably mild (Pavlidis et al. 2016). This specific regime of viscoelastic
flow with small shear thinning is the focus of the present section. Overall, in figure 3(a,b)
we observe that the fluid elasticity has the opposite impact on the two solution families.
Starting from the upper solution family, it is interesting to note that the wetting length Hj
is almost unaffected by elasticity up to Re = 5, i.e. in the capillary-gravity regime, while
H, is almost unaffected for all values of Re examined. Beyond Re =5, in the regime where
the liquid stream is detached from the upstream sidewall and a large recirculation zone
has developed, increasing the elasticity number causes the wetting length H; to decrease
less with Re compared with the Newtonian case. Insets (i, ii) in figure 3 illustrate the
corresponding streamline patterns calculated at £/ = 0.5 and Re = 7 in the lower and
upper solution families, respectively. Under the same flow rate, the presence of fluid
elasticity attenuates the intensity of the vortex, allowing the air inclusion to maintain a
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Figure 3. Solution families for the wetting length (@) H; and (b) H> for various values of the elasticity number
forKa=2,¢6=0.1,=0.1,L; =L, =W =D = 7. The colours of the lines correspond to different values
of El, while the lower and upper solution branches are drawn in different line styles, (
respectively. Insets (i, ii) depict the flow of viscoelastic films with El = 0.5 and Re = 7 located at the lower
and upper solution families, respectively.

smaller and more circular shape. Thus, H; increases with increasing EI, but only up to a
point (e.g. H; varies very little between El = 0.5 and 0.75). That this effect is noticeable
only for Re > 5 is because it is only at these Reynolds numbers that a vortex is formed
(see figure 2).

At the lower solution family, elasticity has the opposite effect with respect to the volume
of the air inclusion, as H1 and H» decrease monotonically as El increases, see figure 3(i). It
is interesting to note in figure 3(a) that the introduction of elasticity to the fluid eliminates
the hysteresis loop and smooths the transition to the inertia regime of the flow. The
smoothening is more prominent at higher values of the elasticity number, with Hj .y
decreasing considerably, falling to H| j4x =~ 0.67 for El = 0.75. The other wetting length,
H>, follows the same trend as H;. In fact, it was observed that this is almost always the
case, and hence in the rest of the paper we will focus mainly on H.

The spatial variation of the xx-component of the polymeric stress tensor, 7, yy, is
depicted in figure 4(i,ii), along with some streamlines, for El = 0.75 and Re = 2.5 for
steady states that belong to the upper and lower solution families, respectively. In both
cases, the axial normal stress is maximized along the entrance and exit walls, outside
the trench, but things change in the rest of the domain. As indicated in figure 3, at this
value of Re elasticity has a negligible impact on the upper family but a significant impact
on the lower one; figure 4 helps to explain why. For the upper family, as noted, at this
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Figure 4. Spatial variation of the normal polymeric stress field, 7, ., for steady states that belong to (i) the
upper and (ii) the lower solution families, respectively. The flow parameters are Re = 2.5, Ka = 2, El = 0.75,
e=0.1and g =0.1.

low value of Re there is no recirculating vortex and the fluid enters deep into the trench
and it is decelerated by its walls (figure 4i); consequently, it becomes thicker than in
the domain entrance and with lower velocity, which results in lower viscoelastic stresses.
Hence, polymeric stresses have negligible impact on the shape and position of the inner
interface, including the two contact lines. In contrast, the flow configuration corresponding
to the lower family, as shown in figure 4(ii), displays a film that moves straight down, being
accelerated by gravity and experiencing lower viscous resistance, which makes it narrower
than in the entrance. This results in considerably higher velocities and associated stretching
of the polymeric chains and leads to substantially elevated normal elastic stresses. One
notices particularly high values of viscoelastic stress at the entrance corner of the cavity,
which do not allow the contact line to travel deeply along the upstream wall, i.e. they keep
Hj small. Therefore, as El increases, H; will decrease. On the other hand, as the liquid
approaches the downstream wall, the flow cross-section increases, the liquid is decelerated
as it spreads to coat the downstream trench wall. The resulting recirculation is rather weak,
and the normal polymeric stress field is similarly weak. Hence, changes in EI do not affect
H,. It should be noted that, because in both cases El and Re have the same values, the
Weissenberg number will have the same value as well (see (2.12a)) and, hence it cannot
explain the difference between the two flows depicted in figure 4.

3.3. Combined effect of elasticity and shear thinning

The ePTT model predicts that the steady shear viscosity is constant at low shear rates but
decreases at higher shear rates (shear thinning); this mirrors the typical behaviour of most
polymeric fluids. Shear thinning can become particularly steep for the ePTT model. The
onset of shear thinning occurs at lower shear rates as A*, or El in our non-dimensional
setting, is increased. An increase of the model parameter ¢ leads to the same outcome.
In fact, the onset of shear thinning in simple shear flow is governed by the product £1*2,
rather than the individual values of ¢ or A* (refer to Appendix 1 of Syrakos, Dimakopoulos
& Tsamopoulos 2018). At the relatively low values of El that we examined in the previous
paragraph, shear thinning was small, and elasticity had the effect of preserving the high
viscoelastic stresses generated at high deformation zones, enabling them to propagate
over greater distances and amplifying their significance in shaping the flow compared
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Figure 5. Variation of the wetting length H; as a function of Re for various values of El. The colours of the
lines correspond to different values of El, while the lower and upper solution branches are drawn in different
line styles, ( yand (—-—-— ), respectively. Inset (i) shows the spatial variation of the 7, y, field for El = 4
and Re = 2.8, at the lower solution family. Inset (ii) shows the spatial variation of the 7, . field for El = 4
and Re = 10, at the upper solution family. The remaining fluid parameters in both cases are Ka = 2, ¢ = 0.1,
B =0.1.

with the Newtonian case. However, when EI surpasses a certain threshold, shear thinning
becomes dominant, leading to a reduction in the magnitude of the viscoelastic stresses.
Consequently, the prominence of viscoelastic stresses diminishes in comparison with other
flow drivers, such as capillarity, inertia and gravity, causing the effects observed in the
previous paragraph to be reversed.

Figure 5 illustrates the variation of the wetting length H; as a function of the Reynolds
number for a range of elasticity numbers (EI spanning from 1 to 4) that are higher than
those examined in the preceding section. When juxtaposed with figure 3(a), it becomes
evident that increasing El from 1 to 4 counteracts the effects that were caused by increasing
Elfrom 0 to 0.75. This observation holds true for both solution families and aligns with the
explanation provided earlier. Considering first the lower solution family, increasing El from
1 to 4 causes the maximum value of H; to increase from Hj qx = 0.56 to Hy gy = 1.02.
This effect is primarily associated with the shear thinning that arises for higher values
of El, reversing the impact of elasticity on the wetting length by decreasing the liquid
viscosity. Inset (i) in figure 5 depicts the spatial variation of the shear polymeric stress
field, 7y, for a steady state that belongs to the lower solution family at Re = 2.8. It
obtains large values at the flat part of the substrate before (and after) the trench, causing
viscosity to decrease locally, lowering the stresses that inhibited the upstream contact line
from advancing deeper into the trench along the upstream wall at lower E! values. Hence,
H) increases. Apart from the flat part of the substrate, the liquid bridge across the cavity
is an almost shear-free region.

The flows that comprise the upper solution family exhibit a larger contact area with the
cavity walls, which can cause the shear-thinning effects to be felt deeper inside the cavity.
Figure 5 shows that an increase of El from 1 to 4 for Re > 6 tends to stretch the enclosed
air bubble along the upstream wall, reducing the wetting length H; to values close to those
of the Newtonian flow. Inset (ii) in figure 5 shows the spatial variation of 1, y, for Re = 10.
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Figure 6. Enlarged view of the upper solution family close to the hysteresis loop of for El = 4, Ka =2, ¢ =
0.1, 8 = 0.1. The colour contours show the spatial variation of the Ty, field. Insets (i)-(iii) indicate flow
arrangements for the same Re = 5 at the three branches of the hysteresis loop.

In this case, the liquid stream travelling across the gap is not bounded by the inner interface
but is in contact with other liquid that forms a vortex. Shear stresses develop in the shear
layer between the main flow and the vortex, giving rise to shear thinning that causes the
viscosity to drop and the stresses to be lower than in lower El cases. This in turn intensifies
the vortex inside the cavity, which stretches the air inclusion in the y direction.

Interestingly, for £/ = 3 and 4, at moderate values of Re, the upper family exhibits
multiple steady states, connected via turning points and forming hysteresis loops. These
loops occur at 5.94 < Re < 6.34 for El=3 and at 4.51 < Re <5.34 for El=4 (see
figures 5 and 6), close to the transition between the capillary-gravity and inertia-gravity
regimes. To investigate this further, figure 6 shows a close-up of the hysteresis loop for
El = 4 together with insets (i-iii) presenting contours of 7, y for the various steady states
at Re = 5. At low values of Re, the air inclusion has an almost circular cross-section,
and it is located close to the upstream concave corner, similarly to the Newtonian case.
This arrangement lasts until approximately Re = 5; inset (i) of figure 6 shows this flow
configuration together with the corresponding 7, y, field. For Re < 5 the film coats almost
entirely the trench and the elevated values of shear stress that occur over most of the length
of the solid walls, both inside and outside of the trench, cause extensive shear thinning
that leads to an increase of the effective (local) Reynolds number. As a result, the effect of
inertia becomes important even though the nominal Reynolds number is still moderate. At
Re = 5.34 a turning point arises, and any further increase in the flow rate causes an abrupt
change in the flow configuration, where the fluid detaches from a large portion of the walls
of the trench, and the air inclusion grows considerably, as in inset (iii) of figure 6. This
detachment, and the concomitant formation of a low-shear liquid bridge, result in overall
decreased levels of shear stress (and higher values of viscosity). Between these states,
the hysteresis loop contains intermediate steady states such as that of inset (ii) of figure 6.
Following basic ideas of bifurcation theory and making the reasonable assumption that the
flow is stable for small Re, we may conclude that shapes (i) and (iii) are stable (observable)
and shape (ii) is unstable.

With further increase of Re, the wetting length Hp increases again as the depression
of the outer gas-liquid interface moves towards the downstream wall. Then, a second
hysteresis loop is observed at slightly higher values of Re, 6.31 < Re < 6.71 — see figure 6.
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Figure 7. Solution families for the wetting length H; as a function of Re for El = 4.97 and El = 8. Insets
(i, ii) depict the spatial variation of the 7, . field for Ka =2, El =8, ¢ = 0.1, B = 0.1. The colours of the
lines correspond to different values of El, while the different styles of the line, ( ), (—-—-— ), represent
the lower, upper, solution branches, respectively. The two insets correspond to the points indicated in the graph
and depict the film shapes and the 1, . field.

As showed by Varchanis er al. (2017), this latter hysteresis can be attributed to the
ballistic-like effect, where the fluid is being ejected from the upstream substrate wall
with inertia and gravity pulling it downwards, while the pressure gradient caused by the
upstream contact line pulls it inwards.

The effect of further increases of El is illustrated in figure 7. One can observe dramatic
changes in the flow patterns at moderate values of Re. For El = 4.97, the maximum value
of H; of the lower solution family and the minimum value of H; of the upper family
are nearly equal: H; = 2.16 and 2.23, respectively. At El = 5.02 these values become
exactly equal (not shown in figure 7), and the two solution families merge: the second
turning point of the upper hysteresis loop coincides with the first turning point of the
lower solution family at a perfect transcritical bifurcation (Seydel 2010). For values of
El larger than 5.02, the wetting curves are split, creating two individual curves. In other
words, El is the parameter that breaks the symmetry of this transcritical bifurcation, when
it assumes values larger or smaller than 5.02. The shapes of the two rearranged families
for El > 5.02 are represented in figure 7 by El = 8. At lower flow rates (0 < Re < 3.44 for
El = 8, see figure 7), the steady states of the capillary-gravity region form a closed isola,
while at higher flow rates (Re > 3.08 for El = 8, see figure 7) the inertia-gravity region
has its own detached curve. There is no continuous transition between the two regimes, as
the curves are not connected. We observe that the wetting length H; increases very rapidly
with increasing Re in the intermediate Re range, on the parts of both curves that face each
other. For example, on the capillary-gravity (left) isola, for El = 8, H; increases from 0.54
to 4.64 as Re increases from Re = 1 to Re = 3.5. Insets (i, ii) in figure 7 depict the spatial
variation of 7, y, for Re = 2 and 3.5, respectively. The wetting length increase seems to
be associated with the strong shear stress increase that is observed in the proximity of the
upstream wall, which causes shear thinning. The detachment of the two curves means that
the flow pattern does not change smoothly as the flow rate is increased, but there must be
an abrupt change as we jump from one curve to the other.

1000 A10-15


https://doi.org/10.1017/jfm.2024.994

https://doi.org/10.1017/jfm.2024.994 Published online by Cambridge University Press

D. Pettas and others

(a) (b)
7 preerreTrTTTTTTTTITTTTTIT T TTTTTTTTITTTIIITTTT] 729 1] |
e'!,-—‘-'-.-—.-_:':_'_'_f:- — .. . . E
6 .“’ > ,_\""-\‘ < : Transcritical bifurcation ]
H Iowe. S0 s8F ER
SE ',' "f\.\ N 3 Supercritical
A EE AN IR
1 I 7 s dwm f
sE . e :
¥ 1 291F
e =0.151 ]
1.45F
E Subcritical
:||-.I..||I-...I||-.I.---'
0 0.05 0.10 0.15 0.20 0.25

&

Figure 8. (a) Solution families for the wetting length H; as a function of Re for various values of the
rheological parameter . The remaining parameters are Ka = 2, El =4, B = 0.1. The colours of the lines
correspond to different values of e, while the different line styles, (
(—-+-—), represent the lower, upper, left and right solution branches, respectively. (b) Critical conditions for
the transcritical bifurcation in the (Wi, ¢)-plane, for Re = 3.5.

Shear thinning is intensified not only by increasing El, but also by increasing €. In
fact, one could argue that ¢ is a clearer indicator of the shear-thinning intensity as the
relaxation time (or El in dimensionless terms) appears also in the time derivative term
of the PTT constitutive equation and therefore has a more complex role. It is, therefore,
& that we now turn our attention to. In figure 8(a) we present the wetting curves for
different values of ¢. In general, & controls both shear and elongational thinning. In the
special case ¢ = 0 the ePTT model is reduced to the Oldroyd-B model, which does not
exhibit any shear thinning. Indeed, in figure 8 we observe that variation of the value of
¢ has a qualitatively similar effect to a variation in El. For ¢ = 0.05 the wetting length
on the lower solution family is kept small throughout the range of Re, indicating that the
intense elastic stresses that arise at small values of & prevent the upstream contact line
from advancing inwards along the upstream wall. It should be mentioned that, in the limit
of ¢ = 0 (Oldroyd-B fluid — results not shown), we cannot find any solution with H; #0,
meaning that high elasticity prevents the fluid from wetting the upstream wall and pins
the corresponding contact line at the convex corner. At such low values of ¢(= 0.05),
the air inclusion at the upper solution family has an almost circular cross-section up to
Re =~ 7. When ¢ is increased, the corresponding wetting length at the lower and upper
solution families is affected considerably and at a critical value of ¢ the two families
intersect at a transcritical bifurcation; further increase of & leads to a separation of the
capillary-gravity and inertia-gravity regions. All these phenomena mirror those that occur
when El is increased instead, whereas here ¢ plays the role of the parameter breaking the
symmetry.

In fact, the same phenomena (appearance of the transcritical bifurcation, separation of
the capillary-gravity and inertia-gravity regions) are observed also in Newtonian fluids
when the Kapitza number is increased, as shown by Varchanis et al. (2017). Higher Kapitza
numbers mean smaller viscosity, so this lends support to the attribution, in the present case,
of these phenomena to shear thinning rather than to elasticity.

In figure 8(b) we present the critical conditions, in the (Wi, €) plane, for the occurrence
of the transcritical bifurcation, for a value of Re =3.5. The plane is split into subcritical
and supercritical conditions. Note that the Weissenberg number and elasticity number are
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Figure 9. Solution families for the wetting length H as a function of (a) Re and (b) We for various values
of Ka. The remaining fluid parameters are £/ = 3, ¢ = 0.1, 8 = 0.1. The colours of the lines correspond to
different values of Ka, while the different styles of the line, ( ), (—-—-— ), (- ----- ) and (—--—),
represent the lower, upper, left, and right solution branches, respectively.

proportional to each other via the expression given by (2.12a), and El is indicated in the
right y-axis. As anticipated, the critical value of Wi rapidly increases as the ePTT model
approaches the Oldroyd-B model (¢ decreases); for example, it equals 3.07 and 7.49 for
¢ = 0.1 and 0.05, respectively. The elimination of shear thinning from the viscoelastic
model, as well as the higher elastic response that arises as ¢ — 0, cause the critical value
of Wi to increase.

3.4. Effect of zero-shear viscosity

Figure 9(a) illustrates the dependence of H; on the Reynolds number for different values
of the Kapitza number. Given that the gravitational acceleration is constant, and the
density of most fluids lies within a narrow range, Ka reflects the relative importance
of surface tension compared with the zero-shear viscosity; therefore, smaller values of
Ka correspond to more viscous liquids (compared with their surface tension). According
to the results of the previous paragraph, where the effects of increasing the elasticity
number and the rheological parameter ¢ were attributed (beyond a certain limit) to shear
thinning, one would expect that increasing Ka has a similar effect. Indeed, this is verified
by figure 9(a), which shows that increasing Ka eventually gives rise to a transcritical
bifurcation, beyond which the capillary-gravity and inertia-gravity regions are completely
separated. A difference from the trends observed when increasing the El or ¢ numbers is
that an increase in Ka seems to push the inertia-gravity region to higher Reynolds numbers
(figure 9a). For example, the lower turning point of the curves of that region (or, in the
case prior to the occurrence of the transcritical bifurcation, the second turning point of the
hysteresis loop at the lower solution family) is calculated to occur at Re = 3.50, 3.94 and
4.9 for Ka = 2.5, 3 and 4, respectively. However, plotting H; as a function of the Weber
number, We, instead of Re, as in figure 9(b), these points can be seen to occur at the same
value of We = 2.24, where the onset of the inertia-gravity region occurs through a delicate
balance between inertia and capillary forces. This has been observed also by Pettas et al.
(2017) and Varchanis et al. (2017), and a detailed explanation based on scaling arguments
is presented in Pettas et al. (2020).

1000 A10-17


https://doi.org/10.1017/jfm.2024.994

https://doi.org/10.1017/jfm.2024.994 Published online by Cambridge University Press

D. Pettas and others

® (i)
7 e pr——p——re ) I 0 e oo
oF ?t\‘-(i) 1 R 1 °F ; 75
[ i, w i
5 ; \‘ ] *10‘ A *10- -1 50
\
5 ~15F 1 15k ] 25
4t \ e . =
H | SGi) N
: ot 20f 4 —20f ] 0
3 3 Py
[ 25k 1 25 ]
2k . -5.0
! 30FP 1 S0p~ ]
1 E — Li=L;=3 ] -75
i - 21:?:5 35k 1 35k ]
= =7 _] .
L L L L L L Il I2 L 1 1 100
0 1 2 3 4 5 6 7 8 9 10 ) 5 S 0 s
Re

Figure 10. Solution families for the wetting length H; as a function of Re for various lengths of the inflow and
outflow regions. Insets (i) and (ii) show the spatial variation of the 7,y field for Ly = L, =3and L) = L =7,
respectively, for Re = 6 at the upper solution family. The remaining fluid parameters are El = 3, ¢ = 0.1 and
B = 0.1. The colours of the lines correspond to different values of L; = L,, while the different styles of the
lines, ( )y (—-—-— ), to the lower and the upper solution branches, respectively.

3.5. Effect of the geometry

Having examined the effect of the fluid properties on the flow configuration, we now turn
to the substrate geometry. First, we will examine the effect of the distance between the
trenches. Figure 10 illustrates the effect of the lengths L and L, of the inflow and outflow
regions of the periodic unit cell on the wetting length H; while the size of the cavities is
kept constant. Insets (i) and (ii) in figure 10 depict the film shapes and the contour plots
of the polymeric shear stress for L; = L, = 3 and L; = Ly = 7, respectively. Note that
the presented steady-state profiles were calculated at the upper solution family for Re = 6,
see symbols in figure 10. Interestingly, the upper solution family is affected the most by
the variation of the inflow and outflow lengths, since the hysteresis loop that arises in
the range of 5.94 < Re < 6.34 for L} = L, = 7 is eliminated when the periodic trenches
are packed closer to each other (see figure 10 for L} = L, = 5 and 3). As can be seen in
insets (i, ii) in figure 10, at large values of Re the film forms an inertia ridge as it exits
the cavity with momentum in the cross-wise direction (Kalliadasis et al. 2000). This ridge
can persist for 6 or more unit lengths downstream of the exit corner, beyond which a
fully developed flow is established along the flat substrate. Comparing insets (i) and (ii)
of figure 10, one notices that, when the distance between the trenches is small (inset (i) in
figure 10), then the liquid reaching the entrance of a trench is still accelerating, as deduced
from the tapering form of its free surface, whereas at larger trench distances (inset (ii) of
figure 10), a higher, terminal (fully developed) velocity is reached — this means that inertial
effects are more pronounced in large-spacing configurations. Also, the acceleration of the
fluid in the x-direction, indicated by the tapering of the film, leads to fluid extension,
contributing to the development of normal stresses. At large trench distances, when the
fluid reaches the next trench, it has achieved a fully developed flow profile, allowing this
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Figure 11. Solution families for the wetting length H; as a function of Re for different sizes of the square
trenches. Insets (i, ii) show the spatial variation of the 7, y, field for W = D = 5 and W = D = 8, respectively,
for Re = 2.5, at the lower solution family. The remaining fluid parameters are Ka =2, El =3, ¢ = 0.1 and
B = 0.1. The lengths L; and L, remain equal to 7. The colours of the lines correspond to different values of
W = D while the different styles of the line, ( yand (------- ), indicate the lower and the upper solution
families, respectively.

component of the normal stresses to relax. However, in more closely packed trenches,
the fluid entering a trench is still accelerating, hence this component of the stresses is
present, influencing the dynamics. Finally, another effect of increasing the inter-trench
distance is that shear thinning is intensified because the fluid undergoes shearing over
longer distances (compare the shear stress distributions of insets (i) and (ii) in figure 10).
Indeed, the changes observed in the upper family in figure 10 as the lengths L; and L;
are increased are reminiscent of those described in the previous sections in relation to
shear thinning. Interestingly, figure 10 shows that the variation of the distance between the
trenches has no effect on the lower solution family.

In figure 11, the wetting length at the upstream wall is plotted as a function of Re for
different sizes of the square trenches. Examining the lower solution family, we see that
increasing the trench size has only a marginal impact on H;. This can be attributed to the
very small dependence on the trench size of the normal polymeric stress field close to the
upstream wall (see insets (i) and (ii) in figure 11), since for this flow configuration it is
the stresses near the upstream corner that mostly determine the penetration of the liquid
along the upstream wall. Midway across the trench the film is falling freely. Thus, its neck
becomes thinner with increasing W due to the acceleration by gravity, and the velocity
locally increases. Therefore, in inset (ii) figure 11 we see high values of normal stress
inside the liquid bridge, until it reaches its minimum thickness near the downstream wall.
When it merges with the liquid residing on the downstream wall it undergoes a sudden
compression, hence the negative axial stresses. Comparing insets (i) and (ii) figure 11,
one sees that the downstream wetting distance H» also does not change appreciably on
increasing the trench size D = W from 5 to 8; the downstream contact line is located
approximately 2 unit lengths away from the downstream concave corner in both cases.
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Figure 12. Solution families for the wetting length H; as a function of Re for various values of (a) substrate
wettability and (b) inclination angle. The remaining fluid parameters are Ka = 2, El =3, ¢ = 0.1, § = 0.1,
while the trench has lengths L = W = 7. The colours of the lines correspond to different values of 6 and «,
while the different styles of the line, ( ), (—-—-— )y (- =----- ) and (—---—), represent the lower, upper,
left, and right solution branches, respectively.

Therefore, an increase of the size of the cavity results in an enlargement of the volume of
the air enclosed inside the topographical feature.

On the other hand, at the upper solution family, the flow configuration is such that the
liquid wets a much larger portion of the trench’s walls, and therefore it is anticipated that
shear-thinning effects will become more prominent as the size of the trench increases, as
increasing the trench’s size increases also the high-shear contact area between the liquid
and the cavity walls. Indeed, figure 11 shows that, while at small trench sizes a hysteresis
loop is absent from the upper family, at larger sizes such a loop appears, and its intensity
has a positive correlation with the trench size. As previously argued, the appearance of
this hysteresis loop is associated with shear-thinning effects.

3.6. Effect of the contact and inclination angles

Figure 12(a) presents the solution families of the wetting distance H; for different values
of substrate wettability as a function of Re. The wetting distances depend strongly on the
apparent contact angle since, the more hydrophilic the substrate, the larger the inward
force applied on the contact point, F, = o*cosf. The contact angles do not affect
qualitatively the bounds of the regimes defined and analysed in the previous sections,
although in comparison with our base case of 8 = 60°, for 6 = 45° the entire lower
solution family has moved upwards, as the film enters deeper along the trench’s upstream
wall. Note that this increase in H; is observed even under creeping flow conditions, which
is something that was not observed when varying any of the other parameters. At the
same time, the transition to the ‘inertia-gravity’ regime is shifted to larger values of Re,
which is reasonable as greater inertia is needed to overcome the greater surface tension
force. At even smaller values of 6 (for & = 30° in figure 12a), we observe that we have
surpassed the familiar transcritical bifurcation and the splitting of the capillary-gravity
and inertia-gravity regions. These abrupt changes seem to occur at intermediate Reynolds
numbers when the capillary force is strong compared with the viscous stresses.

In many cases of coating processes, the inclination angle is not fixed at o = 90°,
so before completing our study we will briefly consider the effect that the inclination
angle has. In figure 12(b), the impact of the orientation of the substrate on the evolution
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(b)

Figure 13. Streamline patterns for different inclination angles a, for Re =2, Ka =2, El = 3, ¢ = 0.1 and
B = 0.1, at the lower solution family.

of the solution families is presented as a function of the flow rate. For o = 85° we
observe in the lower family an increase in the wetting distance H, while the capillary
gravity-region forms again an isola in the Hj—Re diagram, and there is no continuous
transition to the inertia-gravity region. These phenomena are intensified at @ = 70°; as
the y-component of the gravity vector increases, so does the wetting distance of the flow,
while the separation between the two flow regions becomes greater (figure 13). This can
be explained by noting that, by inclining the substrate, a component of gravity pulls the
liquid inside the trench, aiding the capillary forces in their competition with the viscous
forces, similarly to shear thinning and wettability. In figure 13, inclination is also seen to
increase H> substantially, causing an overall decrease in the volume of the enclosed air.
On the contrary, at the upper solution family, inclination causes a rapid reduction in Hj.
Concerning the capillary-gravity region, it is observed (figure 120) that inclination causes
the isola to shrink. Furthermore, the inertia-gravity curves are also pushed to higher values
of Re. In fact, it was observed that, for inclination angles lower that 68°, solutions of this
type cease to exist: beyond that limit, the film completely coats the periodic topography
under the action of the y-component of gravity which pushes it towards the interior of the
trenches.

4. Discussion and conclusions

We studied the steady flow of a viscoelastic liquid film, modelled as an ePTT fluid, falling
over a substrate exhibiting a periodic arrangement of square trenches, under partial wetting
conditions. In particular, while the downstream sidewall of the trench is completely wet,
the upstream sidewall and the bottom are only partially wet, entrapping a volume of
air. Hence, the film inside the topographical feature forms a second liquid/gas interface
between the two contact lines; the latter are free to migrate along the upstream and
bottom wall of the cavity to find their equilibrium locations under any set of conditions.
Pseudo-arc-length continuation reveals multiple steady-state solution families, connected
by turning points and transcritical bifurcations, and often becoming disjoint and forming
isolated families. We performed a thorough parametric analysis to identify the effect of
the rheological properties and geometric characteristics on the flow.

The results revealed that, for a given flow rate, there usually exist two possible steady
states (sometimes more, in the case of hysteresis loops, and sometimes less) forming what
we named the ‘upper’ and ‘lower’ solution families, respectively. Fluid elasticity was
found to impact these two families in a different manner. The upper solution family is

1000 A10-21


https://doi.org/10.1017/jfm.2024.994

https://doi.org/10.1017/jfm.2024.994 Published online by Cambridge University Press

D. Pettas and others

characterized by very small air inclusions, and elasticity helps in keeping them small as
the flow rate is increased, by weakening the strength of the vortex that tends to stretch and
expand them, in the inertia-gravity regime. So, in this case, elasticity promotes wetting. On
the other hand, for the lower solution family, which is characterized by mostly dry cavity
walls, elasticity inhibits the wetting even more, by pinning the liquid jet close to the inlet
corner of the trench and not allowing it to penetrate inwards along the upstream sidewall.
Thus, elasticity can either enhance or inhibit the wetting of the substrate, depending on the
flow conditions, which is something that could be exploited, depending on one’s goals.

The question then arises of how one can obtain the desired steady state of the upper
or lower solution family. This is not a question that can be answered by the present study
alone, where the steady states were solved for directly. Rather, transient simulations must
be performed, such as in Lampropoulos et al. (2016) and Karapetsas et al. (2017), in order
to reveal the initial conditions that would lead either to the upper solution family or to
the lower one. In the present study, we also did not check whether the computed steady
states are stable or unstable. It is very likely that some states, especially those between
turning points on hysteresis curves, are unstable. This could be revealed definitively by
stability analysis, as was recently done in Pettas et al. (2019b) and Marousis et al. (2021)
for viscoelastic flow over fully wet substrates with periodic topographical features, and is
the subject for a future study. It should be kept in mind that the present study assumes
that one of the three-phase contact lines is located on the upstream sidewall of the trench
and the other on its base. Although this is a probable flow configuration, this intrinsic
assumption within our numerical code precludes the computation of other potential steady
states with different configurations, such as a full coating. For insights into full coating,
readers are directed to prior studies highlighted in the Introduction’s literature review.
Another likely case is that where the contact lines appear on both sidewalls, and this case
closely resembles the viscoelastic flow over a periodic array of slits, which was recently
studied by Pettas et al. (2020). Other flow configurations are more unlikely, due to the
geometrical arrangement.

Typical viscoelastic liquids exhibit shear thinning in addition to elasticity, something
that is accounted for by the chosen ePTT model. Once shear thinning becomes significant,
our results showed that it acts so as to reverse the effects of elasticity. Furthermore, at
intermediate Reynolds numbers, in the transitional region between the capillary-gravity
and inertia-gravity regimes, it makes the flow pattern very sensitive to the flow rate, with
large changes in the former induced by relatively small changes in the latter. Intensification
of shear thinning at some point causes the appearance of a transcritical bifurcation, and
beyond that the capillary-gravity and inertia-gravity regimes become completely disjoint.
These phenomena seem to manifest at intermediate Reynolds numbers when the balance
between capillarity and viscosity leans towards the former, as they are observed not only
in relation to strong shear thinning, but also when the zero-shear viscosity is lowered, or
when the contact angle is reduced, or even when the substrate is inclined such that gravity
assists capillarity in pushing the liquid inward, towards the interior of the trench.

As mentioned, a fuller understanding of this flow can be achieved by complementing the
current results with a stability analysis and transient simulations. Such an understanding
can lead to the design of appropriately tailored substrates and/or fluids with fine-tuned
rheological properties so as to achieve the desired degree of substrate wetting.

Funding. This work has been supported financially by the Hellenic Foundation for Research and Innovation
(HFRI) and the General Secretariat for Research and Technology (GSRT) under grant agreement No 1743 and
the LIMMAT foundation under the grant MuSiComPS.

Declaration of interests. The authors report no conflict of interest.

1000 A10-22


https://doi.org/10.1017/jfm.2024.994

https://doi.org/10.1017/jfm.2024.994 Published online by Cambridge University Press

Viscoelastic film flow on partially wetted grooved surfaces

7 e e e e
6 _.r_g - ————— - _
s F 3
H, 4 F MO 3
3 F Ml 3
2 F M2 3
1F = E
0 1 2 3 4 5 6 7 8 9 10
Re

Figure 14. Variation of H as a function of Re for three different meshes. The rest of the parameters are
El=05Ka=2andLi =L, =D=W=1.

Mesh AXmin AYmin Triangles

MO 2x1073 2x1073 7200
M1 1x1073  1x1073 28 800
M2 5x107%  5x1074 115200

Table 2. Properties of the meshes used in the mesh convergence test.
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Appendix A

This appendix presents some indicative mesh convergence results. In particular, figure 14
exhibits grid convergence with 3 meshes (see table 2) consisting of 7200, 28 800
and 115200 triangles, respectively, concerning a case with El[=0.5, Ka=2 and
L1 =Ly =W =D ="7. The mesh is slightly packed around the sharp corners of the domain
in which the highest stress gradients arise. The values Axy;, and Ay, describe the
element discretization in the vicinity of the sharp corners. These values refer to the
discretization of the computational domain (with geometry Ly = L, = W = D = 7) which
always remains undeformed. For practical reasons, due to the very large number of
simulations needing to be performed in the present study, we employed the coarsest mesh
MO in most of our simulations. Nevertheless, figure 14 shows that it provides reasonable
accuracy.
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Figure 15. Representation of figure 7 of the manuscript as a scatter plot, with individual data points obtained
from the arc-length continuation procedure.
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Figure 16. Close up view of figure 15 near (a) the hysteresis loop of the lower branch, (b) the hysteresis loop
of the upper branch.

Appendix B

This appendix demonstrates the close spacing of the data points obtained by the
arc-length continuation procedure, which makes the interpolation errors involved in the
representation of the solution families as continuous lines negligible. The arc-length
continuation procedure is described in more detail in Pettas et al. (2017), but briefly,
given a solution, ug, at an initial Reynolds number, say Reg, the value of Re for the
next computation is determined as a function of the pseudo arc length, s, along the curve
of solutions. To determine the new Re, an additional equation is obtained by requiring
the ‘distance’ travelled in the space of solution unknowns augmented by the Reynolds
parameter to equal a fixed value As

u

g ORe
As = < (u1 —uo) + — (Re1 — Rep), (B1)
as as
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where u1 and Re; are the solution and Reynolds number at the new data point. Therefore,
according to arc-length continuation, the change in the parameter value (Re) is implicitly
calculated at every step by requiring that the steady states differ by a set value of the arc
length along the curve. Consequently, the solution dataset is denser where the solution
curve undergoes more abrupt changes. Figure 15 reproduces figure 7 in terms of the
discrete points where the solution was actually calculated. In most cases, the arc-length
step was defined to be As = 0.5. Additionally, figure 16 shows close-up views of the data
set close to the hysteresis loops showing that the resolution is automatically increased close
to the abrupt changes of the curves.
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