A GENERALIZATION OF A THEOREM OF HILTON
C.S. Hoo*

(received April 5, 1968)

Let f: A X B—- X be amap. Let J(f): Z(A A B)—>ZX be
the map obtained from f by means of the Hopf construction. Let P(f)
denote the space obtained from Z X by attaching a cone on Z (A A B)
by means of J(f). Let £: ZX - P(f) be the inclusion and t(£):X~ Q P(f)

the adjoint of £ . Let hi:Ai—»A, hZ:Bi-—»B be maps. Let

c:QP(f) X QP(f) > QP(f) be the basic commutator. Then we prove
that there exists a map ZTA K6 X Z)B1 - P(f) with axes £ E(fi1h1), ,@Z(ﬁzhz)

1
if and only if c(—r(l)fiih1 X (2 )fizhz)_fz %, where i1 :A—> AXB and
i, : B> AX B are the inclusions. This generalizes a result of Hilton.

2
Also, by letting f be an H-space multiplication and h1 and h2 the

identity maps, we obtain a well known criterion of Stasheff for an
H-space to be homotopy-commutative. Finally, appropriate duals of
these results are given.

We will work in the category of spaces with base point and having
the homotopy type of countable CW-complexes. All maps and homo-
topies are to respect base points. For simplicity, we shall frequently
use the same symbol for a map and its homotopy class. Given spaces
X, Y we denote the set of homotopy classes of maps from X to Y by
[X, Y]. We also have an isomorphism 1:[ZX, Y]~ [X, QY].

Given amap f: X X Y —> Z, the axes of f are the maps

fii:X—> Z, fiZ:Y—>Z where 11, 12 are the imbeddings of X, Y in

XXY. Let g:X—=>2Z, h:Y—>Z be maps. We observe that there
exists amap f : X X Y > Z with g and h as its axes if and only if
V(igv h): X vY—>Z extendsto X X Y where V:Z V Z = Z is
the folding map.

1. Let f: A X B—> X be amap and let Y be an H-space with
multiplication ¢: Y X Y—> Y. Amap g:X—= Y is said to be primitive
with respect to f if the following diagram homotopy-commutes

f
A X B—>X

% ofi
g X et l g
YXY—Y
¢
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where i1 tA- A XB, iZ :B = A X B are the imbeddings. It is easily
checked that this means that gf = gfi,™, + gfizTTZ in [AXB, Y] where

‘lTiiAXB-’A, 1r2:A><B—>B are the projections. If X is also an

H-space and f is the multiplication on X, then primitivity of g with
respect to f merely means that g is an H-map.

We recall that in [1], Arkowitz defined a generalized Whitehead
product [ ,]:[ZA, X] X [ZB, X]->[Z (A A B), X]. Suppose X is
an H-space. Then in[2], he defined a generalized Samelson product
<,>: [A, X] X [B, X]=[AAN B, X]. These operations are related
in the following way. Suppose @ is an element of [ZA, X] and B is
an element of [ZB, X] where A, B, X are any three spaces. Then
v, Bl=<7(2), 7(B) > .

Before stating our results, we need one more construction,
namely the Hopf construction. We can either consider this as well-known
or refer the reader to [8] where this was defined and used. However,
for the sake of completeness, we shall define our version of this
construction briefly here. Let A and B be spaces. We consider

A V B J—» A X BEA/\ B as a cofibration where A A B is the

smashed product, and j is the usual inclusion of the wedge product in
the cartesian product. Then one can show that there exists a map

p:Z(A X B)—> Z(A V B) such that p(Zj) ~ 1Z(A v B)® In fact, let
i1:A—>A\/B, iZ:B—>A\/B be the inclusions, and let ﬂ1:AXB—>A,
172: A X B = B be the proiections. Let p, = iirri, P, = izwz .

Then we can and shall take p = V(Zp1 \VADY p2)¢o' where

¢': ZT(AXB)—=> Z(AXB) VvV Z(A X B) is the suspension structure, and
v is the folding map. The exact sequence of the cofibration now shows that

(Zq) # is a monomorphism. Hence there exists a unique element [d]

% .. . _ Si)p.
of [Z(A A B), Z(A X B)] satisfying the relation 1Z(A><B) d(Zq) + (Zj)p

Given a space X and amap f: AX B —= X, we define a map

J(f) : Z(A N\ B) > ZX by J(f) = (Zf)d. We call J(f) the map obtained
from f by the Hopf construction. It is the unique element satisfying
the relation Xf = J(f) Zq + Z(fj)p. I f1 : X = Y is another map, then

J(f1 f) = (Zf1) J(f).

Given f:AX B —> X, let P(f) = =X J%f)) C =(A A B), that is,

P(f) is the cofibre of the cofibration J(f) : Z(ANB)—>ZX. If

¢$: X X X=X is an H-space multiplication, then P($) is the projective
plane of the H-space. In general, if f: A X B - X is a map, let

£ : ZX - P(f) denote the inclusion. Now let Y be a spaceand g : X > QY
a map. Then in [5], Hilton proved the following theorem.
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THEOREM 1. g : X =Y is primitive with respect to f if and

only if 1-_1(g) : ZX > Y extends to P(f).

In particular, it can be checked that v(): X = QP(f) is always
primitive with respect to f. Thus if ¢: X X X - X is an H-space
multiplication, then +(£): X - QP(¢) is always an H-map. Now let

Ai’ B1 be spaces and h1 :A1->A, h2 :B1->A be maps. Let

T:A X A—- A XA be the switching map. Let f: A XA—- X bea
map. Then in [6], Hilton proved the following theorem.

THEOREM 2. If r(¢)f (h1 X h2) ~or()f T(h'1 X hz), then there
exists a map ZA1 X EB1 - P(f) with axes [/ Z(fiihi)' Y E(fizhz) where
i tA->A X A, i_: A > A X A are the inclusions in the first and

1 2
second coordinates respectively.

This is the theorem we wish to generalize. We shall show that
it is not necessary to assume that A = B, that is, we may assume that
f isamap f: A XB - X for any spaces A, B. In order to do this,
we cannot, of course, use the switching map T. We shall give another
formulation which will imply Theorem 2 in case A =B, In this
reformulation, the argument will be reversible, so that we actually
obtain an "if and only if" result.

We first state and prove our result and then show how it implies

Theorem 2. Let f: A XB - X be a map, and let h1:A1-—> A, hZ:B1—>B

be maps, where Ai’ B, are any spaces. Let i1:A-—>AXB, iZ :B+-AXB

1
be the inclusions and £ : <X — P(f) the usual inclusion. Then

t(£): X >qP(f) is primitive with respect to f. Let c:QP(f) X P(f) = o P(f)
be the basic commutator.

THEOREM 3. There exists a map ZA1 X ZB1 - P(f) with axes
. ’ . . . . % . % |
2 Z(f11h1) 2 Z(flzhz) if and only if c(r(2) f11h1 (L) f12h2) ~

Proof. Let us consider the map v {4 z(ﬁihi) V4 Z(fizhz) }.
Z)A1 v ZZB1 - P(f). In order to obtain the required map with the prescribed

axes, we need to show that this map extends to ZA1 X Z)B1 . Let

: = : = = i i .
k1 EA1-—>ZA1\/ Bi’ k2 2B1—> Aiv B'1 be the inclusions. Then

we have the generalized Whitehead product k = [k1,k2]: ZZ(A1 A Bi)-»EA1VZB1.
k

We may consider Z(A1A B'l) - ZA1\/ EB1—>(ZA1\/ ZB1) LkJC Z(Ai/\ B1)

as a cofibration, if necessary by replacing the situation by a homotopically

equivalent situation, using standard constructions of homotopy theory. Then
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clearly v{f =(fi h )Vl Z(fi_h_ )} extends to (ZA VZIB )UC Z(A AB))
171 22 1 17 1 1
if and only if Vv {4 Z(fi1h1) \VA' Z(fizhz)} [ki’kz] ~ %, that is, if and

only if [¢ Z(ﬁihi)’ yi Z(fizhz)] = 0. Now T[4 E(fi1h1)’ EZ(fizhz)] =

, . # . . _ .
<-r(£)f11h1, () fi_h > and q  <7(£) f11h1, T(2) f12h2 > = c(-r(l)flih1 X

22
T(Z)fizh ) where c:QP(f) X QP(f) > 9 P(f) is the basic commutator and

2
q:A1 X B1 - A1 A B1 is the projection onto the smashed product. Since

T 1is an isomorphism, and q" is a monomorphism by Lemma 4.1 of [4],
it follows that {4/ Z (fiihi) viZ (fizhz)} extends to (ZAiv ZB1)UC Z(A

A B
" 1 1)
if and only if c(T(£) fiihi X T (E)fizhz) ~ *.  Now, by

Corollary 4.3 of [1], (ZA1 v EB YU C Z(A1 A B1) is homotopically
k

equivalent to ZA1 X EB1 . This proves the theorem.

N

Remark 1. Suppose A =B and T: A X A—- A X A is the switching
map. Suppose T(£) f(h1 X hZ) ~ () £ T(h1 X hz). Since t(£) is primitive

with respect to f, we have t(£)f =+(2) fi1w1 + 1(2) fiZTr2 . Hence
>< = 1 1 =
T(2) f(h1 hZ) T(ﬁ)f11h11r1 +T(,€)f12h21r2, and -r(ﬁ)fT(hith)
i m, T(h, X + i = i h i .
-r(l)f111T1 (h1 hZ) -r(l)flzTr2 T(h1><h2) —r(l)f11 2T +-|-(£)f12h11r1

Thus -r(l)fT(h1><h2) 11=-r(£)f12h1 and 1(£) f(h1><h2) 11=—r(£)f11h1,

i X X i i .
Since T(£) f(h1 h2) ~ (L) f T(h'1 h2), we have T(£) f11h1 ~oT(2) f12h1
Similarly 7 (¢) fi,h, ~ v(£) fi,h

,+ Since T(1)f(hy X B )z t() £ T(hy X h ),
we have 1(£) f:iihiTr1 + T(E)fizhznz =1(¢) fi1h2n2 + T(“fizh1"1' and
hence + (¢) fiih1‘rr'1 + (L) fiZhZTr2 -1t (L) f121’111'r1 -T(L) f11}121r2 = 0.

Since T(¢) fi1h1 =1() fizh1 and T(£) fizhz =T(£)fiih2, this means that
'r'(l)fi1h11T'1 + () fizhzﬂz - 1) f:'l1h11'r'1 - 7(2) fizhzﬂ2 = 0. Hence
c(r(2) fi1h1 X (L) fizhz) = c(r(2) fi1h17r1 X +(2) fizhzwz)A =

T(0) fihyw b (@) fihor, - v () £y, -7 () fih,m = 0. It follows

then from Theorem 3 that there exists the required map with the prescribed
axes. Thus Theorem 3 implies Theorem 2.

Remark 2. Suppose ¢: X X X - X is an H-space multiplication.

Then ¢ 111 '1X, ¢ i2 ~ 'IX and 7(£):X ->QP(¢) is an H-map. Hence

c(r(@) X 7(£) ) ~ 7() ¢ where we denote the commutator of X by ¢
also. Thus there exists a map Z)A1 X ZB1 - P(¢) with axes £(Zh1), E(th)

if and only if +(¢) c(h1 X hz) ~ %, If X is homotopy associative and

right translation is a homotopy equivalence, then Stasheff showed in [9]
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that there exists a map V:QP (¢)—> X suchthat v t(0)~ 1X . Thus

the required map exists if and only if c(h1 X hz)l * , In [6], Hilton
remarked that if X is a countable connected CW-complex and is an
associative H-space, then inverses exist, and right translation is always
a homotopy equivalence. Thus we obtain a generalization of Theorem 1.9

of [9].

2. We now discuss the dual of the above. In [6], Hilton showed
that Theorem 2 does not dualise. However, Theorem 3 does have a
formal dual of a sort. In fact, if in Theorem 3 we ask for extensions of
maps, not to ZA1 X ZB1 but to the homotopically equivalent space

(Z‘,A1 Y, ZBi)Lk) C Z(A1 A Bi)’ then clearly everything dualises. In fact,

in order to dualise, we should talk about extensions of certain maps and
not about maps with prescribed axes, and dualise to compressions of
certain maps and not refer to axes at all. Let us discuss this briefly.

We first dualise the Hopf construction. Let A and B be spaces.

We can consider Ab B 5> AV B+ A XB as a fibration where Ay B
is the flat product and j is the usual inclusion. Then we can find a map

: X j .
X (A B)~ @ (A V B) suchthat (Qj) X ~ 1Q(A><B) In fact we can

and shall take X =Q(iiw1) + Q(iZTI'Z) where 11:A->A VvV B, iZ:B-> AvB
are the inclusions and 111:A X B = A, T :A X B- B are the projections.

The exact sequence of the fibration now shows that (Qi), is a monomorphism,

#
and that there exists a unique element [g] of [Q(AV B), (A b B)] such
that 19 (AVB) = (Qi)g + X(Qj)- Now for any space X and a map

f:X > AV B, we can form the map H(f) = g(Qf) : QX - Q(A ¥V B). We
shall call H(f) the element obtained from f by the co-Hopf construction.
The element H(f) satisfies Qf = (i) H(f) + X (jf).

We can now form the dual of P(f). In fact, recall thatif g: X - Y
is a map, the dual of attaching a cone to Y by means of g is the space

I
ng\P Y={(x4)e X X Y suchthat g(x) =£(o), £(1) =%} . Thus
suppose f:X - A V B is a map. The co-Hopf construction gives a map

Hf):9X—>Q(A p B). Let P'(f) =X Po(A p B). The projection

n
f H(f)
QX X (A p B) QX induces a projection £': P'(f) > QX. Observe
that if ¢': X = X V X is a comultiplication of an H'-space, then P'(¢')
is called the co-projective plane of X in[6]. Let Y be an H'-space
and g:Y - X amap. We say that g is primitive with respect to f

if the following diagram homotopy commutes.
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¢I
Y—Y VY
f f
g pig\/ P,f8
— Ay B

where p1 tAYVy B—= A, p2 tAV B — B are induced by the projections,
and ¢':Y—>Y VY is the H'-space comultiplication on Y. Then in
[6], Hilton proved the following theorem.

THEOREM 4. A map g:ZZ —~ X is primitive with respect to
f if and only if T(g):Z »- X lifts to P'(f) .

In particular, it is easily checked that 1-_1(1 N: ZP'(f) > X is
always primitive with respect to f. We now recall that in [1],
Arkowitz defined a dual product [, ]':[X, 9 A] X [X, @B] = [X, (A b B)],
which is the dual of the generalized Whitehead product. Also, if X is
an H'-space, in [3] he defined a "flat product" <, >':[X, A] X [X, B] -
[X, Ap B]. These are related as follows. If « is an element of
[X, 9A] and B is an element of [X, 9 B], then

r<a ta, 27Me) st = [wel.

Now suppose f:X - AV B is amap and £':P'(f) > X is the

projection. Let h1:A—>A1, hZ:B—>B1 be maps. Let

QA XQB1—>QA1, :QA1XQB1->QB1 be the projections.

T4 1
Let , '1QA
e [1'r1 172] Q

™
2
' X QB1 »Q(Ai b Bi) be the dual product. We can

consider [Tr1, TTZ]' as a fibration, if necessary by replacing it by a
homotopically equivalent situation. Then the fibre of [171, 1'r2]' is

X . i
(QA’1 QOB ) ["[’W"Z]' Po (A1 7 Bi) Consider the map

1 X ! . 1 — X
{Q(h’lpif) 2 Q(thzf)l} AP (f) QA1 QB1 where

1

P, tAVB-—-A, P, :AV B - B are induced by the projections.

Let c': ZP'(f) = ZP!' (f) V = P'(f) be the basic co-commutator.
Then we have the following result.

THEOREM 5. {g(h,p,f) £' X 9(h,p,f) £'} A:P'(I)~qA XqB,

can be compressed into (QA X QB ) M PqQ(A V B ) if and onl
1 UEIL NI 1 ¥ Py Zanc ony

. -1 -1
if {hipifT (£') Vhpfr = (£)} e~ * .

Proof. The proof is an exact dual of that of Theorem 3, and we
leave it to the reader to provide it.
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By specializing f we obtain appropriate duals of the results
referred to in Remarks 1 and 2.
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