
A GENERALIZATION OF A THEOREM OF HILTON 

C. S. Hoo* 

( rece ived Apr i l 5, 1968) 

Let f : A X B -> X be a m a p . Let J(f) : 2 (A A B) -+ 2 X be 
the m a p obtained f rom f by m e a n s of the Hopf c o n s t r u c t i o n . Let P(f) 
denote the s p a c e obtained f r o m Z X by a t taching a cone on Z (A A B) 
by m e a n s of J(f). Let i : Z X-> P(f ) be the inc lus ion and T ( i ) : X-* Q P(f) 
the adjoint of I . Let h , : A, -> A , h : B , -*• B be m a p s . Let J 1 1 2 1 ^ 
c : Q P(f) X Q P(f) -* Q P(f) be the b a s i c c o m m u t a t o r . Then we p r o v e 
that t h e r e ex i s t s a m a p ZA X ZB -* P(f) with axes I Z(fi h ), i 2 ( f i h ) 

if and only if c ( T ( i ) f i J h j X T ( i ) f i h K * , w h e r e i : A-> A X B and 
1 1 2 2 ~" 1 

i : B -> A X B a r e the i n c l u s i o n s . This g e n e r a l i z e s a r e s u l t of Hil ton. 

Also, by let t ing f be an H - s p a c e mu l t ip l i ca t ion and h and h the 

ident i ty m a p s , we obtain a wel l known c r i t e r i o n of Stasheff for an 
H - s p a c e to be h o m o t o p y - c o m m u t a t i v e . F ina l ly , a p p r o p r i a t e dua ls of 
t h e s e r e s u l t s a r e g iven. 

We wil l work in the ca t ego ry of spaces with b a s e point and having 
the homotopy type of countable CW- c o m p l e x e s . Al l m a p s and homo-
topies a r e to r e s p e c t b a s e p o i n t s . F o r s impl ic i ty , we sha l l f requent ly 
u se the s a m e symbo l for a m a p and i ts homotopy c l a s s . Given s p a c e s 
X, Y we denote the se t of homotopy c l a s s e s of m a p s f r o m X to Y by 
[X, Y] . We a l so have an i s o m o r p h i s m T : [ S X , Y] -* [X, fiY]. 

Given a m a p f : X X Y -*- Z, the axes of f a r e the m a p s 
fi : X -* Z , fi : Y -* Z whe re i , i a r e the imbeddings of X , Y in 

1 2 1 2 
X X Y . Let g : X -> Z, h : Y -+ Z be m a p s . We o b s e r v e that t h e r e 
ex i s t s a m a p f : X X Y -*• Z with g and h as i ts axes if and only if 
V (g V h) : X V Y -> Z extends to X X Y w h e r e V : Z V Z -* Z i s 
the folding m a p . 

1. Let f : A X B - * - X be a m a p and let Y be an H - s p a c e with 
mu l t i p l i ca t i on cj> : Y X Y -*• Y. A m a p g : X -*• Y is said to be p r i m i t i v e 
with r e s p e c t to f if the following d i a g r a m h o m o t o p y - c o m m u t e s 

f 

A X B >X 

Y X Y I I 
#This r e s e a r c h was suppor ted by NRC Gran t A-3026 
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where i : A -> A X B , i : B -* A X B are the imbed clings. It is easily 

checked that this means that gf = gfi1
TT

1
 + ê f i

2
7 T

2
 i n [A X B, Y] where 

TT : A X B -* A, ÏÏ : A X B->B are the projections. If X is also an 

H-space and f is the multiplication on X , then primitivity of g with 

respect to f merely means that g is an H-map. 

We recall that in [1], Arkowitz defined a generalized Whitehead 
product [ , ] : [ Z A , X] X [SB , X] -> [Z (A A B), X]. Suppose X is 
an H-space. Then in [2], he defined a generalized Samelson product 

<, > : [A, X] X [B , X]->[AA B, X], These operations are related 
in the following way. Suppose a is an element of [SA, X] and p is 

an element of [SB , X] where A, B , X are any three spaces. Then 

T [ a , p] = <T(OT), T(P) > . 

Before stating our results, we need one more construction, 
namely the Hopf construction. We can either consider this as well-known 

or refer the reader to [8] where this was defined and used. However, 

for the sake of completeness, we shall define our version of this 

construction briefly here. Let A and B be spaces. We consider 
j q 

A V B -> A X B -> A A B as a cofibration where A A B is the 
smashed product, and j is the usual inclusion of the wedge pr-oduct in 
the cartesian product. Then one can show that there exists a map 

p : Z(A X B) -> Z(A V/ B) such that p ( S j ) ~ l _ / A _ . . In fact, let 
Z(A V B) 

i : A -»• A v B , i : B -»- A V B be the inclusions, and let TT, : A X B -> A , 
1 2 1 

TT : A X B -> B be the proiections. Let p, = i ir . p^ = LTT . 
2 F M 1 1 VZ 2 2 

Then we can and shall take p = V ( ^ p . V 2pJcj)1 where 

(J)1: Z (A X B) -* Z(A X B) V Z(A X B) is the suspension structure, and 
V is the folding map. The exact sequence of the cofibration now shows that 

(Zq) is a monomorphism. Hence there exists a unique element [d] 
of [Z(A A B) , Z(A X B)] satisfying the relation 1 = d(Zq) + (Zj)p. 

2-i \ J\. A D j 

Given a space X and a map f : A X B -»• X , we define a map 
J(f) : S (A AB)->2X by J(f) = (Sf)d. We call J(f) the map obtained 
from f by the Hopf construction. It is the unique element satisfying 
the relation Sf = J(f) 2q + Z(f j)p. If f : X -+ Y is another map, then 

J(f1 f) = (Sf^ J(f). 

Given f:A X B -» X, let P(f) = ZX ^ C Z(A A B), that is, 
J(f) 

P(f) is the cofibre of the cofibration J(f) : Z(A A B) -> Z X . If 
4> : X X X -*- X is an H-space multiplication, then P(c()) is the projective 
plane of the H-space. In general, if f : A X B - > X is a map, let 
i : ZX -> P(f) denote the inclusion. Now let Y be a space and g : X -*• ci Y 
a map. Then in [5] , Hilton proved the following theorem. 
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THEOREM 1. g : X -> Q Y is primitive with respect to f if and 

-1 
only if T (g) : SX -* Y extends to P(f). 

In particular, it can be checked that T (i) : X -*- Q P(f) is always 
primitive with respect to f. Thus if cj) : X X X -> X is an H-space 

multiplication, then T(i ) : X-*ftP(4>) is always an H-map. Now let 
A1( B, be spaces and h, : A, -> A, h : B Â -> A be maps. Let 

1 1 ^ 1 1 2 1 ^ 
T : A X A -> A X A be the switching map. Let f : A X A -* X be a 
map. Then in [6] , Hilton proved the following theorem. 

THEOREM 2. If T (£ ) f (h X h ) * T (2 ) f T(h, X h ), then there 
— 1 2 — 1 2 

exists a map SA, X SB, -> P(f) with axes i S(fi,h,) , i S(fi h ) where c- i i i i 2 2 

i, : A -> A X A , i : A -> A X A are the inclusions in the first and 
1 2 

second coordinates respectively. 

This is the theorem we wish to generalize. We shall show that 
it is not necessary to assume that A = B, that is, we may assume that 
f is a map f : A X B -> X for any spaces A, B. In order to do this, 
we cannot, of course, use the switching map T. We shall give another 
formulation which will imply Theorem 2 in case A = B. In this 
reformulation, the argument will be reversible, so that we actually 
obtain an "if and only if" result. 

We first state and prove our result and then show how it implies 
Theorem 2. Let f : A X B -> X be a map, and let h, : A, -> A, h : B J -> B 

v 1 1 2 1 
be maps, where A , B are any spaces. Let i : A -*• A X B, i :B -*• A X B 

be the inclusions and & : SX -> P(f) the usual inclusion. Then 
f (I) : X ->ftP(f) is primitive with respect to f. Let c : Q P(f) X Q P(f) — Q P(f) 
be the basic coramutator. 

THEOREM 3. There exists a map SA X SB -> P(f) with axes 

i S(fi h ,) , i S(fi h ) if and only if c(T( i ) fiLh, X T ( i ) f i h ) ~ * . 
1 1 2 2 — 1 1 2 2 — 

Proof. Let us consider the map y {i S(fi h ) Vi S(fi h ) } . 

SA V SB -> P(f). In order to obtain the required map with the prescribed 

axes, we need to show that this map extends to SA, X SB, . Let 
1 1 

k : SA, -> SA, V SB, , k : SB, -> SA, V SB, be the inclusions. Then 
1 1 1 1 2 1 1 1 

we have the generalized Whitehead product k = [k , k 1 : S(A, AB )->SA VSB, . 
L 1 2 1 1 1 1 

k 
We may consider Z(A± A B ±) - Z A ^ SB1 - (SA1 V S B ^ U C -L(A±j\B±) 

k 

as a cofibration, if necessary by replacing the situation by a homotopically 

equivalent situation, using standard constructions of homotopy theory. Then 
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clearly v{ i 2(fi h ) Vi S(fi h )} extends to (SA V SB )U C S(A A B ) 
•i- J. Lé L* J. X . ± J L 

k 

if and only if V {i S(fi h ) V I S(fi h )} [k k ] ^ * , that is, if and 

only if [i S f f i ^ ) , ! S(fi2h2)] = 0. Now T[i S f f i ^ ) , I S (f^h )] = 

< T ( i ) f i 1 h 1 > T ( i ) f i 2 h 2 > and q # < T (I ) f i ^ , T (i ) f^h > = c(T (i )£±1 ĥ  X 

T ( 0 fi h ) where c:ç?P(f) X $7 P(f) -+• ft P(f) is the basic commutator and 

q:A, X B, -> A, A B, is the projection onto the smashed product. Since H 1 1 1 1 \„ J ^ 
T is an isomorphism, and q is a monomorphism by Lemma 4. 1 of [4], 

it follows that \/{i S (f i h ) V i S (fi h ) } extends to (SA V SB )UC 2 ( A A B ) 
1 1 Li L, i l l 1 1 

if and only if c ( T ( i ) f i h X T C O ^ * ^ - * " N ° W ' b y 

Corollary 4. 3 of [1], ( SA V EB ) U C S(A A B ) is homotopically 

k 
equivalent to SA, X 2 B , . This proves the theorem. 

1 1 

Remark 1. Suppose A = B and T : A X A - » - A X A is the switching 

map. Suppose T ( 0 f(h Xh U î ( i ) f T(h X h ). Since T U ) is primitive 

with respect to f, we have T CO f = T CO f i. TT + T (I ) fi9"
nr

9 • Hence 

T ( I ) f(h4 Xh2) = T(i)fi1h1TT1 + T ( l ) f i
2 V 2 ' a n d T ( i ) f T ( h l X h 2 ) = 

T ( l ) f i 1 i r 1 T ^ Xh2) +T(i)fi2Tr2 T ^ X l ^ ) =T(l)f i1h2 i r2 + T ( i ) f i 2 h 1 i r 1 . 

Thus T ( | ) f T(h X h ) i = T ( i ) f i h and T (i ) f(h X h ) i = T (i ) f i, h ,. 
1 2 1 2 1 1 2 1 1 1 

Since T CO f(h, X h ) ~ T CO f T(h X h ), we have T CO fi„h, ~ T CO fi^h A. 
1 2 — 1 2 1 1 — 2 1 

Similarly T CO fi h ~ T ( 4 ) ^,K- Since T CO f(h X h ) ^ T CO f T(h X h ), 
Lt Li i. ùt 1 £ -*- ^ 

we have T (i ) f ^ h ^ + T (i ) fi^T^ = T (i ) f i ^ T ^ + T ( i ) f i 2 h TT , and 

hence T W) fi1h1Tr1 + - r C O f ^ h ^ - T (£ ) f ^ h ^ " T ^ ) f i
1

h
2

1 T
2
 = ° ' 

Since T CO fiJ,hJ =T( i )f i^h i l and T CO fi^h = T ( i ) f i , h , this means that 
1 1 2 1 2 2 1 2 

T-W)fi1h1TT1 + T U ) fi2h27r2 - TW)fi1h1 i r1 - T ( i ) f i 2 ^ 2 ^ 2 = 0. Hence 

c ( T ( 0 fi1h1 X T ( i ) fi2h ) = c ( T ( 0 f i 1
h

1 ^ 1 X T « ) f i
2

h
2

1 T 2 ) A = 

r(i)îi±h±TT +TU)f i 2 hTr - r C O f ^ h i ^ - T U ) f i
2

h
2

Tr
2

 = °- It follows 

then from Theorem 3 that there exists the required map with the prescribed 
axes. Thus Theorem 3 implies Theorem 2. 

Remark 2. Suppose § : X X X -> X is an H-space multiplication. 

Then <\> i ^ 1 t $ A ^ 1 a nd T (£ ) : X -+ Q P(<t>) is an H-map. Hence 
I X 2 X 

C(TCO X T ( 0 ) 2L T CO c where we denote the commutator of X by c 
also. Thus there exists a map SA X SB — P(c|>) with axes £ (Sh ), i (Sh ) 

if and only if T CO c(h X h ) ~. * • if X is homotopy associative and 

right translation is a homotopy equivalence, then Stasheff showed in [9] 
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that t h e r e ex i s t s a m a p Y'.fiP(4 ))"> X such that y T (i ) <u 1 . Thus 
X 

the r e q u i r e d m a p ex i s t s if and only if c(h X h )~ * • In [6], Hilton 

r e m a r k e d that if X is a countable connected CW- complex and is an 
a s s o c i a t i v e H - s p a c e , then i n v e r s e s exis t , and r igh t t r a n s l a t i o n is a lways 
a homotopy equ iva lence . Thus we obtain a g e n e r a l i z a t i o n of T h e o r e m 1.9 
of [9 ] . 

2 . We now d i s c u s s the dual of the above . In [6], Hilton showed 
that T h e o r e m 2 does not d u a l i s e . However , T h e o r e m 3 does have a 
f o r m a l dual of a s o r t . In fact , if in T h e o r e m 3 we ask for ex tens ions of 
m a p s , not to S A X SB but to the homotopica l ly equivalent space 

(ZA, V Z B ) L J C S(A A B J , then c l e a r l y every th ing d u a l i s e s . In fact, 
I l k 1 1 

in o r d e r to dua l i s e , we should talk about ex tens ions of c e r t a i n m a p s and 
not about m a p s with p r e s c r i b e d a x e s , and dua l i se to c o m p r e s s i o n s of 
c e r t a i n m a p s and not r e f e r to axes at a l l . Let us d i s c u s s this b r i e f l y . 

We f i r s t dua l i se the Hopf c o n s t r u c t i o n . Let A and B be s p a c e s . 

We can c o n s i d e r A b B - ^ A V B - ^ A X B as a f ib ra t ion w h e r e A J? B 
is the f lat p roduc t and j is the u s u a l inc lus ion . Then we can find a m a p 
X : ft (A X B) -+ ft (A V B) such that (ft j) X ~ 1 / A ^ « x • ^ f a c t we can 

ft (AX Ï5) 
and sha l l take X = ft ( i ,Tr ) + ft (î Tr ) w h e r e i :A-* A V B , i : B - > A v B 

1 1 2 2 1 2 
a r e the inc lus ions and TT , : A X B -*• A, TT : A X B -> B a r e the p r o j e c t i o n s . 

1 2 
The exac t sequence of the f ib ra t ion now shows that (ft i)M i s a m o n o m o r p h i s m , 

# 
and tha t t h e r e ex i s t s a unique e l e m e n t [g] of [ft (A V B), ft (A I? B)] such 
that 1 . . = (ft i)g + x (ft j )- Now for any space X and a m a p 
f : X - > A V B , we can f o r m the m a p H(f ) = g(ft f) : ft X -> ft (A fc? B) . We 
sha l l ca l l H(f) the e l e m e n t obtained f r o m f by the co-Hopf c o n s t r u c t i o n . 
The e l e m e n t H(f) sa t i s f i e s ftf = (fti)H(f) + Xfi( jf) . 

We can now f o r m the dual of P(f) . In fact , r e c a l l tha t if g : X -> Y 
is a m a p , the dual of a t taching a cone to Y by m e a n s of g is the space 

X H P Y = { (x,i ) e X X Y1 such that g(x) = i (o) , i (1 ) = * } . Thus 

suppose f : X - » - A V B is a m a p . The co-Hopf c o n s t r u c t i o n gives a m a p 

H(f) : ft X » ft (A b B) . Let P» (f) = ft xQ j>Q ( A (? B) . The p r o j e c t i o n 

ftX X f t ( A ( ; B ) - > f t X induces a p ro jec t ion i ' : P 1 (f) -• ft X. O b s e r v e 
tha t if cj)1 : X -*• X V X is a comul t ip l i ca t ion of an H 1 - s p a c e , then P'(c|>!) 
is cal led the c o - p r o j e c t i v e p lane of X in [6] . Let Y be an H1- space 
and g : Y -> X a m a p . We say that g i s p r i m i t i v e with r e s p e c t to f 
if the following d i a g r a m homotopy c o m m u t e s . 
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->Y 

i—> 

v 

v 

P^g V p2fg 

where p :A V B -> A, p : A V B -*• B are induced by the projections, 

and <j>' : Y -*• Y V Y is the H'-space comultiplication on Y. Then in 

[6], Hilton proved the following theorem. 

THEOREM 4. A map g : 2Z -> X is primitive with respect to 

f if and only if T (g) : Z -* ft X lifts to P»(f) . 

-1 
In particular, it is easily checked that T ( i 1 ) : 2P1 (f) -> X is 

always primitive with respect to f. We now recall that in [1], 

Arkowitz defined a dual product [, ]' : [X, ft A] X [X, ft B] -* [X, ft (A b B)], 

which is the dual of the generalized Whitehead product. Also, if X is 

an H !-space, in [3] he defined a "flat product" < , > ' : [X, A] X [X , B] -> 

[X, A |? B], These are related as follows. If a is an element of 
[X, ft A] and (3 is an element of [X, ftB], then 

T < T ~ V ) , T_1(P) >' = [a, p]' . 

Now suppose f : X -»• A V B is a map and I ' : P'(f) -»• ft X is the 
projection. Let h : A-*- A , h : B -*- B . be maps. Let 
r J ! 1 2 1 *\ 
IT :ft A X ftB ->ft A , -rr : ft A XftB ->ftB be the projections. 

1 1 1 1 2 1 1 1 
Let hr , 7T ]' : ft A, X ft B, -> ft (A, b B J be the dual product. We can 

1 2 1 1 1 1 
consider [IT , TT ]' as a fibration, if necessary by replacing it by a 

homotopically equivalent situation. Then the fibre of [TT , IT ]f is 

(ft A, X ft B J r H 1 ( R] (A i b B ) . Consider the map 
1 1 I TT . , TT J ' 1 1 

1 2 
{ft(h l P lf) i ' X n(h 2 p 2 f ) i ' } A:P» (f)->ftAl X fiB1 where 

p : A V B -»• A , p : A V B -*• B are induced by the projections. 

Let c » : SP ' (f) -* ZP» (f) V 2 P1 (f) be the basic co-commutator. 
Then we have the following result. 

THEOREM 5. {ft ( h ^ f ) £ « X ft ( h ^ f ) i »} A : P'(f) -» Q A^ X ft B± 

can be compressed into (ft A, X ft B , )r D ^ P ft (A \? B t ) if and only 
1 i [^r ^ r i 1 

jf_ { h ^ f r ^ f i 1 ) Vh 2 p 2 f T
_ 1 (!')} c» ~ * • 

Proof. The proof is an exact dual of that of Theorem 3, and we 
leave it to the reader to provide it. 
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By spec ia l i z ing f we obtain a p p r o p r i a t e dua ls of the r e s u l t s 
r e f e r r e d to in R e m a r k s 1 and 2. 
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