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Duality for finite abelian

hypergroups over splitting fields

J.R. McMullen and J.F. Price

A duality theory for finite abelian hypergroups over fairly

general fields is presented, which extends the classical duality

for finite abelian groups. In this precise sense the set of

conjugacy classes and the set of characters of a finite group are

dual as hypergroups.

1 . Introduction

This paper is a companion to McMulI en [5] which should be consulted

for the background to the concept of a hypergroup as well as for details of

notation and definitions. These are used below without explanation.

Throughout H will denote a finite abelian hypergroup with coefficients in

a field k with multiplicity, degree, and conjugation functions denoted by

n : H -*• k , d : H •*• k\{0} , and : H •*• H respectively. Its identity

will be denoted by 1 .

The aim of this paper is to prove, for fairly general fields k , a

duality theory which extends the classical duality for finite abelian

groups. As a consequence, the set of characters and the set of conjugacy

classes of a finite group are dual as hypergroups. The procedure will be

to first view a hypergroup as a distinguished subset of a hypergroup

algebra or double algebra as explained in [5] and then to examine duals of

such algebras.
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2. Duals of double algebras

Let kH be the free ?c-module with basis H . Then, as explained in

Proposition 1 of [5] , kH can be made into a double algebra in a natural

manner so that {d(a)~ a \ a € H\ is the set of grouplikes in kH . Since

kH is a cogebra, i t s dual {kH)* = hon,(kH, k) becomes an algebra when a

multiplication M* : (kH)* ® (kH)* •* (kH)* and a unit u* : k + (kH)* are

defined as the ?c-linear extensions of

(1) M*(f®g)(a) = d(a)~1f(a)g(a) ,

(2) u*(a)(a) = ad(a) ,

where f,gt(kH)*, a € H , and a € k . (Recalling tha t

A : kH •* kH ® kH i s the comult ipl icat ion on kH defined by

(3) A(a) = cKa^a ® a for a € H ,

M*(f ® g) is the map which makes

commute.)

Now define, in a similar fashion, a comultiplication
A* : (kH)* - (fcfl)* ® {kH)* and a counit d* : (kH)* •* k on (kH)* by

(h) L*{f)(a ®b) = f(a.b) ,

(5) d*(f) = f(l) ,

for / € (kH)* and a, b d H . (Actually (It) defines A*/ as an element

of (kH ® fc#)* , but since # is finite, this can be identified with

(kH)* ® (kH)* .) Finally define a map S* : (kH)* -> (kH)* as the

fe-linear extension of

(6) (S*f)(a) = f(Sa) = /(a) ,

where f € (kH)* and a € fl . In practice we usually write 5*/ as / .

Our intention is to give conditions on k under which (kH)* with the

above maps is a double algebra [5]. Already we have from some routine
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manipulations:

3. Proposition

The linear space (kH)* is a k-algebra with unit u* , a

k-oogebra with counit d* , u* is a oogebra map, d* is an algebra

map, and S* is both an algebra and a cogebra map.

It remains to

(i) give conditions on k which ensure that the grouplikes in

(kH)* are spanning, and

(ii) verify [5, Axiom (A7)] for (kH)* .

4. Theorem

Consider the following conditions on an abelian hypergroup H of

finite cardinality s with coefficients in k :

(i) kH is the direct sum of s ideals;

(ii) kH has s distinct algebra homomorphisms into k ;

(iii) the grouplikes in (kH)* are a spanning set;

(iv) each T -. E, i-+ aE, (a t H) as an element of en&AkH)

has its eigenvalues in k .

Then conditions (i), (ii), and (iii) are equivalent and imply (iv).

Condition (iv) implies the first three conditions when k is a subfield of

C .

Recalling that grouplikes are linearly independent [7, Proposition

3.2.1 (b)] the equivalence of (ii) and (iii) follows from the following

lemma (which has as a consequence that d : kH -*• k is grouplike).

5. Lemma

Any member of (kH)* is grouplike if and only if it is an algebra map.

Proof. Given nonzero / in (kH)* , then by definition it is group-

like if and only if h*f = f ® /, which is the case if and only if

(A*/)(a ®b) = (f®f)(a ® b) for all a, b € H . But by (h) this

identity occurs precisely when f(a.b) = f(a)f(b) ; that is, when / is
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an algebra map.

Proof of Theorem 4. The equivalence of (ii) and (Hi.) is settled by

the preceding lemma while the implication " (i) °* (ii)" is trivial. Now

assume (U) and (Hi) so that we have s algebra homomorphisms

p_ , ..., pn from kH into k which form a basis for (kH)* . Hence the
-L S

map p : kH •* k © .. . © k (s times) given by p(£) = (p. (.£,), ..., P (£))

is an algebra monomorphism and so an isomorphism. Thus (i) is satisfied.

We will now show that (ii) implies (iv). Assume (ii) and let

p , ..., p denote the algebra homomorphisms in (kH)* . For each
1 o

i € {l, ..., s} put

(T) x = I p fc )v{a r1*, ,
i j=1 1- J 3 3

where H = {a , ..., a } . Notice that x. remains the same if we

transform the basis {a. , ..., a } by a diagonal matrix. Since the a.

and the p. are bases for kH and (kH)* respectively, the set
tr

{x , . . . , x } is fe-linearly independent and in particular contains no
1 s

zero elements.

An easy calculation shows that

(8) T x . = ax. = p.(a)x. (a € H) ,

whence p.(a) , i = 1, - . . , s , are eigenvalues of T with corresponding
tr CL

eigenvectors x , . . . , x . These eigenvectors are a basis for kH
1 s

indicating that we have found al l the eigenvalues of T , Thus (iv) is

satisfied.

To prove that (iv) implies (ii) under the extra assumption that k is

a subfield of d , let {p., . . . , p } be the distinct complex algebra
A. S

homomorphisms of d# . (These exist since (I is algebraically closed and

fl# is semisimple [6].) From (8) we know that the eigenvalues of

Ta € endflCdtf) are P^(a) , i = 1, ..., 8 . But T can also be

considered as an element of en&AkH) , still with eigenvalues
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P (a), . . . , p (a) , and so by hypothesis the p. take their values in k .
I S "t-

6. S p l i t t i n g f i e l d s

A field k is called a splitting field for a finite abelian hyper-

group H if kH satisfies any of the conditions (i)-(iii) of Theorem h.

REMARKS. I. If H has coefficients in k c <L , then the smallest

splitting field for H is clearly obtained by adjoining the elements

{pi(aj.) | 1 5 i, 3 5 s\ to k .

2. Let H have integral coefficients. Then the matrices of the

transformations T (a € H) have integral entries, and hence the complex

numbers p(a) (a £ H, p : Q# •+ d a complex homomorphism) are algebraic

integers.

7. Structure constants

Let H = {a., ..., a } be a commutative hypergroup with coefficients

in a splitting field k and denote the grouplikes in (kH)* by

{d = p , p , ..., p } . The structure constants of H (or of kH ) are

-L £i S

defined as

(9) o - I H-J-V-JP^J (i = l, ....a) •
m=i

Notice that c = ||̂|| by definition (see 1.2 of [5]).

Since r(aa) = a r(a) for a € & and a $ H [5, proof of

Proposition 2], it is seen that, up to permutations, the structure

constants depend only upon kH as a double algebra. In particular,

( 9 1 ) c. = £ p . ( a ) p . ( a ) ( i = 1 , . . . , e ) ,

where # denotes the set of standard elements in kH (assuming that

r(<2.) is a square in k for each i J . In the case when H is the
Is

character hypergroup of a finite group G , the accompanying field k

being a splitting field for G with the characteristic of k not dividing
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the order of G , the structure constants have the property that the

numbers h. = c^c~. {i = 1, ..., s) are the cardinalities of the

t 1 1
conjugacy classes of G [2, (31.13)].

We now turn to the problem of giving conditions which ensure that the

structure constants are nonzero, an hypothesis used in the proof of the

duality Theorem 12. Assume that k is a subfield of S and define an

inner product on kB by putting

(a, b) = i H a ) ^

and extending by sesquilinearity.

PROPOSITION. The following conditions on a finite hypergroup H with

coefficients in a complex splitting field k cere equivalent:

(i) under the above inner product, the adjoint of

Ta : b H-+ a.b is T- ;

(ii) n(a, b, a) is real for all a, b, c in H ;

(iii) p(a) = p(a) for a £ H and grouplikes p .

Moreover, these conditions imply that the structure constants are

strictly positive real numbers.

Proof. The proof of the equivalence of conditions (i), (ii), and

(iii) is routine and follows from the identity

n(a, b, c)\r(c)\ = (a.b c) . To complete the proof, suppose that (iii)

is satisfied and choose a square root r{a) € d for each a € H . Then

working in dH we obtain

c. =

8

= y
m=l

where b = r\a ) a ranges over the standard elements in H .
m v m' m

The next two results, 8 and 9, are fundamental in establishing the

duality Theorem 12.
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8 . Lemma

Let H = {l = a , a~, ..., a } be an abelian hypergroup with
1 2 S

coefficients in a splitting field k . The grouplikes

{d = p , p„, ..., p } in {kH)* have the following properties [where the

structure constants are assumed nonzero in (iii) and (ivf\:

(i) d{\) = 1 ;

-1
(ii) l^ r[am)- p^ajpfe

(iii) l^hmpm[a.)pm^) = 11*11^)6 „ where

m9m[a.)om[ao)9m£k) - l l ^ ( a f e ) n ( a . , a., af e) .

Proof. Statement (i) is tr ivial while (ii) is proved by analogy with
[6, It.l] using (7) and (8) above. Standard manipulations of matrices show
that (ii) and (Hi) are equivalent.

To prove (iv), begin with i t s left-hand side. Then

T h p (a.)p [a .)p (a, 1 = Y h p [a.) Y n[a ., a, , a ]p (a )
m m p r r

= Y n(a ., a, , a ) Y h p [a.)p (a )^ *• 3 k' p> *- nfmK v}*mK p>

= n[a^, ak, a^)\\B\\r[a^) by (Hi)

= n$L.,av ak)\\H\\r[ak)

v a.,

the required identity.

9. Proposition

Let HQ denote the hypergroup in kH consisting of grouplikes, where

H is a finite abelian hypergroup with coefficients in a splitting field

k . {Hence HQ = [d^aV^a \ a Z H\ .) If the structure constants of H
are nonzero, then the coefficient of p, in p.. p . = M* (p. ® p .1 is

K t 3 ^ 3
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(a)'1 p. (a) p.(a) p AH) ,
1, J K

where {d = p., p_, ..., p } is the set of grouplikes in (kH)* .
A. d. S

Proof. Let b be a grouplike in kH . Then

^ £ r (a)" p^(a)p .(a)p^(a) lpfc(&)

= X r t a rV . f a Jp .(a) Y. <CLPz,(a)p,,(Z>)

by 8 Ciii;

= M*[p ® p ){b) ,

the last step following from (l) since b is grouplike. The proof is

completed by using the fact that the grouplikes are bases for kH and

1 0 . C o r o l l a r y

' *W (- noK v pi» =h~k •

I I . (kH)* as a doub le a l g e b r a

Let H denote the set of grouplikes in kH , where H is a finite

abelian hypergroup with coefficients in a splitting field k . Assume also

that the structure constants for H are nonzero. Define a map a *—*• a
from H to (kH)** by

a#(p) = P(a) for p € (fefl)* .

For a Z H , a is a grouplike and so the grouplikes span (kH)** .

Turning to the structure constants el of (kH)* , they satisfy
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the last step by 8 (Hi), and hence are also nonvanishing.

Define 6* : (kH)* •* k as the fc-linear map which sends each p in

(kH)* to the coefficient of d when p is written in terms of group-

likes. In view of Proposition 3, .Theorem h, and the definition of a

splitting field, to show that (kH)* is a double algebra (that is, that it

satisfies (Al)-(A7) of [5]), it only remains to check that

8*(p.p.) # 0 if and only if p. = p. for grouplikes p., p.
-L t- J 1> 3 % Q

(ii) and Proposition 9 assure us that

9j(p p ) = n*{p p d) = a-1 I r(a)-1pAa)p (a)

c^c.S.. ,
1 % 13

and so 9* has the desired property since the structure constants for kH

are nonzero.

Hence, under the above conditions, (kH)* is a double algebra with

nonzero structure constants. Furthermore, k is a splitting field for

(kH)* in the sense that the grouplikes in (kH)** are spanning. Thus

(kH)** is also a double algebra.

12. Theorem

Suppose that H is a finite abelian hypergroup with coefficients in a

splitting field k and that the structure constants of H are non-
it

vanishing. Then the k-linear extension of the map a i—*• a defined in

the previous section is a double algebra isomorphism between kH and

(kH)** ,

Proof. Since the above map is easily seen to respect the degree and

conjugation maps, we only need to check that

n 0 * K ' aj' ak) = n(ai' aj> ak) f o r grouplikes a^, a., a^ . Starting

from the left hand side with Proposition 9,
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(where the summation is over grouplikes in (kH)* )

m
= n[av a., afc) by 8

as desired.

13. Remarks

T h e m a t r i x ( p . ( a . ) ) . . , w h e r e # = { l = a , . . . , a } i s a f i n i t e
3 1* 1* ,3 J- 6

abelian hypergroup and the p. are the grouplikes in (kH)* , is called
3

the character table arising from H and is studied in [6]. See also [/].

Note that if G is a finite group then the character table of G is the
Si.

character table arising from G . In this case formulae 8 (ii), (Hi)

reduce to well-known orthogonality relations on a (group) character table

(see (31.13) and (31.11) of [2]), while 8 (iv) and 9 describe the product

of two characters or two conjugacy classes respectively in terms of the

entries of the character table (see (32.8) of [2] and (2.15) of [3]; these

decompositions also appear as (10) and (12) below).

14. The dual of a finite abelian hypergroup

Let H be a finite abelian hypergroup with coefficients in a

splitting field k . Assume also that the structure constants of kH are

nonzero. The grouplikes in kH are the elements d(a) a (a € H) .

Denote by H* = {d = p , p , ..., p } the hypergroup of grouplikes in
\J X c. S

(kH)* . By results 8 and 9 above, the hypergroup structure of H* is

described by the following formulae:

n*{p., p., pj = e"1 I d(a)~Xr(a)~\.(a)p .(a)pAa) ;
u %• J K K nCfJ " J ^

= 1 •
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Now le t H* = {d = £ , £ . . . , E, } denote the hypergroup of standard
J. L d S

elements of (kH)* . As £. = fr'fp. = [c /e.)Pp. , we have

Finally, l e t #* = {c? = n.. , Ho, . . . , 1 } denote the hypergroup of

classl ike elements of (kH)* with nfe = ^fePfe . Then

n., n., n j = M-llflll"1 E d(a)-1r(a)-1p.(a)P.(a)p, (a) ,v j K ^ t 7 v 3 K

From the above formulae and the proposition of Section 7 we see that:

PROPOSITION. If H lias real coefficients in the sense of 1.0 of [5]_,

then so do B*Q, #* , and #* .

15. Duality between G and G

Let G be a finite group and let G be the (standard) hypergroup of

irreducible complex characters of G , and G the (classlike) hypergroup

of conjugacy classes. Then

16. The mai n result

Let k be a field and A the category whose objects are finite

abelian hypergroups with coefficients in k and which split over k , and

whose morphisms are the hypergroup morphisms. If H, L are objects in A,

and $ : H ->• L a morphism (equivalently, $ : kU -*• kL a morphism), then

its linear adjoint <i>* : (kL)* •* (kH)* is also a morphism. Let H*
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denote any hypergroup which generates {kH)* .

We now state in full the duality theorem for finite abelian hyper-

groups. Routine manipulations take care of those steps in the proof not

already established.

THEOREM. Suppose that k is a subfield of F . Then A, is

equivalent to A?p ; more precisely , the pair D of maps (H t—+ H* 3

$ i—• <j)*) is a functor from A, to A. and the isomorphisms

: H -*• H** constitute a natural equivalence from the identity functor

for A, to D2 .

17. Self-dual hypergroups

There has been some interest in the literature in the question of

isomorphism of the algebras TLG and TLG (see Thompson [£J). It seems

natural to ask whether G and G are isomorphic as hypergroups (a

stronger property) for any nonabelian finite group G .

(a) If G and G are isomorphic as hypergroups, then it is readily

seen that there exists a bisection \fi : G •* G such that d{ty{k))2 = §K ,

the cardinality of K , for conjugacy classes K and that 'I'lpf^ is a

group isomorphism Z(G) •* (G/G1)" . These conditions are rarely satisfied

for nonabelian groups.

(b) A nonabelian group G with the property G == G is

G = ( V «2, a3 | [«., «.] = 66_(.+j.}, [a., g.] = [a., g j] = [6., 6j.]

= a? = &2 = l (i, 3 = l, 2, 3, i * i

It is a group of order 61+ with G/Z{G) and ff' = Z(G) both elementary

abelian of order 8 . (it appears as group number ll+lt of Hall and Senior

[4] and is a stem group of the family F .J The fact that G and G are

isomorphic hypergroups follows by inspection of the character table of G

and application of the following proposition.

PROPOSITION. Let x1 » - - - J X denote the complex irreducible
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characters of a finite group G and K , . . . , K its conjugacy classes.

Suppose that there exist permutations a, 3 € g^ such that:

for i, 3 = 1, . . . , s . 27zen C and G are isomorphic.

Proof. Since the grouplikes in (IG)* are of the form X- *-+ X'[K-i

for i, 3 = 1, ..., s , 8 (iv) shows that

(10) n{Xi, Xj,

Hence

(11) n{

On the other hand, the grouplikes in (&G)* are of the form

K. •* d[x •)" h-X-{%-) for i, j = 1, . . . , s and so this time 8 (iv) gives

" m

Under the given hypothesis, identities (ll) and (12) show that the map

<f> : &G •* dc , defined as the linear extension of K. t-+ h .d[xa, . J X,^ -\ »

is an isomorphism.
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