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LP SPACES FROM MATRIX MEASURES 

BY 

P. BINDING AND P. J. BROWNE 

It is known that a Hilbert space, L2(Lii3), can be constructed from an nxn 
positive matrix measure (/%), [5, pp. 1337-1346]. The aim of this note is to show 
that Banach spaces, corresponding to the usual Lv spaces, can also be constructed 
and to investigate their properties. 

The following notation will be used. If M= (mi3) is an n X n positive semidefinite 

Hermitian matrix and a = ( a l 5 . . . , an), P=(Jll9. . . , Pn) are «-tuples of complex 

numbers, we shall write the summation 2 L = i mu^Si a s
 P*MOL. 

1. The spaces L\iii3). 

DEFINITION. Let (/%), 1 <* , /<« , be an nxn positive matrix measure defined 
on the bounded Borel sets of the real line and let v be a non-negative regular 
c-finite Borel measure with respect to which each (jti3- is absolutely continuous. Let 
the matrix of densities M= (mi3) be defined by the equations 

/^(S) = I mi3(t) dv(t), 1 < ij ^ w, 
Js 

where S is any bounded Borel set. For 1 </?<oo the space L*(jui3) is defined to be 
the space of all «-tuples of Borel functions F(t)=(F1(t)9. . . , Fn{t)) such that 

r /•<» -i ifo 

\\n = y_jnoM(onor /2^o| < «>. 
Note that the matrix M(t) is positive semi-definite for ^-almost all t [5, Lemma 7, 
p. 1338], so that the above integral is non-negative. 

It is easily shown that if a is a complex number and F,Ge If0(Lii3), then 
||aF|| = |a| ||F|| and | | F + G K | | F | | + ||G||. If D denotes the subspace of LV

0{LIÎ3) 

consisting of those F with | |F| |=0, we define Lp(fii3) to be the quotient space 

The space L^{fxi3) is defined to be the space of all «-tuples of Borel functions 

F ( 0 = ( * i ( 0 , • • > Fn(t)) such that 

||F|| = *>-ess sup[F*(0M(0F(0]1/2 < oo. 
Again, it is easily shown that if a is a complex number and F,Ge L™{LIÎ3) then 
||oF|| = |a| ||F|| and | |F+G||<| |F| | + ||G||. If D denotes the subspace of C ( / % ) 
consisting of those F for which ||F|| = 0 we define Z / 3 0 ^ ) to be the quotient space 

THEOREM 1. The spaces Lp(/bti3)9 l ^ p < o o , are independent of the measure v 
used to define them. 
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Proof. We shall deal firstly with the case 1 < / ? < O O . Let q be such that 
l /p+1/0=1. For FeL^ifiij), GeUfji^) we have by the Schwarz and Holder 
inequalities 

If G*(t)M(t)F(t) dv(t)\ 

^f"|G*(0M(0F(0ldi<0 
J—00 

Xt)M(t)F(t)f/2[G*(t)M(t)G(t)]mdv(t) 
J— 00 

< [F*(OM(OF(f)f/2^(0 [G*(0M(0G(0]a/2dH0 
[_«/—00 J [_J—00 

Ua 

showing that ^^G^{t)M{t)F(t) dv{t) converges absolutely. We now show that 
this integral is independent of the measure v. 

Let v be another cr-finite Borel measure with respect to which each ^ is absolutely 
continuous. Let M={mi0) be the corresponding matrix of densities and N=^{ni0) 
the matrix of densities of the /% with respect to the measure v+v. If m is the density 
of v with respect to v+v9 then mM=N for (v+£)-almost all t. Given Borel functions 
Fi(t), G^t), \<i<n, we have 

J G*(i)M(f)F(f) dv(i) = j G\t)M(t)F(t)m(t) d(v+v)(t) 
J— 00 J— 00 

•I = G*(t)N(t)F(t) d(v+v)(t)-
J—00 

By a similar argument we obtain an analogous formula in which v and M are 
replaced by v and M on the left hand side. Thus 

f 00 foo 
G*(t)M(t)F(t) dv(t) = G*(t)lÏÏ(t)F(t) dv(t). 

J—CO J— 00 

Now given F G L P ( / % ) , define G = ( G l 5 . . . 5 G J by 

G«(0 = [F*(0M(0F(0](2,"2)/2F,(0, i = 1, 2 , . . . , n. 

(Ifp<2 and F*(t)M(t)F(t)=09 set G,(f)=0.) Then GeD(jjLiS) since it is readily 

shown that 
f o o /*oo 

[G*(0M(0G(()]a/2 dv{t) = [F*(t)M(t)F(t)Y<2 dv(t). 
J— 00 J—00 

Further we see that 

I G*(t)M{t)F{t) dv(t) = J [F*(0M(0F(0F /2 <M0 
J—00 «/ -co 

= IIFII», 

which by our earlier argument, is independent of v. 
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A similar argument can be constructed for the case/?=l with Lq(ju,ig) being re­
placed throughout by L°°(/%). We shall prove later that L°°(/%) is the continuous 
dual of L1(/wi;). This result will yield the fact that L°°(/^) is also independent of 
the measure v used to define it. 

2. Structure of the spaces Z^(/%). We shall prove that the spaces £p(/%) are 
Banach spaces. For this purpose we need the following lemmas, the first of which 
is taken from [5, p. 1341]. 

LEMMA 1. Let (/u^) be an nxnpositive matrix measure whose elements are con­
tinuous with respect to a regular a-finite measure v. If (mi3) is the matrix of densities 
°f Pa with respect to v, then there exist non-negative v-measurable functions cj>i9 

!<*<#> v-integrable over each bounded interval, and v-measur able functions aij9 

1 <hj<n> such that for v-almost all t 

n 

(a) 2X/*K,(0 = àik 
3=1 

and 
n 

0>) 2U^u(t)ajk(t) = mik(t). 
3=1 

[Note that we have corrected the misprint in equation (a)]. 

Let E={t e R | <f>i(t)=0, / = 1 , 2 , . . . , n}. We note that E is "null" in the sense 
that each mio vanishes over E (see Lemma 1(b)). For t e R—E we define I(t)= 
{i | <^(0^0}c:{l, 2 , . . . , n} and l(t) as the cardinality of /(*). For l < j < « we 
denote the set {1, 2 , . . . , /} by J€. A map a:Ji->Jj is said to be an (/,/") combination 
if it is one to one and monotonie increasing (necessarily then i<j). There is clearly 
a unique (/,/) combination corresponding to each /-element subset of J}. We 
denote J0—o(J?) by ~o{Ji) and the (l(t), n) combination corresponding to I(t) czJn 

by TT(0 SO that 7r(t)(i) e I(t) for 1 <i<l(t). 
For t $E we now define functions bi3{i) l<,i,j<n by bi3(t)=l ifj=7r(t)(i), 0 

otherwise. Finally we let Sd=l~1(d)={t | l(t)=d}, \<d<n. 

LEMMA 2. bi:j, l<i,j<n are v-measurable functions and Sd, l<d<n are v-
measurable sets. 

Proof. bi5 takes only two values, viz. 0 and 1, so to prove measurability of 
bu it suffices to prove that b~](X) is a measurable set. 

Let a be an (i—l,j— 1) combination and consider the sets Zi=<f)J1(0), Nt= 
{t | ^.(O^O}. For each /, Z{ and Ni are complementary in R and v-measurable. 
We must consider the cases z=l and/ory=l separately. Note that bi}{t)=\ implies 
<jr(t)(i)=j and thus i<,j so that we need only show that each bjj(l) is v-measurable. 
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First bïl(l)=N! which is v-measurable and fory>l 

bïKl) = {t\7r(t)(l)=j} 

= {t | Ht) = ••• = h-i(t) = o, Mt) * 0} 

= Nin'nzk 

which is ^-measurable. Returning to the cases / > l , y > l , we see that the set 

where a ranges through ~cr(./*_i), is ^-measurable. Further it is easily seen that 
teQa if and only if </>r(t)*0 for r=c(s), l<s<i-l. Let Q=-(\J<xQ<s)C\Nj 

where a runs through all Qz\) such combinations, g is a ^-measurable set and 
/ e Q if and only if the i'th index k (in the natural order) for which <j>k{t)^ is 
exactly j . On the other hand Q={t\Tr(t)(i)=j}=b^(l) and hence 6̂ - is a 
^-measurable function. 

Finally Sd=\JaQa over all (J, «) combinations a and so is r-measurable. 
This completes the proof. 

We are now in a position to define related spaces Lv
d{ixi0) as per L p ( / 0 on func­

tions F restricted to Sd and with norm given by 

(1) UiT = f [F*(t)M(t)F(t)f2 dv{t). 

The space LJ (/ui3) has norm 

(2) ||F|| = r-ess sup[F*(0M(0F(0]1/2. 
teSd 

We also define Lp(Cd) as the space of (equivalence classes of) complex-d-vector 
valued functions G on Sd normed by 

U r d - i»/2 \i/p 

;[2JGX0I2J dv(t)j f o r l < p 

< oo, 

(4) ||G|1 = v-esssup 2IGX0I 
r d 

[,5|C'( 
n l /2 

for p = oo. 

LEMMA 3. L^QÀ^) is isometrically isomorphic to Lp(Cd)for 1 < / ? < O O . 

Proof. For ,F e Lv
d{^) define 

(TF)fc(0 = I &^0^(0^(0<M01/2, 1 < fc < d. 

Then J!F is clearly a r-measurable complex-d-vector valued function defined on 
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Sd. In case l^/?<oo we calculate \\TF\\* from (3) as 

J[* r d n Hfl/2 

Sd\jc=li,3,r.s=l J 

JSd\j,3,S=l J 

-|!>/2 

dKO mi5(OF/0Fs(O 
=1 

= 11*11'. 
Note that here we have used the identity for t e Sd : 

which can be readily verified pointwise by considering the cases 

(i) i=r=7r(t)(k0) for some l<fc0^d, 
(ii) /==r5é7r(f)(/:) for any l<k<d, 

(iii) zVr. 

When/?=oo, the calculation of ||7!F|| uses (4) to give 
I d | l/2 

\I\(TF)k(t)\ v-ess sup = r-ess sup[F*(0M(0F(0]1/2 = ||F|| 
teS, 

The details are as in the previous case. 
Thus Tis an isometry of Lv

d((j,i3) into Lp(Cd) and is evidently linear. In order to 
show Tis onto, let G eLp(Cd) and define, for t e Sd9 \<i<n, 

Ht) = 2 2 air(t)bur(t)Gu(t)cj>r(tr
1/2. 

n=l relit) 

Ft is again ^-measurable by Lemmas 1 and 2, and we claim F e Z^(/0> TF=G. 
With norm (1) for/?<oo we have 

P T = f [H(t)f2dv(t) 

where 

fl(0 = 2 2 2 ïjf)bur{t)Gu{i)m-w 

u,v=lr,sel(t) i,j,Jc=l 

• <j>k{t)a^)akM)asmm^)GJS)UirV\ 
mi}(t) being rewritten using Lemma 1(b). Applying Lemma 1(a) and simplifying, 

H(t) = 2 2 bur(t)Gu(t)b„(t)Gv(t) 
u.v=l relit) 

d 
2 = 2lG.(fll 
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Here we have used the identity for t e Sd 

2 bw(t)bvr(t) = ôuv for 1 < u, v < d, 
rel(t) 

which again is readily checked. 
Thus | |F| |*=| |GP<°o and so F e L*^). Finally we calculate (TF)k(t) as 

d 

2^0K(0&(0 1 / 2 2 I arj(t)bur(t)Gu(t)<t>r(tr
m = I I bkr(i)bur(t)Gu(t) 

i.j=l u=l relit) u=lrel(t) 

= Gk(t) 
using the above mentioned identity again. 

This completes the proof for the case l<p<co; the case77=00 is similar. 
Given n normed linear spaces Xl9. . . , Xn9 we define lv{Xt), 1 < / > < O O , to be 

the space 2 L i © ^ normed by 

( n \ l / p 

and r(Xi) to be the space 2 " = i 0 * i normed by 

IKFL . . . , FJII = sup ||F,||. 
l<i<n 

We are now in a position to state our main result. 

THEOREM 2. LP{[jii3) is isometrically isomorphic to lv{Lv(Cd))for l<p<co. 

Proof. The sets E, Sd, d=l9 2, . . . , n form a partition of the real line. Further 
E being null as mentioned earlier we have L2,(/a0)^/2,(L^(^iy)). Lemma 3 completes 
the proof. 

COROLLARY 1. L?([jii3)*, the continuous dualofL^dn^), is isometrically isomorphic 
to Lq{iii0) where, for l< /?<oo, \jp+Hq=l andforp=l, q=oo. 

Proof. A result of Dinculeanu [4, Corollary 1, p. 282] states that for a Banach 
space X with separable dual Lp(X)*^La(X*). Since Cd normed by 

d 

I IQ1 
1/2 

(5) ||C|| = 

is a Hilbert space we have 

Ufa,)* ̂  l\L\Ca)Y ̂  l\L\CaT) ̂  l\L\Cd)) s Iffa,). 

Further applications of our theorem will produce results on uniform convexity 
and smoothness. Cudia [2] reviews a body of literature involving these and related 
properties in Banach spaces and their duals, but we give definitions for convenience. 

DEFINITION. A normed space X is said to be uniformly convex with modulus of 
convexity ô(é) if given x,y e X with ||x|| = \\y\\ = 1 and ||(x— y)j2\\ >s where 0 < s < 1 
then | | ( X + J ) / 2 | | < 1 - " 0 ( e ) . 
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Xis said to be uniformly smooth with modulus of smoothness r\{s) if ||#|| = ||j>|| = 1, 
| |(x-j)/2||<s, 0<*<1 imply ||(x+j)/2||>l-r](e)||(x-j)/2||. 

COROLLARY 2. For l</?<oo, Z^(/%) is uniformly convex with modulus of con­
vexity ô(è)=l — (l—8r)1/r where r=p if2<p<co andr=q=pl(p—l) ifl<p<2. 

Proof. Clarkson [1, Theorem 2] has given the inequalities 

|(a + &)/2|»+|(a-6)/2|p < i(N*+|&l*)> 2 < p < oo 
(6) 

| (a+6)/2 |»+| (û-6) /2r < 21-»(\a\»+\bn 1 < P < 2 

valid for a, b e C1, the complex plane. For t e Sd and F, Ge Z^(/%) there is an 
isometry between C1 and the smallest two dimensional real subspace of Cd con­
taining TF(t), TG(t), TF(t)±TG(t). (The map Tused here is the isometry between 
Ldifaj) a n d Lv(Cd) described in Lemma 3.) Thus (6) may be rewritten replacing 
a and b by TF(t) and TG(t), and modulus by the Cd norm (5). Integrating this new 
inequality over Sd9 and using the fact that Tis an isometry we obtain 

| | (F+G)/2 |r+ | | (F-G)/2 | r < mF\\»+\\G\n 2<p<œ 

with the corresponding expression for l< /?<2 . Such inequalities hold for each 
d=l, 2,. . . , n. Summing over d gives the corresponding inequalities for F9 

G eL'Oitf). With ||F|| = ]|G|| = 1 and | | (F-G)/2| |>e, ( 0 < e < l ) , the result follows by 
a simple calculation. 

COROLLARY 3. For 1 <p< oo, L?^^ is uniformly smooth with modulus of smooth­
ness rj(€)= [1 — (1 — e)r]1/r where r is as in Corollary 2. 

Proof. Day [3, Theorem 4.3] has shown (in our notation) that rj(e)=ô~1(e) 
is a modulus of smoothness for X if ô%(e) is a modulus of convexity for X*. With 
X=Lp(jjLti)9 Corollary 1 gives X*ç±Lq(jjLiS)

 a n d Corollary 2 gives 3 J | t(e)=(l-e r)1 / r . 
Calculating (5~1(e) gives the desired result. 
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