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A sequence ox < a2 < • • • of positive integers is said to be primitive if no element of the
sequence divides any other. The study of primitive sequences arose naturally out of investiga-
tions into the subject of abundant numbers, where sequences each of whose elements is of the
form p\l.. .p"', the pt being fixed primes, are of particular importance. Such a sequence is
said to be built up from the primes pt ...pr. Thus Dickson [1], in an early paper on abundant
numbers, proved that a primitive sequence built up from a fixed set of primes is necessarily finite.

Instead of limiting the size of the prime factors of the elements, as we do when we consider
sequences built up from primes/? ^ x, we can limit the size of the elements themselves. Erdos,
Sarkosy, and Szemeredi [2] have obtained the best possible upper bound for

for primitive sequences, their result being that, given e > 0,

provided that x is sufficiently large. In this paperf we shall return to the first type of primitive
sequence, where it is the prime factors which are bounded by x, and we shall obtain the
corresponding best possible result. First we consider the particular sequence for which the
sum is essentially greatest. We prove

THEOREM 1. Let {a,'} denote the sequence of integers built up from the primes p ;S x and
containing exactly K = [log log x] prime factors counted according to multiplicity. Then, as
x-* oo,

_ J _ ec logx

^ 4 ~ 7(27)Vloglogx'
where c denotes Euler's constant.

We remark that this sequence is clearly primitive. Further, the a\ are of degree K, where
the degree of an integer m is defined to be the number of prime factors of m counted according
to multiplicity. We then apply this result to deduce

THEOREM 2. Let A = {a j be any primitive sequence built up from the primes p ^ x. Then,
provided that x is sufficiently large,

Vlog logx"

In view of Theorem 1, this result is clearly best possible.

t The contents of this paper formed part of the author's Ph.D.(Nottingham) thesis.
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Proof of Theorem 1. We require the fact that

( T \ (1)

where

It follows that, for sufficiently large x,

We shall write

j-r _ t-i —. v^ sinmfl

so that

Let -4JC = X~7- Since /4K is the coefficient of zK in

s - L -
p%P

cos m9

mf '

Y(z)

7(1) =

> log log x.

W- £
pgx

c — a.

we have by Cauchy's theorem that

1 f f
AK = -—7\ z exp< —

1 f*
= -— exp {S cos 0+i(S sin 0 -

2t'J -«

1 f"
= — exp (5 cos 0 + V) .cos (5 sin 0-.K0+ W) dd, (3)

since AK is real.
In evaluating this integral, we show that the contribution from [0, 5], where S = S~5112,

is the dominating part. First we require two lemmas.
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LEMMA 1. W = 0(8) whenever 0 ^ 0 ̂  <5.

sinx
Proof. Let N=[8~1]. Since

E E
sinm0

mpm

Further,
sinmfl

mgiV

and so the result follows.
Similarly, we can prove

LEMMA 2. 1/0^6^5, then ev = {1 + 0(<5)} ey<1>.
We now return to (3). In [0, 5] the integrand is, by Lemma 2,

Now, by Lemma 1,

so that

cos (S sin 0 - K6 + W) = 1 + O(<5). (5)

Since

exp (S cos 0) =

it follows, by (4) and (5), that the integrand in [0, 8] is

(l + O(<5))exp{S+Y(l)-iS02

Thus, on letting T= 8y/[S(l + O(S~5/6))], the contribution to AR is

1 fr 2 1 f°° 1
n Jo nyJS Jo (yj^n)

as 5 -> oo.
We must now consider the contribution to AK from the remainder of the interval of

integration. Here the integrand is
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which is of smaller order than es S~i. Thus finally, by (1),

ec f. . _/ 1 \j
- a ) ~ -r————— exp-

<iogx;j

eclogx

~ 7(271 log log x)

as required. This completes the proof of Theorem 1.

Proof of Theorem 2. The proof is based on the method used by the authors of [2]. First
we show that nothing is essentially lost by ignoring some of the elements of A. We introduce
notation as follows: let fi(a) denote the degree of a, and let co(a) denote the number of distinct
prime factors of a.

LEMMA 3. Let {6J be a sequence of positive integers built up from the primes p ^ x, and
suppose that fi(6,)—co(6,) > HogKfor each bh where K is as before. Then

^ 0( ***

Proof. Any such b can be written in the form b = m2u, where u is squarefree and
fi(m)> log K. Thus

4 2- ' o g*logx

= o

Thus we can now assume that Q(a,) —a)(af) ^ 21og^T for all af in A.
We next show that we can replace all ax of degree less than K by integers of degree K

without destroying primitiveness and without decreasing the sum.
Let {a\h)} be the subsequence of all elements of A of smallest degree h < K, and denote by

{b^+1)} all the distinct numbers of degree h + l obtained by multiplying each a\h) by each
p ^ x. None of the b\h+i) can be in A, and the replacement of the a\h) by the b\h+1) preserves
primitiveness. Further, since each b\h+1^ arises from at most a>(b\h+i)) ^ h + l elements a\h\
we have
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Thus, by (2), for sufficiently large x,

Repeating this process for the newly formed primitive sequence K—h— 1 times, we eventually
obtain a primitive sequence all of whose elements are of degree at least K and for which the
sum is not less than that for A.

Finally, we have to consider those at which are of degree greater than K. By the result of
Dickson to which we referred earlier, we can define H, the maximum degree occurring among
the elements of A. For each k (K^kg, H) denote by {a\k)} the sequence of elements of
A of degree k. We define integers c\k) as follows.

Let {c\H~1)} denote the set all divisors of the a\a) of degree H—\; they are distinct
from the a^H-1). For K <k < H, let {c\k~^} denote the sequence of all divisors of degree
k— 1 ofthea^andthec^. Again, these are all[distinct from the a\k~l\ In view of our assump-
tion, stated after Lemma 3, for each k> K,

so that, for sufficiently large x,

ttci"- i ) = K+2 \

But, for sufficiently large x,

1 1 \

K

K+2 > | 1 —- if K<k<K+3logK.

Consequently, by repeated application of the above process, we obtain

3IogJC+1 1 1

Thus finally

i "I

where {a"} is a subsequence of the sequence {a't} defined in Theorem 1. The result now follows
from Theorem 1.

We end by posing the following problem. We have shown that Ak< Ak+l for k < K,
and that the maximum value of Ak must occur for some k with K <k < A^+31og^T. We

https://doi.org/10.1017/S001708950000046X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000046X


PRIMITIVE SEQUENCES 15

ask if this value of k is in fact K+ 0(1), and if there exists a value Kt such that, if

kl<k2< K1 <k3< kt,
then

Akl ^ Ak2 S AKi, AKl ^ Aki ^ Akt.
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