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Abstract. Associated with 7= U|T| (polar decomposition) in L(H) is a related
operator 7' = |T|% U| T|%, called the Aluthge transform of 7. In this paper we study
some connections between 7 and 7T, including the following relations; the single valued
extension property, an analogue of the single valued extension property on W™"(D, H),
Dunford’s property (C) and the property (8).

2000 Mathematics Subject Classification. 47B20, 47A15.

Let H be a complex Hilbert space, and denote by £L(H) the algebra of all bounded
linear operators on H. If T € L(H), we write (T, o,,(T), and o,(T) for the spectrum,
the approximate point spectrum, and the point spectrum of 7', respectively.

An arbitrary operator 7' € £L(H) has a unique polar decomposition 7 = U|T]|,
where |T| = (T* T)% and U is the appropriate partial isometry satisfying kerU =
ker|T| = kerT and kerU* = kerT*. Associated with T is a related operator |T|% U| T|%,
called the Aluthge transform of T, and denoted throughout this paper by 7.

An operator T € L(H) is said to be p-hyponormal, where 0 < p < 1, if (T*Ty >
(TT*)’, where T* is the adjoint of 7. In particular, if p = 1, T is called hyponormal.
There is a vast literature concerning p-hyponormal operators.

An operator T € L(H) is said to satisfy the single-valued extension property if for
any open subset V' in C, the function

T—:0V,H) — OV, H)

defined by the obvious pointwise multiplication, is one-to-one. Here O(V, H) denotes
the Fréchet space of H-valued analytic functions on ¥ with respect to uniform topology.
If T has the single valued extension property, then for any x € H there exists a unique
maximal open set pr(x) (O p(T), the resolvent set) and a unique H-valued analytic
function f defined in p7(x) such that

(T-=Nf)=x (€ pr).
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In the following theorem we show that Aluthge transforms preserve the single
valued extension property.

THEOREM 1.1. An operator T with polar decomposition U|T| has the single valued
extension property if and only if T' has.

Proof. Assume that 7" has the single valued extension property. Suppose that ¥ is
an open subset of C and f : W — His an analytic function satisfying (7 — 1) f(A) = 0,
for each A € W. Since T(U|T|2) = (U|T|>)T,

(T = MUITI3 () = UITI3(T = 1) f() =0,

for each A € W. Since T has the single valued extension property, U|T| : f() =0 for
cach A € W.Since T = |T|2 U|T|2, Tf(1) = 0 for each » € W. Since (T — 1) f(A) = 0
for each A € W, Af(1) = 0 for each A € W. Since f(A) = 0 on W\{0} and is analytic
on W, f is identically 0 on W. Therefore, 7" has the single valued extension property.
The proof of the converse implication is similar. O

The following corollary shows the relationships between the local spectra of T'
and T.

COROLLARY 1.2. If an operator T with polar decomposition U|T| has the single
valued extension property, then

GT(|T|%X) Cor(x) and JT(U|T|%X) C o3(x).

Proof. For A € pr(x), we have (T — 1)x(1) = x, where A — x(1) is the analytic
function defined on pr(x). Since |T|: T = 7|72,

(T = DITI XA = | T (T = Vx(h) = | T) 7 x.

Hence pr(x) C pT(|T|%x), so that af(|T|%x) C or(x).
Similarly, we can prove the second inclusion. O

COROLLARY 1.3. If an operator T with polar decomposition U|T| has the single
valued extension property, then

\TI*H7(F) € Hy(F) and U|T|*Hy(F) € Hr(F),
where Hp(F) = {x e H: op(x) C F} for F C C.

Proof. If x € Hy(F), then o7(x) C F. By Corollary 1.2, we get O'f(|T|%X) CF.
Hence |T|2x € H#(F). Thus |T|2 Hy(F) € Hy(F).
Similarly, we get U|T|> Hy(F) € Hr(F). O

Our next result shows that the Aluthge transform preserves an analogue of the
single valued extension property for W"”(D,H) and an operator 7 on H; that is,
T — 1 : W™(D,H) — W"(D,H) is one-to-one if and only if 7 — A is. First of all,
let us define a special Sobolev type space. Let D be a bounded open subset of C
and m a fixed non-negative integer. The vector valued Sobolev space W"(D, H)
with respect to @ and order m will be the space of those functions f € L*(D, H)
whose derivatives df, - - -, 3"f in the sense of distributions still belong to L*(D, H).
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Endowed with the norm
m
1L/ 5 =D 18"f113. -
i=0

W™(D, H) becomes a Hilbert space contained continuously in L2(D, H).

THEOREM 1.4. Let T = U|T)| be the polar decomposition of T in L(H) and let D
be an arbitrary bounded disk containing o(T)U {0} in C. Then T — » : W*(D, H) —
W2(D, H) is one-to-one if and only if T — » : W*(D, H) — W?*(D, H) is one-to-one.

Proof. Assume T — A is one-to-one. If f € W*(D, H) is such that (T —1)f =0,
then (7 — )\)U|T|%f = 0. By the hypothesis, U|T|% =0.Hence 7f = 0. Thus A/ = 0;
ie, d)f =0fori=0,1,2. By applications of [9, Proposition 3.2] with T = 0, we get

I = P)fllap < Co(ll = A3f o + | — 28*f112,p), (1)

where P denotes the orthogonal projection of L?(D, H) onto the Bergman space
A*(D, H). From (1) we have f = Pf. Hence Af = APf = 0. From [3, Corollary 10.7],
there exists a constant ¢ > 0 such that

clPflizp < IAPfl2,p-

Hence f = Pf = 0.
Conversely, if 7" — A is one-to-one, we can prove the required result by the same
argument. ]

The following corollary shows that, for every p-hyponormal operator 7', the
equality supp(T — 1) f) = supp(f) holds for every ' € W*(D, H).

COROLLARY 1.5. If T is p-hyponormal, then the operator T — i : W*(D, H) —
W?(D, H) is one-to-one.

Proof. Since Tis hyponormal by [1], it is known from [9] that T — 5 is one-to-one.
By two applications of Theorem 1.4 we conclude that 7" — A is one-to-one. ]

COROLLARY 1.6. If an operator T € L(H) satisfies T =S+ N, where S is p-
hyponormal, S and N commute, and N = 0, then T — ) is one-to-one on WZ(D, H).

Proof. Let f € W*(D, H) be such that (T — )/ = 0. Then
(S=1f=-Nf 2

Hence (S — A)N~f = —N/f for j=1,2,...,m. We prove that N/f =0 for j =
0,1,...,m—1Dby induction. Since N"" = 0,

(S —AM)N"1f = —_N"f = 0.

Since S — A is one-to-one from Corollary 1.5, N"~!f = 0. Assume it is true when j = k,
i.e., N*f = 0. From (2), we get

(S — N1 = —NFf = 0.

Since S — A is one-to-one from Corollary 1.5, N*~1f = 0. By induction, we have /= 0.
Hence T — A is one-to-one. O
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The following theorem shows that if lim,_, » [|[(T — 1) f»||w= = 0, then we cannot
obtain by the same method more than lim,,_, o || f, || y»—2 = 0 for m > 2.

THEOREM 1.7. Let T = U|T| be the polar decomposition of T in L(H) and let D be an
arbitrary bounded disk containing o(T) U {0} in C. Assume that T — x : W™(D, H) —
W™D, H) is bounded below. If f, is a sequence in W™(D,H) such that we have
lim,,, o (7T — )‘)fn”W’” =0, then lim, ”fn”W"’*2 = OfOV m>2.

Proof. If f,, is a sequence in W (D, H) such that lim,,_, o [|[(T — A)f,||w» = 0, then
by the definition of the norm in W (D, H) we have

Jim (T = 23 ll2.p =0 (3)

fori=0,1,...,m.Since |T|'2T = T|T|"/2, we get

Jim (|(7 = WIT1357,, = 0
fori=0,1,...,m. Since T — A is bounded below, we have
Jim 171287, , =0
fori=0,1,...,m. Since T = U|T|, we get
Jim | T0yll2,p =0 “)
fori=0,1, ..., m Hence by (3) and (4) we obtain
Jim 129 ll2.p = 0 )

fori=0,1,...,m. By an application of [7, Proposition 2.2] with 7" = 0,

lim [|( = P)3full2.0 = 0 (6)
n—o0
fori=0,1,...,m—2, where P denotes the orthogonal projection of L*(D, H) onto

the Bergman space 4%(D, H) = L*(D, H) N O(U, H). Then (5) and (6) imply that
lim |AP3'f;ll2.p =0
n— o0
fori=0,1,...,m— 2. Since AP3'f, is bounded below, by [3, Corollary 10.7], we get
lim [ P32 =0 @)
n— o0

fori=0,1,...,m—2. By (6) and (7) we conclude that lim,_, » || f;,|| =2 = 0. O
Next we show that Aluthge transforms preserve the finite ascent except for A = 0.

THEOREM 1.8. For arbitrary ) € C\{0}, ker(T — )" = ker(T — A)"* if and only if
ker(T — 1)" = ker(T — L)™', for some n € N.

Proof. Assume that for a~11 A € C\{0}, ttlere is an n € N such that ker(T — 1)" =
ker(T — A)y"t'. Since ker(T —A)" C ker(T — 1)y"*!, it suffices to show that
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ker (T — A" > ker(T — A)™1. Let x € ker (T' — ). Since T(U|T|2) = (U|T|>)T,
(T — A" U|T)Ex = UIT)H(T — 2"y = 0.
Therefore, U|T|2x € ker(T — 1)y"+! = ker(T — 1)". Since
U|T|2(T — AY'x = (T — A)"U|T|2x = 0,

T(T — 1)"x = 0. We obtain (T — A)"x = 0. Since A # 0, (T — A)"x = 0.
The proof of the converse implication is similar. ]

THEOREM 1.9. Let T € L(H) have polar cgecomposition U|T)|. Then for all nonzero
A € C, ran(T — ) is closed if and only if ran(T — 1) is closed.

Proof. Assume that ran(T — 1) is closed, for all nonzero A € C. If y € ran(T — 1),
for all nonzero A € C, then there exists a sequence {x,} in H such that

Iim (T — A)x, = y.
n—oo
Since |T|: T = T|T|2, we have
lim (T — 2)|T|?x, = lim |T|3(T — A)x, = |T|*y.
n— 00 n— o0
Since ran(T — 1) is closed, for all nonzero A € C, there exists a z € H such that
lim (T — )| T|2x, = (T — 1)z
n—o00

Since the limit is unique, (7 — A)z=|T|>y. Thus Tz=|T|2y + Az. Setw = U|T|>z — y.
Then
IT)2w = Tz — |T|2y = Az
Hence we get
UITI* (IT? w) — Aw

= UIT|>(A2) — 2(U|T)?z — y)
= Ay.

(T—x)(%) = .

Hence y € ran(T — A). Thus ran(T — 1) is closed, for all nonzero A € C.
The proof of the converse is similar. O

(T — Mw

Since A is nonzero,

COROLLARY 1.10. For all nonzero A € C, T — A is bounded below if and only if
T—Ais.

Proof. Let T = U|T)| be the polar decomposition of 7. If T — A is bounded below
for all nonzero A € C, then it is one-to-one and has closed range. From Theorem 1.9,
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it suffices to show that 7' — A is one-to-one. If (T — A)x = 0, then (T — A)U|T)>x = 0.
Hence U|T|%x =0,i.e,Tx=0.Since » #0, x = 0.
The proof of the converse is similar. O

The following theorem shows that the Aluthge transform preserves the finite
descent except for A = 0.

THEOREM 1.11. For all nonzero i € C, ran(T — A)" = ran(T — 1)"*' if and only if
ran(T — 1Y = ran(T — 1) for some n € N.

Proof. Assume that ran(T — 1)" = ran(T — A)"*! for some ne N and for
all nonzero A € C. Since ran(T — )" D ran(T — A)"!, it suffices to show that
ran(T — 1Y C ran(T — 2)"*'. If y € ran(T — 1", there exists an x € H such that
y = ran(T — A)"x. Since U|T|> T = TU|T|?,

UIT|?y = (T —2)"U|T|? x.
Since U|T|%y € ran(T — 1)* = ran(T — 1)"*', there exists a z € H such that Ty =
|T|2(T — )"z = (T — A" T|2z. Hence Ty € ran(T — 1)"*! and so there exists an
s € Hsuch that Ty = (T — 1)""'s. Set w = (T — 21)s — (T — 1)%s. Then

(T — 2w = =22y

N w
(T _ )L)nJrl (_ﬁ) = .
Hence y € ran(T — 1)+,

The proof of the converse is similar. O

Since A # 0,

Suppose that T € L(H) has the single valued extension property. The operator T
is said to satisfy Dunford’s property (C) if the linear submanifold

Hp(F):={xeH:or(x) C F}

is closed, for each closed subset F of C, where o7(x) := C\ pr(x).

The following theorem shows that Aluthge transforms preserve Dunford’s property
(C) in some cases.

Recall that an operator X € L(H, K) is called a quasiaffinity if it has trivial kernel
and dense range. An operator 4 € L(H) is said to be a quasiaffine transform of
an operator T € L(K) if there is a quasiaffinity X € £(H, K) such that X4 = TX.
Furthermore, operators A and T are said to be quasisimilar if there are quasiaffinities
X and Y suchthat X4 =TXand AY = YT.

THEOREM 1.12. If T, with polar decompositign U|T| is a quasiaffinity in L(H), then
T satisfies Dunford’s property (C) if and only if T does.

Proof. Assume that T satisfies Dunford’s property (C). Consider

Hy(F):={xeH:0o3(x) C F},
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for every closed subset F of C. Since T has the single valued extension property from
Theorem 1.1, it suffices to show that H;(F) is closed. If x € H#(F), then there exist
a sequence {x,} in H#(F) such that x, — x. Since x, € H7(F), o(x,) € F. For any
A € F¢ we have A € pj(x,). Hence (T — A)x,(A) = x,,, where A — x,(1) is the analytic
function defined on p3(x,). Since U|T|2 T = TU|T]z,

(T — WU|T|2x,(0) = U|T|? x.
Hence A € pT(U|T|%xn). Thus oT(U|T|%xn) C F. Therefore,
U|T|>x, € Hy(F).
Since Hr(F) is closed by hypothesis, U|T| ix e Hp(F). For any A € F¢, we have
(T — MU|T|>x(A) = U|T)>x.

Since U|T|> T = TU|T|?, we have

U|T)2(T — M)x(r) = U|T|2x.

Since T is a quasiaffinity, we get
(T — »)x(A) = x.
Thus A € p#(x). Hence o7(x) C F.
The proof of the converse implication is similar. ]

An operator T € L(H) is called decomposable if for every finite open covering
{Gy, ..., G,} of C there exists a system {Y7,..., Y,} of spectral maximal subspaces
of T'such that H= Y, +---+ Y, and o(T|y,) C G; for every 1 <i < n. As one of
the generalized concepts of decomposability, we define the following; an operator
T € L(H) is quasidecomposable if T has Dunford’s property (C) and satisfies the
condition that for every finite open covering {Gy, ..., G,} of C there corresponds a
system { Y71, ..., Y,} of T-invariant subspaces such that H = V/_, Y; and o (T'|y,) C G;
for every 1 < i < n. As an application of Theorem 1.7 we have the following corollary.

COROLLARY 1.13. Let T with polar decomposition U|T)| be a quasiaffinity in L(H).
If T is decomposable, then T is quasidecomposable.

Proof. If T is decomposable, it has Dunford’s property (C) from [8]. Then 7 has
Dunford’s property (C), by Theorem 1.12. Since TU |T|% =U|T |%7~", Corollary 1.3
implies that

UIT|? Hy(F) C Hi(F).
for each closed F. Let {Gy, ..., G,} be an open cover of C. Then
H=Hy(G)+ -+ Hp(Gy).
Since m = H, we have

UIT)>Hp(G1) + -+ + UITIPH(Gy) € Hr(G) + - + Hr(Gy).
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Hence

H = U|T|"H = U|T|?[H}G\) + - - - + H#(G,)]
C Hr(G)) + - -+ Hr(G,).

Thus
H = V" Hr(G)).
Since T has Dunford’s property (C), by [2, Proposition 3.8]
o (Tlya)) € Gin
for each i, so that T is quasidecomposable. O

An operator T € L(H) is said to satisfy the property (B) if for every open subset
G of C and every sequence f, : G — H of H-valued analytic functions such that
(T — A) f»(A) converges uniformly to 0 in norm on compact subsets of G, f,,(A) converges
uniformly to 0 in norm on compact subsets of G.

The following theorem shows that Aluthge transforms preserve the property (8).

THEOREM 1.14. An operator T with polar decomposition U|T| satisfies the property
(B) if and only if an operator T does.

Proof. Assume T satisfies the property (8). Let f, € O(V,H) be such that
(T — M)fy(r) converges uniformly to 0 on compact subsets G of V. Since T(U|T |5) =
(U|T|2)T, (T — M) U|T|>f,(1) converges uniformly to 0 for all A € G. Since T satisfies
the property (8), U|T |% f.(1) converges uniformly to 0 for all » € G. Since T =
\T|2U|T)2, Tf,(») converges uniformly to 0 for all A € G. Hence Af; (1) converges
uniformly to 0 for all A € G. Since 0 is hyponormal and hyponormal operators satisfy
the property (8), f,(1) converges uniformly to 0 for all A € G. Hence T satisfies the

property (8).
The proof of the converse is similar. ]

COROLLARY 1.15. If T is algebraic (i.e., p(T) = 0 for some nonzero polynomial p),
then T = U|T| (polar decomposition) satisfies the property (B).

Proof. If T is algebraic, then it satisfies the property (8) by [6]. Hence, by Theorem
1.14, T satisfies the property (B8). O

As an application of Theorem 1.14, we have the following corollary.

COROLLARY 1.16. If T is p-hyponormal, then it satisfies the property (B).

Proof. Since T is hyponormal by [1], it satisfies the property (8). Hence from two
applications of Theorem 1.14, T satisfies the property (8). O

COROLLARY 1.17. Suppose that T is p-hyponormal and S satisfies the property (B).
If S and T are quasisimilar, then S satisfies Weyl'’s theorem (i.e., 6 (T) — o(T) = woo(T),
where 7oo(T) denotes the set of all eigenvalues of finite multiplicity of T and w(T) denotes
the Weyl spectrum of T).
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Proof. Since T satisfies the property (8), by Corollary 1.16, [10] implies that S
satisfies Weyl’s theorem. ]
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