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Abstract. Associated with T = U|T | (polar decomposition) in L(H) is a related
operator T̃ = |T | 1

2 U|T | 1
2 , called the Aluthge transform of T . In this paper we study

some connections between T and T̃ , including the following relations; the single valued
extension property, an analogue of the single valued extension property on W m(D, H),
Dunford’s property (C) and the property (β).

2000 Mathematics Subject Classification. 47B20, 47A15.

Let H be a complex Hilbert space, and denote by L(H) the algebra of all bounded
linear operators on H. If T ∈ L(H), we write σ (T), σap(T), and σp(T) for the spectrum,
the approximate point spectrum, and the point spectrum of T , respectively.

An arbitrary operator T ∈ L(H) has a unique polar decomposition T = U|T |,
where |T | = (T∗T)

1
2 and U is the appropriate partial isometry satisfying kerU =

ker|T | = kerT and kerU∗ = kerT∗. Associated with T is a related operator |T | 1
2 U|T | 1

2 ,
called the Aluthge transform of T , and denoted throughout this paper by T̃ .

An operator T ∈ L(H) is said to be p-hyponormal, where 0 < p ≤ 1, if (T∗T)p ≥
(TT∗)p, where T∗ is the adjoint of T . In particular, if p = 1, T is called hyponormal.
There is a vast literature concerning p-hyponormal operators.

An operator T ∈ L(H) is said to satisfy the single-valued extension property if for
any open subset V in C, the function

T − λ : O(V, H) −→ O(V, H)

defined by the obvious pointwise multiplication, is one-to-one. Here O(V, H) denotes
the Fréchet space of H-valued analytic functions on V with respect to uniform topology.
If T has the single valued extension property, then for any x ∈ H there exists a unique
maximal open set ρT (x) (⊃ ρ(T), the resolvent set) and a unique H-valued analytic
function f defined in ρT (x) such that

(T − λ) f (λ) = x (λ ∈ ρT (x)).
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In the following theorem we show that Aluthge transforms preserve the single
valued extension property.

THEOREM 1.1. An operator T with polar decomposition U|T | has the single valued
extension property if and only if T̃ has.

Proof. Assume that T has the single valued extension property. Suppose that W is
an open subset of C and f : W → H is an analytic function satisfying (T̃ − λ) f (λ) = 0,
for each λ ∈ W . Since T(U|T | 1

2 ) = (U|T | 1
2 )T̃ ,

(T − λ)U|T | 1
2 f (λ) = U|T | 1

2 (T̃ − λ) f (λ) = 0,

for each λ ∈ W . Since T has the single valued extension property, U|T | 1
2 f (λ) = 0 for

each λ ∈ W . Since T̃ = |T | 1
2 U|T | 1

2 , T̃f (λ) = 0 for each λ ∈ W . Since (T̃ − λ) f (λ) = 0
for each λ ∈ W , λ f (λ) = 0 for each λ ∈ W . Since f (λ) = 0 on W\{0} and is analytic
on W , f is identically 0 on W . Therefore, T̃ has the single valued extension property.

The proof of the converse implication is similar. �
The following corollary shows the relationships between the local spectra of T

and T̃ .

COROLLARY 1.2. If an operator T with polar decomposition U|T | has the single
valued extension property, then

σT̃
(|T | 1

2 x
) ⊂ σT (x) and σT

(
U|T | 1

2 x
) ⊂ σT̃ (x).

Proof. For λ ∈ ρT (x), we have (T − λ)x(λ) ≡ x, where λ → x(λ) is the analytic
function defined on ρT (x). Since |T | 1

2 T = T̃ |T | 1
2 ,

(T̃ − λ)|T | 1
2 x(λ) = |T | 1

2 (T − λ)x(λ) ≡ |T | 1
2 x.

Hence ρT (x) ⊂ ρT̃ (|T | 1
2 x), so that σT̃ (|T | 1

2 x) ⊂ σT (x).
Similarly, we can prove the second inclusion. �
COROLLARY 1.3. If an operator T with polar decomposition U|T | has the single

valued extension property, then

|T | 1
2 HT (F) ⊆ HT̃ (F) and U|T | 1

2 HT̃ (F) ⊆ HT (F),

where HT (F) = {x ∈ H : σT (x) ⊆ F} for F ⊂ C.

Proof. If x ∈ HT (F), then σT (x) ⊆ F . By Corollary 1.2, we get σT̃ (|T | 1
2 x) ⊆ F .

Hence |T | 1
2 x ∈ HT̃ (F). Thus |T | 1

2 HT (F) ⊆ HT̃ (F).
Similarly, we get U|T | 1

2 HT̃ (F) ⊆ HT (F). �
Our next result shows that the Aluthge transform preserves an analogue of the

single valued extension property for W m(D, H) and an operator T on H; that is,
T − λ : W m(D, H) → W m(D, H) is one-to-one if and only if T̃ − λ is. First of all,
let us define a special Sobolev type space. Let D be a bounded open subset of C
and m a fixed non-negative integer. The vector valued Sobolev space W m(D, H)
with respect to ∂̄ and order m will be the space of those functions f ∈ L2(D, H)
whose derivatives ∂̄f, · · · , ∂̄mf in the sense of distributions still belong to L2(D, H).
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Endowed with the norm

‖ f ‖2
W m =

m∑
i=0

‖∂̄mf ‖2
2,D,

W m(D, H) becomes a Hilbert space contained continuously in L2(D, H).

THEOREM 1.4. Let T = U|T | be the polar decomposition of T in L(H) and let D
be an arbitrary bounded disk containing σ (T) ∪ {0} in C. Then T − λ : W 2(D, H) →
W 2(D, H) is one-to-one if and only if T̃ − λ : W 2(D, H) → W 2(D, H) is one-to-one.

Proof. Assume T − λ is one-to-one. If f ∈ W 2(D, H) is such that (T̃ − λ) f = 0,
then (T − λ)U|T | 1

2 f = 0. By the hypothesis, U|T | 1
2 = 0. Hence T̃f = 0. Thus λ f = 0;

i.e., λ∂̄ if = 0 for i = 0, 1, 2. By applications of [9, Proposition 3.2] with T = 0, we get

‖(I − P) f ‖2,D ≤ CD(‖ − λ∂̄f ‖2,D + ‖ − λ∂̄2f ‖2,D), (1)

where P denotes the orthogonal projection of L2(D, H) onto the Bergman space
A2(D, H). From (1) we have f = P f . Hence λ f = λPf = 0. From [3, Corollary 10.7],
there exists a constant c > 0 such that

c‖P f ‖2,D ≤ ‖λP f ‖2,D.

Hence f = P f = 0.
Conversely, if T̃ − λ is one-to-one, we can prove the required result by the same

argument. �
The following corollary shows that, for every p-hyponormal operator T , the

equality supp((T − λ) f ) = supp( f ) holds for every f ∈ W 2(D, H).

COROLLARY 1.5. If T is p-hyponormal, then the operator T − λ : W 2(D, H) →
W 2(D, H) is one-to-one.

Proof. Since ˜̃T is hyponormal by [1], it is known from [9] that ˜̃T − λ is one-to-one.
By two applications of Theorem 1.4 we conclude that T − λ is one-to-one. �

COROLLARY 1.6. If an operator T ∈ L(H) satisfies T = S + N, where S is p-
hyponormal, S and N commute, and Nm = 0, then T − λ is one-to-one on W 2(D, H).

Proof. Let f ∈ W 2(D, H) be such that (T − λ) f = 0. Then

(S − λ) f = −N f. (2)

Hence (S − λ)Nj−1f = −Njf for j = 1, 2, . . . , m. We prove that Njf = 0 for j =
0, 1, . . . , m − 1 by induction. Since Nm = 0,

(S − λ)Nm−1f = −Nmf = 0.

Since S − λ is one-to-one from Corollary 1.5, Nm−1f = 0. Assume it is true when j = k,
i.e., Nkf = 0. From (2), we get

(S − λ)Nk−1f = −Nkf = 0.

Since S − λ is one-to-one from Corollary 1.5, Nk−1f = 0. By induction, we have f = 0.
Hence T − λ is one-to-one. �
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The following theorem shows that if limn→∞ ‖(T − λ) fn‖W m = 0, then we cannot
obtain by the same method more than limn→∞ ‖ fn‖W m−2 = 0 for m ≥ 2.

THEOREM 1.7. Let T = U|T | be the polar decomposition of T inL(H) and let D be an
arbitrary bounded disk containing σ (T) ∪ {0} in C. Assume that T̃ − λ : W m(D, H) →
W m(D, H) is bounded below. If fn is a sequence in W m(D, H) such that we have
limn→∞ ‖(T − λ)fn‖W m = 0, then limn→∞ ‖ fn‖W m−2 = 0 for m ≥ 2.

Proof. If fn is a sequence in W m(D, H) such that limn→∞ ‖(T − λ)fn‖W m = 0, then
by the definition of the norm in W m(D, H) we have

lim
n→∞ ‖(T − λ)∂̄ ifn‖2,D = 0 (3)

for i = 0, 1, . . . , m. Since |T |1/2T = T̃ |T |1/2, we get

lim
n→∞

∥∥(T̃ − λ)|T | 1
2 ∂̄ ifn

∥∥
2,D = 0

for i = 0, 1, . . . , m. Since T̃ − λ is bounded below, we have

lim
n→∞

∥∥|T | 1
2 ∂̄ ifn

∥∥
2,D = 0

for i = 0, 1, . . . , m. Since T = U|T |, we get

lim
n→∞ ‖T ∂̄ ifn‖2,D = 0 (4)

for i = 0, 1, . . . , m. Hence by (3) and (4) we obtain

lim
n→∞ ‖λ∂̄ ifn‖2,D = 0 (5)

for i = 0, 1, . . . , m. By an application of [7, Proposition 2.2] with T = 0,

lim
n→∞ ‖(I − P)∂̄ ifn‖2,D = 0 (6)

for i = 0, 1, . . . , m − 2, where P denotes the orthogonal projection of L2(D, H) onto
the Bergman space A2(D, H) = L2(D, H) ∩ O(U, H). Then (5) and (6) imply that

lim
n→∞ ‖λP∂̄ ifn‖2,D = 0

for i = 0, 1, . . . , m − 2. Since λP∂̄ ifn is bounded below, by [3, Corollary 10.7], we get

lim
n→∞ ‖P∂̄ ifn‖2,D = 0 (7)

for i = 0, 1, . . . , m − 2. By (6) and (7) we conclude that limn→∞ ‖ fn‖W m−2 = 0. �
Next we show that Aluthge transforms preserve the finite ascent except for λ = 0.

THEOREM 1.8. For arbitrary λ ∈ C\{0}, ker(T − λ)n = ker(T − λ)n+1 if and only if
ker(T̃ − λ)n = ker(T̃ − λ)n+1, for some n ∈ N.

Proof. Assume that for all λ ∈ C\{0}, there is an n ∈ N such that ker(T − λ)n =
ker(T − λ)n+1. Since ker(T̃ − λ)n ⊂ ker(T̃ − λ)n+1, it suffices to show that
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ker (T̃ − λ)n ⊃ ker(T̃ − λ)n+1. Let x ∈ ker (T̃ − λ)n+1. Since T(U|T | 1
2 ) = (U|T | 1

2 )T̃ ,

(T − λ)n+1U|T | 1
2 x = U|T | 1

2 (T̃ − λ)n+1x = 0.

Therefore, U|T | 1
2 x ∈ ker(T − λ)n+1 = ker(T − λ)n. Since

U|T | 1
2 (T̃ − λ)nx = (T − λ)nU|T | 1

2 x = 0,

T̃(T̃ − λ)nx = 0. We obtain λ(T̃ − λ)nx = 0. Since λ �= 0, (T̃ − λ)nx = 0.
The proof of the converse implication is similar. �
THEOREM 1.9. Let T ∈ L(H) have polar decomposition U|T |. Then for all nonzero

λ ∈ C, ran(T − λ) is closed if and only if ran(T̃ − λ) is closed.

Proof. Assume that ran(T̃ − λ) is closed, for all nonzero λ ∈ C. If y ∈ ran(T − λ),
for all nonzero λ ∈ C, then there exists a sequence {xn} in H such that

lim
n→∞(T − λ)xn = y.

Since |T | 1
2 T = T̃ |T | 1

2 , we have

lim
n→∞(T̃ − λ)|T | 1

2 xn = lim
n→∞ |T | 1

2 (T − λ)xn = |T | 1
2 y.

Since ran(T̃ − λ) is closed, for all nonzero λ ∈ C, there exists a z ∈ H such that

lim
n→∞(T̃ − λ)|T | 1

2 xn = (T̃ − λ)z.

Since the limit is unique, (T̃ − λ)z = |T | 1
2 y. Thus T̃z = |T | 1

2 y + λz. Set w = U|T | 1
2 z − y.

Then

|T | 1
2 w = T̃z − |T | 1

2 y = λz.

Hence we get

(T − λ)w = U|T | 1
2
(|T | 1

2 w
) − λw

= U|T | 1
2 (λz) − λ

(
U|T | 1

2 z − y
)

= λy.

Since λ is nonzero,

(T − λ)
(

w

λ

)
= y.

Hence y ∈ ran(T − λ). Thus ran(T − λ) is closed, for all nonzero λ ∈ C.
The proof of the converse is similar. �
COROLLARY 1.10. For all nonzero λ ∈ C, T − λ is bounded below if and only if

T̃ − λ is.

Proof. Let T = U|T | be the polar decomposition of T . If T − λ is bounded below
for all nonzero λ ∈ C, then it is one-to-one and has closed range. From Theorem 1.9,
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it suffices to show that T̃ − λ is one-to-one. If (T̃ − λ)x = 0, then (T − λ)U|T | 1
2 x = 0.

Hence U|T | 1
2 x = 0, i.e., T̃x = 0. Since λ �= 0, x = 0.

The proof of the converse is similar. �
The following theorem shows that the Aluthge transform preserves the finite

descent except for λ = 0.

THEOREM 1.11. For all nonzero λ ∈ C, ran(T − λ)n = ran(T − λ)n+1 if and only if
ran(T̃ − λ)n = ran(T̃ − λ)n+1 for some n ∈ N.

Proof. Assume that ran(T − λ)n = ran(T − λ)n+1 for some n ∈ N and for
all nonzero λ ∈ C. Since ran(T̃ − λ)n ⊃ ran(T̃ − λ)n+1, it suffices to show that
ran(T̃ − λ)n ⊂ ran(T̃ − λ)n+1. If y ∈ ran(T̃ − λ)n, there exists an x ∈ H such that
y = ran(T̃ − λ)nx. Since U|T | 1

2 T̃ = TU|T | 1
2 ,

U|T | 1
2 y = (T − λ)nU|T | 1

2 x.

Since U|T | 1
2 y ∈ ran(T − λ)n = ran(T − λ)n+1, there exists a z ∈ H such that T̃y =

|T | 1
2 (T − λ)n+1z = (T̃ − λ)n+1|T | 1

2 z. Hence T̃y ∈ ran(T̃ − λ)n+1 and so there exists an
s ∈ H such that T̃y = (T̃ − λ)n+1s. Set w = (T̃ − 2λ)s − (T̃ − λ)2s. Then

(T̃ − λ)n+1w = −λ2y.

Since λ �= 0,

(T̃ − λ)n+1
(
− w

λ2

)
= y.

Hence y ∈ ran(T̃ − λ)n+1.
The proof of the converse is similar. �
Suppose that T ∈ L(H) has the single valued extension property. The operator T

is said to satisfy Dunford’s property (C) if the linear submanifold

HT (F) := {x ∈ H : σT (x) ⊆ F}

is closed, for each closed subset F of C, where σT (x) := C\ρT (x).
The following theorem shows that Aluthge transforms preserve Dunford’s property

(C) in some cases.
Recall that an operator X ∈ L(H, K) is called a quasiaffinity if it has trivial kernel

and dense range. An operator A ∈ L(H) is said to be a quasiaffine transform of
an operator T ∈ L(K) if there is a quasiaffinity X ∈ L(H, K) such that XA = TX .
Furthermore, operators A and T are said to be quasisimilar if there are quasiaffinities
X and Y such that XA = TX and AY = YT .

THEOREM 1.12. If T, with polar decomposition U|T | is a quasiaffinity in L(H), then
T satisfies Dunford’s property (C) if and only if T̃ does.

Proof. Assume that T satisfies Dunford’s property (C). Consider

HT̃ (F) := {x ∈ H : σT̃ (x) ⊆ F},
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for every closed subset F of C. Since T̃ has the single valued extension property from
Theorem 1.1, it suffices to show that HT̃ (F) is closed. If x ∈ HT̃ (F), then there exist
a sequence {xn} in HT̃ (F) such that xn → x. Since xn ∈ HT̃ (F), σT̃ (xn) ⊆ F. For any
λ ∈ Fc we have λ ∈ ρT̃ (xn). Hence (T̃ − λ)xn(λ) ≡ xn, where λ → xn(λ) is the analytic
function defined on ρT̃ (xn). Since U|T | 1

2 T̃ = TU|T | 1
2 ,

(T − λ)U|T | 1
2 xn(λ) ≡ U|T | 1

2 xn.

Hence λ ∈ ρT (U|T | 1
2 xn). Thus σT (U|T | 1

2 xn) ⊆ F . Therefore,

U|T | 1
2 xn ∈ HT (F).

Since HT (F) is closed by hypothesis, U|T | 1
2 x ∈ HT (F). For any λ ∈ Fc, we have

(T − λ)U|T | 1
2 x(λ) ≡ U|T | 1

2 x.

Since U|T | 1
2 T̃ = TU|T | 1

2 , we have

U|T | 1
2 (T̃ − λ)x(λ) ≡ U|T | 1

2 x.

Since T is a quasiaffinity, we get

(T̃ − λ)x(λ) ≡ x.

Thus λ ∈ ρT̃ (x). Hence σT̃ (x) ⊆ F .
The proof of the converse implication is similar. �
An operator T ∈ L(H) is called decomposable if for every finite open covering

{G1, . . . , Gn} of C there exists a system {Y1, . . . , Yn} of spectral maximal subspaces
of T such that H = Y1 + · · · + Yn and σ (T |Yi ) ⊂ Gi for every 1 ≤ i ≤ n. As one of
the generalized concepts of decomposability, we define the following; an operator
T ∈ L(H) is quasidecomposable if T has Dunford’s property (C) and satisfies the
condition that for every finite open covering {G1, . . . , Gn} of C there corresponds a
system {Y1, . . . , Yn} of T-invariant subspaces such that H = ∨n

i=1Yi and σ (T |Yi ) ⊂ Gi

for every 1 ≤ i ≤ n. As an application of Theorem 1.7 we have the following corollary.

COROLLARY 1.13. Let T with polar decomposition U|T | be a quasiaffinity in L(H).
If T̃ is decomposable, then T is quasidecomposable.

Proof. If T̃ is decomposable, it has Dunford’s property (C) from [8]. Then T has
Dunford’s property (C), by Theorem 1.12. Since TU|T | 1

2 = U|T | 1
2 T̃ , Corollary 1.3

implies that

U|T | 1
2 HT̃ (F) ⊂ HT (F),

for each closed F . Let {G1, . . . , Gn} be an open cover of C. Then

H = HT̃ (Ḡ1) + · · · + HT̃ (Ḡn).

Since U|T | 1
2 H = H, we have

U|T | 1
2 HT̃ (Ḡ1) + · · · + U|T | 1

2 HT̃ (Ḡn) ⊂ HT (Ḡ1) + · · · + HT (Ḡn).
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Hence

H = U|T | 1
2 H = U|T | 1

2 [HT̃ (Ḡ1) + · · · + HT̃ (Ḡn)]

⊂ HT (Ḡ1) + · · · + HT (Ḡn).

Thus

H = ∨n
i=1HT (Ḡi).

Since T has Dunford’s property (C), by [2, Proposition 3.8]

σ
(
T |HT (Ḡi)

) ⊂ Ḡi,

for each i, so that T is quasidecomposable. �
An operator T ∈ L(H) is said to satisfy the property (β) if for every open subset

G of C and every sequence fn : G −→ H of H-valued analytic functions such that
(T − λ) fn(λ) converges uniformly to 0 in norm on compact subsets of G, fn(λ) converges
uniformly to 0 in norm on compact subsets of G.

The following theorem shows that Aluthge transforms preserve the property (β).

THEOREM 1.14. An operator T with polar decomposition U|T | satisfies the property
(β) if and only if an operator T̃ does.

Proof. Assume T satisfies the property (β). Let fn ∈ O(V, H) be such that
(T̃ − λ)fn(λ) converges uniformly to 0 on compact subsets G of V . Since T(U|T | 1

2 ) =
(U|T | 1

2 )T̃ , (T − λ)U|T | 1
2 fn(λ) converges uniformly to 0 for all λ ∈ G. Since T satisfies

the property (β), U|T | 1
2 fn(λ) converges uniformly to 0 for all λ ∈ G. Since T̃ =

|T | 1
2 U|T | 1

2 , T̃fn(λ) converges uniformly to 0 for all λ ∈ G. Hence λ fn(λ) converges
uniformly to 0 for all λ ∈ G. Since 0 is hyponormal and hyponormal operators satisfy
the property (β), fn(λ) converges uniformly to 0 for all λ ∈ G. Hence T̃ satisfies the
property (β).

The proof of the converse is similar. �
COROLLARY 1.15. If T̃ is algebraic (i.e., p(T̃) = 0 for some nonzero polynomial p),

then T = U|T | ( polar decomposition) satisfies the property (β).

Proof. If T̃ is algebraic, then it satisfies the property (β) by [6]. Hence, by Theorem
1.14, T satisfies the property (β). �

As an application of Theorem 1.14, we have the following corollary.

COROLLARY 1.16. If T is p-hyponormal, then it satisfies the property (β).

Proof. Since ˜̃T is hyponormal by [1], it satisfies the property (β). Hence from two
applications of Theorem 1.14, T satisfies the property (β). �

COROLLARY 1.17. Suppose that T is p-hyponormal and S satisfies the property (β).
If S and T are quasisimilar, then S satisfies Weyl’s theorem (i.e., σ (T) − ω(T) = π00(T),
where π00(T) denotes the set of all eigenvalues of finite multiplicity of T and ω(T) denotes
the Weyl spectrum of T).
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Proof. Since T satisfies the property (β), by Corollary 1.16, [10] implies that S
satisfies Weyl’s theorem. �
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