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Abstract

Discrete C'-coactions are shown to be equivalent to discrete C*-algebraic bundles. Simplicity, primeness,
liminality, postliminality, and nuclearity are related to the fixed point algebra and the cocrossed product.
Ergodic, and more generally homogeneous, C -coactions are characterized.

1991 Mathematics subject classification (Amer. Math. Soc): 46L55.

Introduction

Coactions of an abelian locally compact group G on a C* -algebra A correspond to
actions of the Pontryagin dual group G on A. This works by rewriting the G-action as
a C0(G)-comodule, which Fourier transforms to give a C*(G)-comodule. This can be
done even when G is nonabelian, and we think of coactions of G as corresponding to
'actions' of the non-existent dual group. When G is discrete and abelian, G is compact,
so even in the nonabelian case we expect discrete coactions to behave like compact
actions. Even better, G-coactions give rise to modules over the Fourier algebra A(G),
which is abelian, so discrete coactions should in fact behave like compact abelian
actions.

In Section 1 we present the fundamental terminology and results for discrete C'-
coactions, taking advantage of the simplifications resulting from discreteness of the
group.

In Section 2 we present a handful of results relating certain properties, for example,
simplicity, primeness, liminality, postliminality, and nuclearity, of the fixed point
algebra and the cocrossed product of a coaction of a discrete group G on a C*-algebra
A. When the coaction is saturated, the fixed point algebra is strongly Morita equivalent
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to the cocrossed product. We also relate the above properties to the corresponding
properties of A. In the case of nuclearity, we get the best result for amenable G: if
any one of the three algebras is nuclear, then all are. The results of this section are
analogous to, and in some cases generalize, results concerning compact abelian group
actions appearing in [11], [12], [16], and [18]. Also, there is a little overlap with
results independently discovered by Ng [15].

In Section 3 we give a careful treatment which verifies what has been suspected
by the cognoscenti, namely that discrete C*-coactions are equivalent to discrete C*-
algebraic bundles. It would be interesting to find a connection with some recent work
of Exel [5] concerning circle actions (that is, integer coactions).

In Section 4 we apply the results of Section 3 to the case of homogeneous discrete
C*-algebraic bundles, which are also roughly equivalent to discrete twisted actions in
the sense of Green [8] or Busby and Smith [4], although we work exclusively with
Green's setup. We call the corresponding coactions (unsurprisingly) homogeneous,
and we use the connection with twisted actions, together with our duality theorem for
twisted crossed products [20] to conclude that in this case the cocrossed product is the
tensor product of the fixed point algebra and the compacts.

In Section 5 we specialize further to ergodic discrete coactions. Here life is
made simpler by restricting attention to effective coactions, that is, those having 'full
spectrum.' The corresponding discrete C*-algebraic bundles are the so-called cocycle
bundles of [7], and are classified by H2(G, T). We obtain a partial generalization
of the theory of ergodic compact abelian actions, as found in [16]. Some of our
results can be viewed as a C*-version of [10], and again there is partial overlap with
independent work of Ng [15]. The main results here, when 8 is an ergodic coaction of
a discrete group G on A, characterize nuclearity of A and show that A has a unique
5-invariant (in an appropriate sense) state, which is a trace, and is faithful exactly
when S satisfies a technical condition I call normality (which is automatic when G is
amenable).

We wish to thank the referee for suggestions which greatly improved the exposition.

1. Discrete cosystems

We use the conventions of [19], with the simplification that all our groups are
discrete. Thus, a coaction of a discrete group G on a C*-algebra A is a nondegenerate
homomorphism 8 : A -+ A <g> C*(G) such that (<5 <g> t) o 8 = (t <g> 8G) o 8 (where
8G(s) = s <S> s for s € G, and G is embedded in UM(C*(G)) in the usual way), and
we call (A, G, 8) a discrete cosystem. Throughout, unadorned <8> for C*-algebras will
always mean the completion relative to the minimal C* -tensor norm. A acquires a
Banach representation of B(G) by 8f = (i <g> f) o 8 for f e B(G). Since G is discrete,
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8 is nondegenerate in the sense that 8MG)(A) = A (see [1]).
For every nondegenerate homomorphism \i : C0(G) ->• A, 5M = Ad/x (

(• ® 1) is a nondegenerate coaction of G on A, where wG denotes the unitary element of
M(C0(G)<g)C*(G)) determined by the function wG(s) = s. A covariant representation
of (A, G, 8) in M(B) is a pair (7T, /X) of nondegenerate homomorphisms n : A -»•
M(fi )andi i : C0(G) -> Af(B) such that (7r®t)oS = <5M o ;r, that is, 7T : A ->• M(B)
is equivariant for the coactions 5 and <5M. Then C*(7r, /tx) = 7r(A)/x(C0(G)) is a C*-
algebra, and (n, /x) may be regarded as a covariant representation in M(C*(n, jtx)).
A cocrossed product of (A, G, 8) is a triple (A xs G, j A , j G ) , where (jA, yG) is a
covariant representation, A xs G = C*(jA, j G ) , and every covariant representation
(n, /x) factors through (jA, jG) in the sense that there is a unique homomorphism
n x ix of A xs G such that (7r X /X) O yA = n and (7r X /X) O jG = /x.

Let A denote the left regular representation of G and M the canonical representation
of C0(G) by pointwise multiplication on L2(G). If n is a homomorphism of A, then
(Or®A.)o(S, l(g)M) is a covariant representation of (A, G, 5) inM(7r(A)<g)J^(L2(G))),
and ((?r <g> A.) o S) x (1 <g> M) is faithful if 7r is.

We call (A, G, 8) normal if y'A is faithful. For example, (C*(G), G, 8G) is normal
if and only if G is amenable. For any covariant representation (it, /x) of (A, G, 8),
the cosystem (n(A), G, 8*1) is normal. In particular, the cosystem (jA(A), G, 8jc)
is normal, and we denote it by (A", G,8"), and refer to it as the normalization of
(A, G, 8). There is a bijection between the covariant representations of (A, G, 8) and
(A", G, 8") which associates to every covariant representation (p, /tx) of (A", G, 8")
the covariant representation (p o yA, /x) of (A, G, 5). It follows from this that if n is
a homomorphism of A with ker n C ker j A , then the homomorphism ((n ®k) 08) x
(1 (8) Af) of A x6 G is faithful.

For 5 6 G define x* e A(G) by x*(0 = 1 if t = s and 0 otherwise. Then {xA is a
mutually orthogonal set of projections summing strictly to 1 in M(C0(G)).

DEFINITION 1.1. For s e G define 8S = 8Xs and As = 8S(A).

DEFINITION 1.2. The fixed point algebra of (A, G, <5) is A" = Ae (where e here
denotes the identity element of G).

LEMMA 1.3. For s, t e G,

(a) 8S is a projection of norm one of A onto As, and in particular 8e is a conditional
expectation of A onto As.

(b) A, = {a e A | Sf(a) = f (s)a for all f e B(G)} = {a e A | S(s) = a ®5}.
(c) ASA, c As, and A* = As-u

PROOF, (a) Ss is a contractive projection of A onto As, hence has norm one.
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For (b), note that for / e B(G),

SfSs = 8fXs = SfMXs = f(s)Ss,

so As is contained in the first set on the right. Since slicing by B(G) separates 8(A),
the first set on the right is contained in the set below it. To complete the circle of
inclusions, note that 8S acts as the identity on the second set on the right, so this set is
contained in As.

(c) is now obvious.

LEMMA 1.4. The conditional expectation 8e of A onto As is faithful if and only if
(A, G,S) is normal.

PROOF. It suffices to show that for a positive element a of A, 8e(a) = 0 if and only
if./A(a) = 0. If/»(«) = 0, then

0 = (t ® Xe) ° 0 ® >•) o 8(a) = (t ® Xe) o 8{a) = 8e(a).

Conversely, arguing by contradiction, suppose that 8e(a) = 0 but jA(a) ^ 0. Then
(i <S> A) o 8(a) is a nonzero positive element of A ® C*(G), so there is a state co of A
such that (co <8> A.) o 8(a) is a nonzero positive element of C*(G). Since Xe is a faithful
state of Cr*(G),

0 / X* ° (w ® ^) ° ^(a) = ft) o (( g) xe o X) o 5(a) = a; o (t

= 0,

a contradiction. Therefore, we must have JA((*) = 0.

LEMMA 1.5. ^,seC As = A {where ^ As denotes the set of finitely nonzero sums).

PROOF. This follows immediately from nondegeneracy of 8, since {xs I s G G}
generates A(G) and As = 8S(A).

To avoid triviality we assume that A ^ {0}.

COROLLARY 1.6. A5 contains a bounded approximate identity for A.

PROOF. First note that As / {0}, for by Lemma 1.5 some As contains a nonzero
element a, and then 0 ^ a*a e As. If {a,} is a bounded approximate identity for As,
then for all s e G and b e AJ?

||a,7? - b\\2 = Wiciib - b)(atb - b)*\\ = \\aibb*a{ - a.bb* - bb*a{ + bb*\\ - • 0.

By Lemma 1.5, {a,} is a bounded approximate identity for A.
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2. Fixed point algebras and cocrossed products

Let (A, G, 8) be a discrete cosystem. We want to explore the relation between
As and A xs G. To facilitate the computations, we introduce some temporary sim-
plification of the notation. Let (B, G, e) be the normalization of (A, G, 8), so that
B = jA(A) is a nondegenerate C*-subalgebra of M(A xs G) and e = 8Jc. Next let

w = UG ® 0(W>G) and qs = jG(Xs), s e G.

Then {qs}SeG is a mutually orthogonal set of projections summing strictly to 1 in
M(A xs G), and we have

qs = (i®Xs)(w), s e G; e(b) = A

The dual action 5 of G on A xa G is determined by

8s(bq,)=bqts-i, s,teG,beB.

LEMMA 2.1. //ft e £ and 6^ = 0/or some s eG, then b = 0.

PROOF. For all t e G we have 0 = 8,(bqs) = bqst-\, so b = J^r bqr = 0 (where
the sum is taken in the strict topology of M(A xs G)).

LEMMA 2.2. For s,t e G and b e Bs,bq, = qstb.

PROOF.

bq, = b(i <8>

X«)(e(b)w) = (i ® x«)(w(6 ® 1)) = 0 ® X*t)(w)b = qs,b.

COROLLARY 2.3. For s,t e G, qs(A xs G)q, — qsBq, - qsBs! , - Bsl-,qt =

qsBst-iqt.

PROOF. We have

qs(A xs G)q, = q ^ Brquqs =
r,u

and the rest follows immediately.
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REMARK 2.4. In the above proof we used A xs G = J ^ , Bsqt, which is equivalent
to part of [15, Proposition 2.4]. When G is abelian, this is equivalent to [11, Theorem
1]. Further, the injectivity of b i->- bqs implies that if bqs = cq, for some b,c e B and
s, t 6 G, then b — c and s = t, which in turn implies the other part of [ 15, Proposition
2.4].

COROLLARY 2.5. For s eG,

(a) the hereditary C*-subalgebra of A xsG generated by qs is B€qs, and is isomorphic
to As;

(b) the closed ideal of A xs G generated by qs is BqsB, and is strongly Morita
equivalent to As.

PROOF, (a) The first part is immediate from the above corollary, and the other part
follows since a i->- JA(O)<1S '• As —>• Beqs is an isomorphism,

(b) The closed ideal of A x G generated by qs is

(A xs G)qs{A xs G) = (^Bq^q^q.B) = BqsB.
I r

The strong Morita equivalence follows from (a) and [22, Example 6.7].

Recall from [7] that a C*-algebraic bundle E over G is called saturated if ESE, =
Es, for all s, t e G, and it is enough to require ESE* = Ee for all s e G. This
motivates the following:

DEFINITION 2.6. A discrete cosystem (A, G, 8) is saturated if ASA* = As for all
s eG.

COROLLARY 2.7. Conditions (a)-(c) below are equivalent:

(a) (A, G, 8) is saturated;
(b) (B,G,€)is saturated;
(c) BqeB = A xsG.

Moreover, each of the above conditions implies:

(d) A x s G is strongly Morita equivalent to As.

PROOF, (a) and (b) are equivalent since jA\As : As —>• Bs is bijective for all s e G.
If (b) holds, then

#<?,,# = 2 ^ DsqetS,-i = 2_^ osa,-tq, D 2_^ Oi», ost-\q, —

= Y^ Bstiq,, by Corollary 1.6

q, = AxsG,
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showing (c).
Conversely, if (c) holds, then for s e G

BsB*qs = qsBqeBqs = qs{A xs G)qs = B(qs.

Since b \-+ bqs is injective, BSB* = Bf, giving (b).
Finally, the preceding corollary now shows that (c) implies (d).

REMARK 2.8. In the separable case, [11, Theorem 2] follows from Corollaries 2.4
and 2.7 and [3].

DEFINITION 2.9. We let sp<5 = {s e G \ As ^ {0}}.

THEOREM 2.10. If (A, G, 8) is a discrete cosystem, then A xs G is simple if and
only ifAs is simple and sp 8 = G.

PROOF. If A xs G is simple, then the nonzero ideal BqeB of A xs G cannot be
proper, so BqeB = A xs G is simple, hence so is the strongly Morita equivalent
algebra As. Also, BqeB = A xs G implies (A, G, 8) is saturated, so in particular
spS = G.

Conversely, if As is simple and sp5 = G, then for each s € G the nonzero ideal
AsA* of As must be all of As, so (A, G, 8) is saturated. Hence, BqeB = A xs G,
which must be simple since the strongly Morita equivalent algebra As is.

THEOREM 2.11. If (A, G, 8) is a discrete cosystem, then A xs G is prime if and
only ifAs is prime and sp8 = G.

PROOF. If A xs G is prime, then the hereditary subalgebra B€qe is also prime, hence
so is the isomorphic algebra As. Also, for each s e G, qs(A xs G)qe ^ {0}, so Bs,
hence As, is nonzero, giving sp 8 = G.

Conversely, if As is prime and sp5 = G, then the strongly Morita equivalent
algebra BqeB is also prime. We finish by showing that BqeB is essential as an ideal of
A xs G. Let 0 ^ x e A xsG. For some s e G, qsx ^ 0, hence 0 ^ qsxx*qs e Bfqs.
Also, qsBqeBqs = qsBsB*qs is a nonzero ideal of Beqs. Since Beqs = As, Beqs is
prime, so

{0} ̂  (qsBqeBqs)(qsxx*qs) C BqeBxx*qs.

A fortiori, BqeBx ^ {0}, so BqeB is essential.

REMARK 2.12. The motivation for the techniques involving Bsq, and BqsB comes
from [18], where results for actions of nonabelian compact groups are obtained.
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DEFINITION 2.13. We call a property & of C*-algebras ideal if every C*-algebra
has a largest ideal with property &, and if property & is inherited by closed ideals
and preserved by strong Morita equivalence.

For example, liminality and postliminality are ideal properties. Since nuclearity is
preserved under strong Morita equivalence [2] and is inherited by ideals, the following
lemma shows that nuclearity is an ideal property. The result is probably known, but
we could not find a reference, so we include a proof.

LEMMA 2.14. Every C*-algebra A has a largest nuclear ideal.

PROOF. Let / = { £ J \ J is a nuclear ideal of A}~. Then / is an ideal containing
all nuclear ideals, so it remains to show / is nuclear. Let n be a factor representation
of /. It suffices to show that n{I)" is an amenable von Neumann algebra. Since n is
nonzero, n \ J is nonzero for some nuclear ideal / . Then n{J)" is a nonzero amenable
von Neumann algebra which is a weak* closed ideal of n{I)". Since n (/)" is a factor,
we must have n(I)" = n(J)".

THEOREM 2.15. If (A, G, 8) is a discrete cosystem and & is an ideal property (for
example, liminality, postliminality, or nuclearity), then A xsG has property £? if and
only ifAs does.

PROOF. If A xs G has property &, then so does the ideal BqeB, hence so does the
strongly Morita equivalent algebra As.

Conversely, if As has property &, then so do the strongly Morita equivalent ideals
BqsB (s e G) of A x s G . But then the largest ideal of A xs G having property
^contains J2s BqsB = A xs G.

REMARK 2.16. Ng [15, Theorem 3.6] proves the above result for liminality and
postliminality, generalizing the corresponding result for compact abelian group actions
[12, Corollary 4]. Of course, if A is liminal or postliminal, then so is the subalgebra
As, hence the cocrossed product AxsG. However, this is not reversible, for example,
for discrete G, Sc is a coaction on C*(G) with fixed point algebra C, but C*(G)
is often not postliminal. For nuclearity, we have a much better situation, which we
present in the next result. The converse direction of the following result improves
[15, Corollary 3.8], where As is required to be postliminal. The proof below (of the
converse direction) is modelled after Ng's, and the new aspect is that A xs G is nuclear
if As is. The converse direction is also a significant generalization of [16, Lemma 6.2]
for ergodic compact abelian actions.

COROLLARY 2.17. Let (A, G, S) be a discrete cosystem. If A is nuclear, so is As,
and conversely ifG is amenable.
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PROOF. If A is nuclear, then so is A x s G, by a recent result of Raeburn [21,
Theorem 4.6], hence so is As by Theorem 2.15. Conversely, assume that As is nuclear
and G is amenable. Then A xs G is nuclear by Theorem 2.15. Since G is amenable,
(A xs G) x~s G is nuclear [8]. By Katayama's Duality Theorem [9, Theorem 8],
A <g> Jf(L2(G)) is nuclear, hence so is A.

PROPOSITION 2.18. If {n, p) is a covariant representation of a discrete cosystem
(A, G, 8), then kern = ker j A if and only ifn\A& is faithful.

PROOF. If ker n = ker j A , then n\As is faithful since j A \ As is. Conversely, suppose
n\As is faithful. Since (n,/j,) factors through (JA,JG), kern D kerjA. For the
opposite inclusion, let a e kern, and without loss of generality assume that a is
positive. Then 0 = 8£ o n{a) = n o 8e(a). Since n \AS is faithful, 8e(a) = 0. Arguing
by contradiction, suppose a fi ker j A . Then (t <g> A.) o8(a) is a nonzero positive element
of A <S> C*(G), so there is a state a> of A such that (co <g> k) o 8 (a) is a nonzero positive
element of C*{G). Since xe is a faithful state of Cr*(G),

0 ^ X( ° (ffl ® ^) ° <5(a) = ffl o (i ® Xt ° ^) ° ^(a) = &) o (j (g) xe) o 8{a)

-coo8e(a) =co(0) =0,

a contradiction. Therefore, we must have a e ker j A .

COROLLARY 2.19. Let (A, G, 8) be a discrete cosystem, and let n be a nondegen-
erate homomorphism of A. Then kern = ker j A if and only ifjt\As is faithful and
there is a normal coaction cofGon n(A) such that €on = (7r<g>i)o8.

PROOF. By the above proposition it suffices to note that such an e exists if and only
if there is a covariant representation (p, pS) of (A, G, 8) such that kerrc = ker p.

We will use the strong Morita equivalence between As and BqeB to induce nonde-
generate homomorphisms of As to nondegenerate homomorphisms of BqeB, AxsG,
A, and C0(G). Since Rieffel induction uses (Hilbert space) representations, we will
need an unambiguous way of converting nondegenerate homomorphisms into repres-
entations. For a nondegenerate homomorphism (p of As we first compose with the
universal representation of 4>(A5) to get a representation of As. We next induce this
representation of As to a representation IndB<?fB <f> of BqeB using the strong Morita
equivalence. We regard this latter representation as the nondegenerate homomorph-
ism of BqeB induced by the nondegenerate homomorphism 0 of As. Next, we extend
IndB*'B (j) to a nondegenerate homomorphism IndAXl!G 4> of A xs G by composing
with the natural nondegenerate homomorphism of A x^ G to M{BqeB). Finally, we

https://doi.org/10.1017/S1446788700037605 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037605


[10] Discrete C*-coactions 213

compose Ind"4**0 </> with jA and j c to get nondegenerate homomorphisms Ind^ <p and
IndG <p of A and C0(G), respectively. Then (Ind" (j), IndG 0) is a covariant represent-
ation of (A, G, S), and lndAxsG <j> = IndA 0 x IndG (p.

LEMMA 2.20. Let (A, G, S) be a discrete cosy stem, and let <p be a faithful nonde-
generate homomorphism of A s . Then ker IndA (j> = ker j A .

PROOF. Since (IndA (p, IndG0) is a covariant representation of (A, G, <5), it suffices
by Proposition 2.18 to show that (IndA </>) | As is faithful. By strong Morita equivalence,
IndBl?'B (f> is faithful because 0 is. Since no nonzero element of Be annihilates BqeB,
and since j A \ A s is faithful, we conclude that (Ind'4 4>)\AS must be faithful as well.

3. Cosystems and bundles

Let E be a C*-algebraic bundle [7] over the discrete group G. We abuse notation
by identifying E with its image in C*(E), taking care to note that the zero elements
of the various fibers Es lose their individuality when they are identified with the zero
of C*(E). We let M(E) denote the multiplier bundle, with fibers MS(E), and we
identify Me(E) with M(Ee).

DEFINITION 3.1. If £" is a C*-algebraic bundle over another discrete group G',
we call a map (j> : E -> M(E') a morphism if there is a (necessarily unique) map
y : G -> G' (necessarily a group homomorphism) such that

(a) <t>\Es : Es ->• My(s)(E') is linear for all s e G;
(b) <p(ab) = </>(a)4>(b) and <p(a*) = <f>(a)* for all a, be E;
(c) <p\Ee : Ee -> M{E'e) is nondegenerate.

If </> is a bijection of £ with £ ' , then (/>"' is also a morphism, and we say </> is an
isomorphism. If G = G' and y = t, we say 0 is a G-bundle morphism.

DEFINITION 3.2. If £ is a C*-algebraic bundle over G and A is a C*-algebra, a
representation of E in M(A) is a map 7r : £ —> M(A) such that
(a) 7T |£j is linear for all s e G;
(b) 7r(a6) = n(a)n(b) and ̂ (a*) = n(a)* for all a,be E;
(c) 7r | £ , : £ , - • M(A) is nondegenerate.

Every representation n of £ in M{A) corresponds to a unique nondegenerate homo-
morphism, still denoted by n, from C*(£) to M(A). If 7r(£) C A, we say n is a
representation in A.

In the context of reduced coactions, the following is [13, Example 2.3 (6)].
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PROPOSITION 3.3. There is a unique coaction SE ofG on C*(E) such that

(3.1) SE(a) =a®s, a e Es.

PROOF. (3.1) defines a representation of E in C*(E) ® C*(G), hence a nondegener-
ate homomorphism 8E : C*(E) —> C*(E) <g> C*(G). It suffices to check the coaction
identity on the elements of E, where it is obvious. We verify injectivity of SE (as a
homomorphism of C*(E)) by showing every representation n of E factors through
SE. Let 1G denote the trivial one-dimensional representation of G. Then we can
consider the homomorphism n ® \G '• C*(E) <g> C*(G) -> n(C*(E)), and we have
(n <g> lG)o8E = n.

LEMMA 3.4. C*(E)S = Es for alls e G.

PROOF. We have

C\E)S = (SE)S(C*(E)) = («£),(££,) = £>£),(£,) = £,.

DEFINITION 3.5. Let E be C*-algebraic bundle over a discrete group G, and let i de-
note the identity homomorphism of Ee. Then we can form the covariant representation
(Indc*(£) t, IndG t) of the cosystem (C*(£), G, <S£). We let

kE = Indc*(£); Cr*(£) = A.£(C*(£)); \iE = IndG t; 8"E = 8^.

Then (C*(£), G, (5£) is a normal cosystem which is isomorphic to the normalization
of (C*(E),G,8E).

REMARK 3.6. kE deserves to be called the regular representation of E and C*(E)
the reduced C*-algebra of E. Fell and Doran [7] do not define the reduced C*-
algebra of a C*-algebraic bundle, although they define what they call 'generalized
regular representations' of E, which are formed by inducing cyclic representations
from Ee to E when E has enough unitary multipliers. Our induction of nondegenerate
homomorphisms from Ee to C*(E) is consistent with Fell and Doran's induction of
representations from Ee to E.

COROLLARY 3.7. Ifn is a representation of E, then ker7r = kerkE (as ideals of
C*(E)) if and only ifn\Ee is faithful and there is a normal coaction 8 of G on n(A)
such that 8 o n = (n ® i) o 8E.

PROOF. Since kerA.£ = keryc*(£) and Ee = C*(E)SE, the result follows from
Corollary 2.19.
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The following result shows that for a discrete group G, normal coactions of G and
C*-algebraic bundles over G are essentially equivalent concepts:

THEOREM 3.8. Let (A, G, 8) be a discrete normal cosystem. Then there are a C*-
algebraic bundle E over G, unique up to G-bundle isomorphism, and an isomorphism
</> : C*(E) -> A such that 8 o <p = (</> ® i) o 8"E.

PROOF. Let E = Û  As x {s}. Then E becomes a C*-algebraic bundle over G with
Es = As x [s], (a, s)(b, t) = (ab, st), and (a, s)* = (a*, s~l). Define n : E —»• A by
n(a, s) = a. Since J ^ As = A, n is a representation with n{C*(E)) = A. Moreover,
<5ojr = (7r®0°^£- Since 7r | £ f is faithful, Corollary 3.7 shows that 7r factors through
an isomorphism <p : C*{E) -> A with i o ^ = ( ^ ® i ) o i j .

For the uniqueness, suppose £" is a another C*-algebraic bundle over G and </>' is
an isomorphism of C*{E') to A such that 8 o 0' = (0' ig) t) o 5^,. Then one checks that

at-)- (0'(A.

defines an isomorphism of E' onto E.

COROLLARY 3.9. Let Abe a C'-algebra, and let G be a discrete group. Then A is
isomorphic to C*(E)for some C*-algebraic bundle E over G if and only if there is a
normal coaction of G on A.

4. Homogeneous coactions

A discrete bundle E = (E, P, G) is called homogeneous [6] if UMS(E) is
nonempty for each s e G. In [7], Fell and Doran use the phrase 'has enough
unitary multipliers', but when G is discrete this is equivalent to homogeneity. This
motivates the following:

DEFINITION 4.1. A discrete cosystem (A, G, 8) is homogeneous if As contains a
unitary for each s € G.

We will need the 'twisted covariant systems' of Green [8], which we use in the
following form: let a be an action of a discrete group H on a C*-algebra A, and let iV
be a normal subgroup of H. A twist for a over N is a representation x of TV in M(A)
such that

an(a) = Adr(«)(a) , n e N, a e A;

heH,neN,
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and (A, H, N, a, r ) is a discrete twisted system. An alternate version of twisted
systems is defined by Busby and Smith [4] (see also [14] and [17]). For discrete
groups, Green twisted systems and Busby-Smith twisted systems are essentially the
same concept, that is, for every twisted system of one type there is a twisted system
of the other type with essentially the same representations and isomorphic twisted
crossed products.

DEFINITION 4.2. A covariant representation of (A, H, N, a, r ) in M(B) is a pair
((/>, u), where <p : A —> M(B) is a nondegenerate homomorphism and u is a repres-
entation of H in M{B), such that

Ad u(h) ocp — (p oah, h e / / ; 7 T O T = M | A ^ .

Then C*(4>, u) = <p(A)u(H) is a C*-algebra, and (0, u) may also be regarded as a
covariant representation in M(C*(4>, u)). A twisted crossed product of (A, H, N,a, r )
is a triple (A xaT (H, N), j A , j H ) , where (jA, jH) is a covariant representation, A xaT

(H,N) = C*{JA,]H), and every covariant representation (<j>, u) factors through
UA, JH) in the sense that there is a unique homomorphism 4> xN u of A xa r (//, N)
such that (</> xN u) o j A — <p and ($ xN u) o jH = u. Warning: if we ignore the twist
r , we have a system (A, H, a), and covariant representations of (A, H, N, a, r ) are
in particular covariant representations of (A, H, a). We should reserve the notation

0 x u to denote the corresponding nondegenerate homomorphism of the ordinary
crossed product A xa H.

We use a slight modification of the procedure of Fell [6] to relate discrete twis-
ted systems and discrete homogeneous C*-algebraic bundles. To each homogen-
eous C*-algebraic bundle E over a discrete group G we associate the twisted sys-
tem (Ee, UM(E), UMe(E), Ad, t), where UM(E) and UMe(E) are here given
the discrete (!) topology, Adh{a) = hah~x for h e UM(E) and a e Ee, and

1 : UMe(E) —> UM(Ee) is the natural map arising from the identification of Me(E)
with M{Ee). On the other hand, if (A, H, N, a, x) is a discrete twisted system, let
E be the orbit space of the Cartesian product A x H under the diagonal N-action
{a,h)-n = (ar(/z),n~1/!),andlet[a, /J] denote the iV-orbit of {a, h). Thenfsbecomes
a C*-algebraic bundle over H/N, with

EhN = {[a,hn] \a e A,n e N},

[a, h][b, k] = [aah(b), hk], and [a, h]* = [a,-, (a*), h'1].

PROPOSITION 4.3. [6] Let Ebea homogeneous C*-algebraic bundle over a discrete
group G. As above, let (A, H, N, a, r) be the twisted system associated to E, and E'
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the C*-algebraic bundle over H/N associated to (A, H, N, a, r) . Then there is an
isomorphism <p : E -> E' defined by

4>{a) = [ah*, h], aeEs,he UMS(E).

COROLLARY 4.4. Let (A, H, N, a, r) be a discrete twisted system, and let E be the
associated C'-algebraic bundle. Then there is an isomorphism 9 : A xaz (H, N) —>•
C*(E) defined by

(4.1) 9(jA(a)jH(h)) = [a, h], aeA,he H.

PROOF. Evidently, the maps a H> n{[a, e]) of A and h \-+ ([1, h]) of H define a
representation of (A, H, N, a, T), SO (4.1) defines a nondegenerate homomorphism
6 : A xaz (H, N) —> C*(E). On the other hand, it is easy to check that the map
[a, h] (->• jA (a)jn (h) is well-defined and gives a representation of £ in A x a r (//, N).
The corresponding homomorphism of C*(E) is an inverse of 9.

COROLLARY 4.5. For any discrete twisted system (A, H, N, a, r) there is a unique
coaction a of H/N on A xar (H, N) such that

(4.2) a(jA(a)jH(h)) = j A ( a ) j H ( h ) ®hN, aeA,heH.

PROOF. Let E be the C*-algebraic bundle over H/N associated to (A, H, N, a, r ) ,
and let 9 : A xar (//, N) —> C*(E) be the isomorphism of the preceding proposition.
Then a = (9~l ® i) o SE o 9 is a coaction of H/N on A xa,r (H, N) satisfying (4.2).
Of course, (4.2) uniquely determines a.

REMARK 4.6. The above coaction a agrees with the dual coaction of [20].

COROLLARY 4.7. Let (A, H, N, a, r) be a discrete twisted system. Then for all
heH,

(Axa,T(H,N))hN = jA(A)jH(h).

In particular, (A x a r (H, N))& = jA(A).

PROOF. Let E be the associated C*-algebraic bundle over H/N, and let 9 : A xar

(H, N) —> C*(E) be the above isomorphism. Since 9 is equivariant for the coactions
a and 8E, 9 takes (A xar (H, N))hN to C*(E)hN. Since the latter is identified with
EhN, the result follows immediately from the definitions of E and 9.
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PROPOSITION 4.8. Let{A, H, N,a, r) be a discrete twisted system, with associated
C* -algebraic bundle E, and let 9 : A xar (H, N) -> C*(E) be the above isomorph-
ism. Then kEo6 has the same kernel as the regular representation of A x a r (//, TV).
Consequently, 0 projects to an isomorphism 6r from the reduced twisted crossed
product A xaTr (H, N) to the reduced C*-algebra C*{E), and there is a canonical
normal coaction a" of H/N on A xa r r (//, N) such that the regular representation
is equivariant.

PROOF. Since kerA.£ o 8 = kerjAXaAHN), and since the regular representation of
A xar (//, N) is induced in the sense of [8] by any faithful representation of A, by
Lemma 2.20 it suffices to note that Green's induction uses essentially the same strong
Morita equivalence as we do in our induction of nondegenerate homomorphisms.

THEOREM 4.9. For a discrete cosystem (A, G, S), the following are equivalent:

(a) (A, G, S) is normal and homogeneous;
(b) there are a homogeneous C*-algebraic bundle E over G, unique up to isomorph-

ism, and an equivariant isomorphism of A with C*(E);
(c) there are a discrete twisted system (B, H, N, a, r), with H/N = G, and an

equivariant isomorphism of A with B xa r r (//, N). Moreover, in this case B
can be taken to be As.

PROOF. The equivalence of (a) and (b) follows from Theorem 3.8 together with the
fact that a discrete cosystem (A, G, S) is homogeneous if and only if its associated
C*-algebraic bundle is. The equivalence of (b) and (c) follows from the above and our
results relating (A, H, N, a, x), its associated C*-algebraic bundle E, and the normal
coactions a" and S"E.

COROLLARY 4.10. If (A, G, S) is a discrete homogeneous cosystem, then AxsG =

PROOF. This follows from the above theorem and the duality theorem for twisted
crossed products [20, Theorem 3.6].

5. Ergodic cosystems

The following definition is the analogue for coactions of ergodicity for actions, and
is taken from [10] and [15].

DEFINITION 5.1. A discrete cosystem (A, G, 8) is ergodic if As = C.
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PROPOSITION 5.2. If(A,G, 8) is an ergodic discrete cosystem, then

(a) for all s € sp <5, As is the linear span of a unitary;
(b) sp 8 is a subgroup of G;
(c) S may be regarded as an ergodic coaction o/sp Son A, and then 8 is homogeneous.

PROOF. Straightforward.

EXAMPLE 5.3. If (A, G, 8) is a discrete cosystem which is not ergodic, then con-
dition (b) above need not hold. For example, let 8 be the unique coaction of
Z4 = {0, 1, 2, 3} on A = M4(C) with

= {o *J' A] = {o o j ' A2 = {o o)' ° °
(i 0\

that is, 8 corresponds to the action of Z4 = Z4 on A generated by Ad I I. Then

sp 8 = {0, 1, 3}, which is not a subgroup of Z4.

Observe that for a discrete cosystem (A, G, 8), sp<5 is the hull of the ideal {/ e
A(G) | 8f = 0}. This motivates the following:

DEFINITION 5.4. A discrete cosystem (A, G, 8) is effective if sp<5 = G.

PROPOSITION 5.5. If(A,G, 8) is an effective ergodic discrete cosystem, then A xs

G = Jf{L2(G)).

PROOF. This immediate from Proposition 5.2 and Corollary 4.10.

The property for discrete C*-algebraic bundles which corresponds to ergodicity for
effective discrete cosystems is:

DEFINITION 5.6. [7] A C*-algebraic bundle E over a discrete group G is a cocycle
bundle if Es is one dimensional for all s G G.

PROPOSITION 5.7. A discrete cosystem (A, G,8) is effective and ergodic if and only
if the associated C* -algebraic bundle is a cocycle bundle.

PROOF. Straightforward.

REMARK 5.8. For a discrete group G, Theorem 3.8 tells us that normal coactions of
G are classified (up to isomorphism) by C*-algebraic bundles over G. Hence, by the
above proposition, effective ergodic normal coactions of G are classified by cocycle
bundles over G, which in turn are classified by H2(G, T) [7, VIII.4.9]. However, we
cannot phrase this in terms of symplectic bicharacters as in [16] unless G is abelian.
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THEOREM 5.9. If {A, G, 8) is an ergodic discrete cosystem, then A is nuclear if and
only ifspS is amenable.

PROOF. Without loss of generality, let sp<5 = G. If G is amenable, then by
Corollary 2.17 A is nuclear since As = C is. On the other hand, if A is nuclear, then
j A (A) (where ~w* denotes weak* closure in (A xs G)**) is an injective von Neumann
algebra. Moreover (using self-explanatory terminology and notation) the cosystem
UA(A), G, SJG) extends to give an effective ergodic W*-cosystem (jA(A) , G, 8), so
by [10, Proposition 6.2] G must be amenable.

DEFINITION 5.10. If (A, G, 8) is a discrete cosystem, a state co of A is called 8-

invariant if

(5.1) (co®i)o8 = co.

The following was discovered independently by Ng [15]:

THEOREM 5.11. [15, Propositions 4.5 and 4.6] If (A, G, 8) is an ergodic discrete
cosystem, then there is a unique 8-invariant state co of A. Moreover, co is a trace, and
is faithful if and only if {A, G, 8) is normal.

PROOF. Since this is largely proved in [15], we only give an outline of the argument
to show how our above results can be used. By ergodicity and Lemma 1.4, co(a) =
8e(a) defines a state of A which is faithful if and only if (A, G, 8) is normal.

Since our definition of 5-invariance is slightly different from Ng's 'averagely 8-
invariant', we give the verification of this property. It suffices to consider a finitely
nonzero sum a = ^s as with as e As for all s e G:

(co <g> 0 o 8(a) = ^(co <g> 0 o 8(as) = ]P(<y <8> i)(as <g> s)
s

(as)s = 8e(a) = co(a).

By Proposition 5.2(c), As and A* commute for all s e G, which implies the trace
property for co.

Finally, any 5-invariant state of A is of the form co' o 8e for some state co' of As = C,
and so must be unique.
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