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Abstract
Let A be an abelian length category containing a d-cluster tilting subcategory M. We prove that a subcategory of
M is a d-torsion class if and only if it is closed under d-extensions and d-quotients. This generalises an important
result for classical torsion classes. As an application, we prove that the d-torsion classes in M form a complete
lattice. Moreover, we use the characterisation to classify the d-torsion classes associated to higher Auslander
algebras of type A, and give an algorithm to compute them explicitly. The classification is furthermore extended to
the setup of higher Nakayama algebras.
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1. Introduction

The notion of torsion pairs was introduced for arbitrary abelian categories in [D] to generalise the
properties of the class of torsion groups in the category of abelian groups. Since then, torsion theories,
and the related notion of t-structures [BBD] for triangulated categories, have become ubiquitous in
representation theory, homological algebra and algebraic geometry. Within these areas, torsion theories
and t-structures play a key role in topics such as (perverse) sheaves [BBD], tilting theory and its
generalisations [BB, AIR, AHMV, AHLSV], and stability conditions [B].
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Meanwhile, higher homological algebra has become an increasingly active field of research since
its introduction in [I1, I2, I3]. It has found applications in algebraic K-theory [DJW], wrapped Floer
theory in symplectic geometry [DJL], and in algebraic geometry where it was an important ingredient
in the proof of the Donovan-Wemyss conjecture [JKM]. Originally motivated by Auslander–Reiten
theory, cluster tilting theory and the classical Auslander correspondence, one studies categories where
the role of short exact sequences (or distinguished triangles) is taken by longer sequences. Examples
include d-abelian and d-exact categories [J2], (𝑑 + 2)-angulated categories [GKO] and d-exangulated
categories [HLN1]. Here, the positive integer d controls the length of the important sequences, with
𝑑 = 1 coinciding with the classical cases.

By work of [J2, Kv, EN-I], studying d-abelian categories is equivalent to studying so-called d-cluster
tilting subcategories of abelian categories. Our setup will be the latter, where we assume the ambient
abelian category to be of finite length (see Section 2.1 for details). Many important classical concepts in
representation theory generalise to this setting. In this paper, we focus on the higher analogue of torsion
classes – namely, d-torsion classes – introduced in [Jø] and further studied in [AJST].

A fundamental result in the study of torsion classes states that a subcategory of an abelian length
category is a torsion class if and only if it is closed under extensions and quotients [D]. This result is of
crucial importance, as it both allows for the detection of torsion classes and, moreover, gives properties
which play a key role in many proofs related to these objects. A higher-dimensional version of this
classical characterisation would hence be a substantial advancement. The main result of this paper gives
such a characterisation of d-torsion classes in terms of closure under d-extensions and d-quotients (see
Definitions 3.6 and 3.7). Note that throughout this paper, we assume subcategories to be closed under
finite direct sums and summands; see the subsection on conventions and notation below.

Theorem 1.1 (Theorem 3.17). LetM be a d-cluster tilting subcategory of an abelian length categoryA.
A subcategory of M is a d-torsion class if and only if it is closed under d-extensions and d-quotients.

Note that while a different characterisation of d-torsion classes using the bounded derived category
of A has been given in the special case where A is the module category of a d-representation finite
d-hereditary algebra [Jø], the characterisation in Theorem 1.1 works generally, does not require use of
derived categories and is closer to the classical result for torsion classes.

The proof of Theorem 1.1 makes significant use of the main result in [AJST], which relates d-torsion
classes in M to torsion classes in A. This allows us to apply results about torsion classes also in the
higher setup. As another key ingredient in the proof of Theorem 1.1, we give a higher generalisation of
the classical factorisation of a morphism in an abelian category as the composition of an epimorphism
followed by a monomorphism; see Proposition 3.13. This result is of independent interest, and we expect
it to play a role in providing answers to other questions in higher homological algebra.

With Theorem 1.1 in hand, we are able to generalise other well-known results about torsion classes
to the higher setting. For example, an immediate consequence of combining Theorem 1.1 with a result
in [Kl] is that every d-torsion class carries the structure of a d-exact category; see Corollary 3.19.

Other important results concerning classical torsion classes include the study of their poset structure.
The set tors(A) of torsion classes in A has a natural partial order given by inclusion, and this poset is
actually a complete lattice, with meet given by intersection; see, for example, [IRTT, Proposition 2.3].
Theorem 1.1 allows us to give the following generalisation of this result.

Theorem 1.2 (Theorem 4.3). Let M be a d-cluster tilting subcategory of an abelian length category A.
Then the set 𝑑-tors(M) of all d-torsion classes inM is a complete lattice with meet given by intersection.

In the classical setting, lattice-theoretic properties of tors(A) form an area of active research [AP,
GM, J1], which is intimately related to representation theory [BCZ, DIRRT]. We refer to [T] for an
introductory survey on the topic. Theorem 1.2 opens up a new avenue of research in higher homological
algebra through the study of the lattice of higher torsion classes.

The classical characterisation of torsion classes as those subcategories that are closed under extensions
and quotients is often used to determine if a given subcategory is a torsion class or to compute the smallest
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torsion class containing that given subcategory. Crucial to the success of this approach is that we often
have a good understanding of the middle terms in extensions. To use Theorem 1.1 in an analogous way
to determine d-torsion classes, we therefore need an understanding of the middle terms in d-extensions,
which is notably more complicated. The following result simplifies this problem significantly.

Theorem 1.3 (Theorem 3.20). Let M be a d-cluster tilting subcategory of an abelian length cate-
gory A. Suppose U ⊆ M is closed under under d-extensions with indecomposable end terms and all
d-quotients. Then U is closed under all d-extensions.

This theorem is of independent interest, as extension closure is a useful concept across many areas
of representation theory. In this paper, we focus on using Theorem 1.3 to classify d-torsion classes in
concrete examples.

We apply our results to higher Auslander algebras of typeA [I3] and higher Nakayama algebras of type
A and A∞

∞ [JKPK]. The module category of each such algebra contains a d-cluster tilting subcategory,
and their combinatorial descriptions due to [OT] and [JKPK] make them an ideal testing ground for
new results in higher homological algebra. Higher Auslander algebras are particularly important, as
their derived categories are equivalent to certain partially wrapped Fukaya categories [DJL]. We use
Theorems 1.1 and 1.3 to give a combinatorial description of all d-torsion classes associated to these
algebras, where the classification results for the three families are given in Theorems 5.13, 6.1 and 6.5,
respectively. Moreover, we implement our results in algorithms that compute and count all d-torsion
classes; see Table 2 and Remark 6.3.

We expect that the results we present in this article will provide tools for any further study of
d-torsion classes and will be of importance in building bridges between d-torsion classes and other
subjects in representation theory and beyond. This is demonstrated in a forthcoming paper [AHJ+],
where Theorem 1.1 is applied to establish a connection between functorially finite d-torsion classes,
𝜏𝑑-tilting theory and (𝑑 + 1)-term silting objects.

Structure of the paper

In Section 2, we give an overview of the definitions and background used in the rest of the paper. In
Section 3, we prove Theorems 1.1 and 1.3, while Theorem 1.2 is shown in Section 4. Section 5 is
dedicated to the study of d-torsion classes associated to higher Auslander algebras. Finally, we extend
our view to higher Nakayama algebras in Section 6.

Conventions and notation

Throughout this paper, let d denote a positive integer and A an essentially small abelian category. We
always assume A to be a finite length category, which implies that the Krull–Remak–Schmidt property
is satisfied; see [Kr, Lemma 5.1 and Theorem 5.5].

We let k be a field. Given a finite-dimensional k-algebra A, the notation mod 𝐴 is used for the
category of finitely presented right A-modules.

Arrows in a quiver are composed from left to right, meaning that we write 𝑎𝑏 for the path starting in
the source of a and ending in the target of b.

All subcategories are assumed to be full and closed under isomorphisms and finite direct sums. They
are also assumed to be closed under direct summands. For a collection of objects X in an additive
category C, we denote by add(X ) the smallest subcategory of C which contains X and is closed under
finite direct sums and direct summands.

2. Background and preliminaries

In this section, we provide an overview of definitions and results which give the foundation for the
rest of the paper. Before we start discussing notions from higher homological algebra, we recall some
terminology related to subcategories and approximations.
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Let X be a subcategory of the abelian category A. We say that X is generating if any object in A
is a quotient of an object in X ; that is, for every 𝑌 ∈ A, there exists an exact sequence 𝑋 → 𝑌 → 0
with 𝑋 ∈ X . Dually, we can define the notion of cogenerating, and we call a subcategory generating-
cogenerating if it is both generating and cogenerating.

Given an object 𝑌 ∈ A, a morphism 𝑓 : 𝑌 → 𝑋 with 𝑋 ∈ X is a left X -approximation of Y if any
morphism𝑌 → 𝑋 ′ with 𝑋 ′ ∈ X factors through f. The subcategory X is called covariantly finite if every
object in A admits a left X -approximation. The notions of rightX -approximations and contravariantly
finite subcategories are defined dually, and a subcategory is functorially finite if it is both covariantly
and contravariantly finite.

Recall that a morphism 𝑓 : 𝑋 → 𝑌 is called left minimal if any endomorphism g of Y satisfying
𝑔 ◦ 𝑓 = 𝑓 is an isomorphism. A minimal left X -approximation is a left X -approximation which is also
left minimal. Right minimal morphisms and minimal right X -approximations are defined dually. Since
A is Krull–Schmidt, an object has a left (right) X -approximation if and only if it has a minimal left
(right) X -approximation ([KS, Corollary 1.4]).

2.1. d-cluster tilting subcategories and d-abelian categories

The theory of higher homological algebra originated in [I1, I2] with the study of d-cluster tilting
subcategories. The definition is given below.

Definition 2.1. A functorially finite generating-cogenerating subcategory M of the abelian category A
is d-cluster tilting if

M = {𝑋 ∈ A | Ext𝑖A(𝑋, 𝑀) = 0 for 𝑀 ∈ M and 𝑖 = 1, . . . , 𝑑 − 1}
= {𝑌 ∈ A | Ext𝑖A(𝑀,𝑌 ) = 0 for 𝑀 ∈ M and 𝑖 = 1, . . . , 𝑑 − 1}.

To formalise the homological structure of d-cluster tilting subcategories, Jasso introduced d-abelian
categories, where the case 𝑑 = 1 recovers the classical notion of abelian categories [J2]. To give a
precise definition, we first recall some terminology.

Let M be an additive category and recall that a weak cokernel of a morphism 𝑓 : 𝑋 → 𝑌 in M is a
morphism 𝑔 : 𝑌 → 𝑍 in M for which the induced sequence

HomM (𝑍, 𝑀) → HomM (𝑌, 𝑀) → HomM(𝑋, 𝑀)

is exact for any 𝑀 ∈ M. This is equivalent to saying that 𝑔 ◦ 𝑓 = 0 and that for any 𝑔′ : 𝑌 → 𝑀 with
𝑔′ ◦ 𝑓 = 0, there exists a (not necessarily unique) morphism ℎ : 𝑍 → 𝑀 such that ℎ ◦ 𝑔 = 𝑔′. We call a
morphism g a weak cokernel if there exists a morphism f such that g is a weak cokernel of f.

A d-cokernel of a morphism 𝑓0 : 𝑋0 → 𝑋1 in M is given by a sequence of morphisms

𝑋1
𝑓1
−→ 𝑋2

𝑓2
−→ . . .

𝑓𝑑−1
−−−→ 𝑋𝑑

𝑓𝑑
−−→ 𝑋𝑑+1 → 0

in M such that for every M in M, the sequence

0 → HomM (𝑋𝑑+1, 𝑀) → HomM(𝑋𝑑 , 𝑀) → · · · → HomM (𝑋1, 𝑀) → HomM (𝑋0, 𝑀)

of abelian groups is exact. Such a d-cokernel is sometimes simply denoted by ( 𝑓1, . . . , 𝑓𝑑), and
( 𝑓1, . . . , 𝑓𝑑) is a d-cokernel of 𝑓0 if and only if 𝑓𝑖 is a weak cokernel of 𝑓𝑖−1 for 𝑖 = 1, . . . , 𝑑 − 1
and 𝑓𝑑 is the cokernel of 𝑓𝑑−1. The notion of a d-kernel in M is defined dually. A sequence

0 → 𝑋0
𝑓0
−→ 𝑋1

𝑓1
−→ . . .

𝑓𝑑−1
−−−→ 𝑋𝑑

𝑓𝑑
−−→ 𝑋𝑑+1 → 0 (1)
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inM is called a d-exact sequence or a d-extension if ( 𝑓1, . . . , 𝑓𝑑) is a d-cokernel of 𝑓0 and ( 𝑓0, . . . , 𝑓𝑑−1)
is a d-kernel of 𝑓𝑑 .

Definition 2.2 [J2, Definition 3.1]. An additive category M is d-abelian if it is idempotent complete,
every morphism admits a d-kernel and a d-cokernel, and every monomorphism 𝑓0 (resp. epimorphism
𝑓𝑑) fits into a d-exact sequence of the form (1).

A d-exact sequence of the form (1) is said to be equivalent to a d-exact sequence

0 → 𝑋0
𝑓 ′
0

−−→ 𝑋 ′
1

𝑓 ′
1

−−→ . . .
𝑓 ′
𝑑−1

−−−→ 𝑋 ′
𝑑

𝑓 ′
𝑑

−−→ 𝑋𝑑+1 → 0

if there exists a commutative diagram

0 𝑋0 𝑋1 · · · 𝑋𝑑 𝑋𝑑+1 0

0 𝑋0 𝑋 ′
1 · · · 𝑋 ′

𝑑 𝑋𝑑+1 0.

𝑓0 𝑓1 𝑓𝑑−1 𝑓𝑑

𝑓 ′
0 𝑓 ′

1 𝑓 ′
𝑑−1 𝑓 ′

𝑑

Note that this defines an equivalence relation on the class of d-exact sequences whenever the category
M is d-abelian [J2, Proposition 4.10].

When M ⊆ A is a d-cluster tilting subcategory, d-exact sequences coincide precisely with exact
sequences of the form (1) where all terms are in M. Moreover, any exact sequence in A of the form (1)
with end terms in M is equivalent to one where all terms are in M [I1, A.1].

In a d-abelian category, we also find higher analogues of the classical notions of pushouts and
pullbacks. For more details on the construction of d-pushouts and d-pullbacks, we refer the reader to
[J2, Section 2.3].

Jasso proved the following theorem, which shows that d-abelian categories capture the homological
structure of d-cluster tilting subcategories.

Theorem 2.3 [J2, Theorem 3.16]. Let M be a d-cluster tilting subcategory of A. Then M is d-abelian.

It has recently been shown that the converse of Theorem 2.3 also holds, i.e., that any d-abelian
category is equivalent to a d-cluster tilting subcategory of an abelian category [EN-I, Kv]. Therefore,
all d-abelian categories may be treated as d-cluster tilting subcategories.

We end this subsection by introducing a running example that will help us illustrate many of the
results in this paper.

Example 2.4 Consider the quiver 1 𝛼
−→ 2

𝛽
−→ 3. Let A denote the path algebra of this quiver modulo the

ideal generated by the relation 𝛼𝛽. Figure 1 shows the Auslander–Reiten quiver of mod 𝐴, where the
dashed arrows indicate the Auslander–Reiten translation. The subcategory

M = add
{

3 ⊕ 2
3 ⊕

1
2 ⊕ 1

}
is 2-cluster tilting in mod 𝐴, and M is hence an example of a 2-abelian category. The indecomposable
objects of mod 𝐴 that generate M are marked in Figure 1.

2.2. Minimality

The d-kernels and d-cokernels in a d-abelian category are unique only up to homotopy. Many of our
proofs require a stronger sense of uniqueness, which is why we recall the concept of minimality in this
section.
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6 J. August et al.

Figure 1. The Auslander–Reiten quiver of the module category considered in Example 2.4, with the
generators of the 2-cluster tilting subcategory M marked.

The Jacobson radical of the abelian category A consists of the morphisms

RadA(𝑋,𝑌 ) = { 𝑓 ∈ HomA(𝑋,𝑌 ) | 1𝑋 − 𝑔 ◦ 𝑓 is invertible for all 𝑔 ∈ HomA (𝑌, 𝑋)}.

For more details and basic properties, see [ASS, A.3].

Definition 2.5 [HJ, Definition 2.5]. Let M be a d-cluster tilting subcategory of A.

(1) A d-cokernel

𝑋1
𝑓1
−→ 𝑋2

𝑓2
−→ . . .

𝑓𝑑−1
−−−→ 𝑋𝑑

𝑓𝑑
−−→ 𝑋𝑑+1 → 0

of a morphism 𝑓0 : 𝑋0 → 𝑋1 in M is called minimal if 𝑓𝑖 ∈ RadA (𝑋𝑖 , 𝑋𝑖+1) for 𝑖 = 2, . . . , 𝑑.
(2) A d-kernel

0 → 𝑋0
𝑓0
−→ 𝑋1

𝑓1
−→ . . .

𝑓𝑑−2
−−−→ 𝑋𝑑−1

𝑓𝑑−1
−−−→ 𝑋𝑑

of a morphism 𝑓𝑑 : 𝑋𝑑 → 𝑋𝑑+1 in M is called minimal if 𝑓𝑖 ∈ RadA(𝑋𝑖 , 𝑋𝑖+1) for 𝑖 = 0, . . . , 𝑑 − 2.
(3) A d-extension

0 → 𝑋0
𝑓0
−→ 𝑋1

𝑓1
−→ . . .

𝑓𝑑−1
−−−→ 𝑋𝑑

𝑓𝑑
−−→ 𝑋𝑑+1 → 0

in M is called minimal if 𝑓𝑖 ∈ RadA(𝑋𝑖 , 𝑋𝑖+1) for 𝑖 = 1, . . . , 𝑑 − 1.

Proposition 2.6 justifies the terminology in the definition above and shows that minimal d-cokernels,
d-kernels and d-extensions exist and are unique up to isomorphism. When we say that a complex in
a category M is a direct summand of another complex, this means that it is a direct summand in the
category of complexes over M.

Proposition 2.6 [HJ, Proposition 2.4]. Let M be a d-cluster tilting subcategory of A.

(1) Given a morphism f in M, there exists a minimal d-cokernel (resp. d-kernel) of f. This d-cokernel
(resp. d-kernel) is a direct summand of any other d-cokernel (resp. d-kernel) of f.

(2) Given a d-extension in M, there exists an equivalent minimal d-extension. This minimal d-extension
is a direct summand of every d-extension in the associated equivalence class.

Remark 2.7 Since [J2, Lemma 2.1] implies that any two d-cokernels of a morphism are isomorphic
in the homotopy category, Proposition 2.6 implies that any d-cokernel is isomorphic to the direct sum
of the minimal d-cokernel and a contractible exact sequence. Moreover, for an idempotent complete
category (e.g., an abelian category), any contractible complex is the direct sum of complexes of the
form 𝑁

1𝑁
−−→ 𝑁 . In particular, given a d-cokernel

𝑋1
𝑓1
−→ · · ·

𝑓𝑑−1
−−−→ 𝑋𝑑

𝑓𝑑
−−→ 𝑋𝑑+1 → 0
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of 𝑓0 : 𝑋0 → 𝑋1 where 𝑓𝑖 ∉ RadA (𝑋𝑖 , 𝑋𝑖+1) for some 2 ≤ 𝑖 ≤ 𝑑, there is an isomorphic d-cokernel
where 𝑓𝑖 is replaced by (

𝑓 ′𝑖 0
0 1𝑁

)
: 𝑋 ′

𝑖 ⊕ 𝑁 → 𝑋 ′
𝑖+1 ⊕ 𝑁

with 𝑓 ′𝑖 ∈ RadA (𝑋 ′
𝑖 , 𝑋

′
𝑖+1). Similar statements hold for d-kernels and d-extensions.

The terminology in Definition 2.5 is further justified by the following connection to minimal mor-
phisms.

Lemma 2.8 Let 𝑋
𝑓
−→ 𝑌

𝑔
−→ 𝑍 be a complex in A for which the induced sequence

HomA (𝑍,𝑌 ) → HomA(𝑌,𝑌 ) → HomA(𝑋,𝑌 )

is exact. The morphism f is left minimal if and only if 𝑔 ∈ RadA(𝑌, 𝑍).

Proof. See [JK, Lemma 1.1]. �

The construction of a minimal d-cokernel is frequently used throughout the paper. We discuss it in
more detail in the following.

Construction 2.9. The minimal d-cokernel of a morphism 𝑓 : 𝑋 → 𝑌 in a d-cluster tilting subcategory
M ⊆ A can be constructed as follows:

(1) Set 𝐶1 = Coker 𝑓 and let 𝑔1 : 𝐶1 → 𝑀1 be the minimal left M-approximation of 𝐶1. Set
𝑓1 : 𝑌 → 𝑀1 to be the composition 𝑌 → 𝐶1

𝑔1
−−→ 𝑀1.

(2) Repeat on 𝑓1 : 𝑌 → 𝑀1 to construct 𝑓2 : 𝑀1 → 𝑀2.
(3) Iterate the procedure, which must terminate and result in a d-cokernel by [J2, Proposition 3.17].

Since each morphism 𝑓𝑖 is the composition of an epimorphism and a left minimal morphism, they are
all left minimal, and hence, Lemma 2.8 shows that this is the minimal d-cokernel of f. Note that each 𝑓𝑖
can equivalently be described as the left minimal weak cokernel of the previous morphism.

Lemma 2.10. Suppose we have a d-extension

0 → 𝑋 → 𝐸1 → 𝐸2 → · · · → 𝐸𝑑 → 𝑌 → 0.

Then, for any morphism ℎ : 𝑋 → 𝐹0, there is a d-pushout diagram

0 𝑋 𝐸1 · · · 𝐸𝑑 𝑌 0

0 𝐹0 𝐹1 · · · 𝐹𝑑 𝑌 0

ℎ

such that the bottom row is a minimal d-extension.

Proof. The fact that a d-pushout diagram exists is precisely [J2, Theorem 3.8]. It follows from [J2,
Proposition 4.8] that the bottom row is a d-extension with last term equal to Y. If this d-extension is
minimal, then we are done. Otherwise, it has a minimal d-extension as a direct summand by Proposi-
tion 2.6. Composing the morphism in the statement with the projection onto this minimal d-extension
gives another commutative diagram, which is a d-pushout by [J2, Proposition 4.8]. The bottom row of
this new diagram is a minimal d-extension as required. �

Note that there is a dual version of Lemma 2.10 which will also be used.
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2.3. Torsion and d-torsion classes

Generalising the properties of the class of torsion groups in the category of abelian groups, the notion
of a torsion pair was introduced in [D] as follows.
Definition 2.11. A pair (T ,F) of subcategories of A is a torsion pair if the following conditions are
satisfied:
(1) For every 𝑋 ∈ A, there exists a short exact sequence

0 → 𝑡𝑋 → 𝑋 → 𝑓 𝑋 → 0,

where 𝑡𝑋 ∈ T and 𝑓 𝑋 ∈ F .
(2) HomA(𝑋,𝑌 ) = 0 for all 𝑋 ∈ T and 𝑌 ∈ F .
Given a torsion pair (T ,F), we say that T is a torsion class and F a torsion-free class.

Note that the short exact sequence from the definition above is unique up to isomorphism. The
following classical result characterises torsion classes in A as those subcategories which are closed
under extensions and quotients.
Theorem 2.12 [D, Theorem 2.3]. A subcategory T of A is a torsion class if and only if T is closed
under extensions and quotients.

We denote by tors(A) the poset of all torsion classes in A ordered by inclusion. It is well known
that tors(A) is a complete lattice where the meet is given by intersection; see, for example, [IRTT,
Proposition 2.3].

In light of the development of higher homological algebra, it is natural to consider higher analogues
of torsion classes. The notion of d-torsion classes was introduced in [Jø].
Definition 2.13 [Jø, Definition 1.1]. Let M be a d-abelian category. A subcategory U of M is a
d-torsion class if for every M in M, there exists a d-exact sequence

0 → 𝑈𝑀 → 𝑀 → 𝑉1 → · · · → 𝑉𝑑 → 0

such that the following conditions are satisfied:
(1) The object 𝑈𝑀 is in U .
(2) The sequence 0 → HomM (𝑈,𝑉1) → · · · → HomM (𝑈,𝑉𝑑) → 0 is exact for every U in U .
The object 𝑈𝑀 above is known as the d-torsion subobject of M with respect to U .

Note that when 𝑑 = 1, the previous definition is equivalent to the definition of a torsion class; c.f.
Definition 2.11.
Remark 2.14. Our standing assumption that subcategories are closed under finite direct sums and
summands is not necessary in Definition 2.13, as this follows from [Jø, Lemma 2.7(iii)].

A recent paper [AJST] showed that there is a strong relationship between the torsion classes in an
abelian category A and the d-torsion classes in a d-cluster tilting subcategory M of A.
Theorem 2.15 [AJST, Theorem 1.1]. Let M be a d-cluster tilting subcategory of A. Then a torsion
class T in A is the minimal torsion class containing a given d-torsion class in M if and only if the
following conditions are satisfied:
(1) For every 𝑀 ∈ M, we have 𝑡𝑀 ∈ M.
(2) T is the smallest torsion class containing all 𝑡𝑀 for 𝑀 ∈ M.
(3) For any 𝑀, 𝑀 ′ ∈ M, we have Ext𝑑−1

A (𝑡𝑀, 𝑓 𝑀 ′) = 0.
Moreover, in this case, U := T ∩M is a d-torsion class and T is the minimal torsion class containing
it. Furthermore, we have 𝑈𝑀 � 𝑡𝑀 for every object 𝑀 ∈ M.

We now illustrate Theorem 2.15 in our running example.
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Table 1. The 2-torsion classes considered in Example 2.16 and their corresponding
torsion classes..

2-torsion classes in M Corresponding minimal torsion classes in mod 𝐴

M mod 𝐴

add
{

2
3 ⊕

1
2 ⊕

1
}

add
{

2
3 ⊕

2 ⊕
1
2 ⊕

1
}

add
{

1
2 ⊕

1
}

add
{

1
2 ⊕

1
}

add{1} add{1}

add{3} add{3}

{0} {0}

Example 2.16. Let A and M be as in Example 2.4. In Table 1, we give the complete list of 2-torsion
classes U in M and the corresponding minimal torsion classes T in mod 𝐴 such that U = T ∩M.

On one hand, we note that although Theorem 2.15 gives a complete characterisation of the minimal
torsion classes T in mod 𝐴 such that T ∩M is a 2-torsion class in M, there are other torsion classes in
mod 𝐴 with this property. For instance, we see that T = add

{
2 ⊕ 1

2 ⊕ 1
}

is a torsion class in mod 𝐴 and
T ∩M = add

{
1
2 ⊕ 1

}
is a 2-torsion class in M.

On the other hand, it is not true that T ∩M is a 2-torsion class in M for every torsion class T in
mod 𝐴. Two such examples are T1 = add{3 ⊕ 1} and T2 = add

{
3 ⊕ 2

3 ⊕ 2
}
. The intersections T1 ∩M and

T2 ∩M are not 2-torsion classes in M, for reasons that will be explained in Example 3.18.

3. Closure under d-extensions and d-quotients

Throughout this section, let M be a d-cluster tilting subcategory of the abelian category A. We also
introduce the following setup, which will not be assumed unless explicitly stated.

Setup 3.1. Let U be a d-torsion class in M. Let T be a torsion class in A such that U = T ∩M and the
torsion subobject 𝑡𝑀 of M belongs to M for all 𝑀 ∈ M.

We note that Theorem 2.15 implies that for every d-torsion class U in M, we can find a torsion class
T satisfying Setup 3.1.

Section 3 is divided into three subsections. We first verify some consequences of the setup above in
Section 3.1. In Section 3.2, we state and prove the main result of this paper – namely, the characterisation
of higher torsion classes given in Theorem 1.1. The aim of Section 3.3 is to prove Theorem 1.3.

3.1. Approximations by d-torsion classes

Throughout this subsection, we assume Setup 3.1.

Lemma 3.2. For any 𝑀 ∈ M, there is an isomorphism 𝑈𝑀 � 𝑡𝑀 commuting with the inclusion to M.

Proof. By the definition of a d-torsion class, the morphism 𝑈𝑀 → 𝑀 is a right U -approximation.
Since the morphism 𝑡𝑀 → 𝑀 is a right T -approximation and 𝑡𝑀 ∈ U , it must also be a right U -
approximation. Hence, the inclusions 𝑈𝑀 → 𝑀 and 𝑡𝑀 → 𝑀 must factor through each other, which
implies that 𝑈𝑀 � 𝑡𝑀 . �

By Lemma 3.2, we can assume 𝑈𝑀 = 𝑡𝑀 whenever we are in Setup 3.1, and we will do this from
now on. Given Setup 3.1, we gain additional control of left M-approximations of objects in T .

Lemma 3.3. Let 𝜙𝑋 : 𝑋 → 𝑀 be the minimal leftM-approximation of an object X in T . Then M is inU .

Proof. Consider the short exact sequence

0 → 𝑡𝑀
𝜄
−→ 𝑀 → 𝑓 𝑀 → 0
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associated to the torsion pair (T ,F). The morphism 𝜄 is a right T -approximation of M, and 𝑡𝑀 ∈ M
by assumption. As 𝑋 ∈ T , there exists a morphism 𝜓𝑋 : 𝑋 → 𝑡𝑀 such that 𝜄𝜓𝑋 = 𝜙𝑋 . Notice that since
𝜙𝑋 is a left M-approximation of X, so is 𝜓𝑋 . Since 𝜙𝑋 is left minimal and 𝜄 is a monomorphism, this
implies that M is isomorphic to 𝑡𝑀 . Consequently, one obtains that M is contained in T , and hence also
in U . �

Corollary 3.4. If 𝑋 ∈ T , then the minimal left M-approximation of X is also the minimal left
U -approximation of X. Moreover, this approximation is a monomorphism.

Proof. Let 𝜙𝑋 : 𝑋 → 𝑀 be the minimal left M-approximation of X. By Lemma 3.3, we know that
𝑀 ∈ U , and it follows that 𝜙𝑋 is also a left U -approximation. Since 𝜙𝑋 is left minimal, it is the
minimal left U -approximation of X. Finally, since M is cogenerating, any left M-approximation is a
monomorphism. �

Remark 3.5. Note that the previous corollary implies that the d-torsion class U is always covariantly
finite within the torsion class T , even if U is not covariantly finite in M or A.

3.2. Characterising d-torsion classes

In order to formulate our results, we need higher analogues of what it means for a subcategory to be closed
under extensions and quotients. Recall the notions of d-cokernels and d-extensions from Section 2.1.

The following definition already appeared in the literature; see, for example, [HJV, Definition 2.8(iii)]
or [HLN2, Definition 4.1].

Definition 3.6. A subcategory U of M is called closed under d-extensions if for any d-extension

0 → 𝑋 → 𝐸1 → · · · → 𝐸𝑑 → 𝑌 → 0

in M with X and Y in U , there exists an equivalent d-extension

0 → 𝑋 → 𝐸 ′
1 → · · · → 𝐸 ′

𝑑 → 𝑌 → 0

where all the objects are in U .

Definition 3.7. A subcategoryU ofM is called closed under d-quotients if for any morphism 𝑓 : 𝑀 → 𝑈
in M with U in U , there exists a d-cokernel

𝑀
𝑓
−→ 𝑈 → 𝐸1 → 𝐸2 → · · · → 𝐸𝑑 → 0

of f with 𝐸𝑖 in U for all 𝑖 = 1, . . . , 𝑑. If this condition is only assumed to hold when both M and U
belong to U , we say that U is closed under d-cokernels.

It will further be convenient to define a (minimal) d-quotient of 𝑈 ∈ M as a (minimal) d-cokernel
of some morphism 𝑓 : 𝑀 → 𝑈 in M. The following lemma shows that closure under d-quotients or
d-extensions is equivalent to closure under minimal d-quotients or d-extensions. This uses the standing
assumption that our subcategories are closed under direct summands.

Lemma 3.8. Let U be a subcategory of M. The following hold:

(1) U is closed under d-extensions if and only if for any minimal d-extension

0 → 𝑋 → 𝐸1 → · · · → 𝐸𝑑 → 𝑌 → 0

with 𝑋,𝑌 ∈ U , we have 𝐸1, . . . , 𝐸𝑑 ∈ U .
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(2) U is closed under d-quotients if and only if for any minimal d-cokernel

𝑀 −→ 𝑈 → 𝐸1 → 𝐸2 → · · · → 𝐸𝑑 → 0

of a morphism 𝑀 → 𝑈 in M with 𝑈 ∈ U , we have 𝐸1, . . . , 𝐸𝑑 ∈ U .

Proof. By Proposition 2.6, any equivalence class of d-extensions contains a unique (up to isomorphism)
minimal d-extension, which is furthermore a direct summand of any other d-extension in the class. This
immediately implies (1), since U is closed under direct summands. Part (2) is proved similarly, using
that the minimal d-cokernel of a morphism f is a summand of any other d-cokernel of f. �

Remark 3.9. For a direct sum 𝑋 ⊕ 𝑌 ∈ M, we have 𝑋,𝑌 ∈ M and the projection 𝑋 ⊕ 𝑌 → 𝑌 gives a
minimal d-cokernel

𝑋 → 𝑋 ⊕ 𝑌 → 𝑌 → 0 → · · · → 0

of the inclusion 𝑋 → 𝑋 ⊕ 𝑌 .
Hence, being closed under minimal d-quotients implies being closed under direct summands.

Remark 2.14 and Remark 3.9 show that the standing assumption on subcategories being closed under
direct summands is not a significant restriction.

The following lemma shows that when checking if a subcategory is closed under d-extensions, it is
often sufficient to consider the first middle term. This simplifies the proof of Proposition 3.11 and is
also an important step towards the main result in Section 3.3.

Lemma 3.10. Let U ⊆ M be closed under d-quotients. Then for any minimal d-extension

0 → 𝑋
𝑓
−→ 𝐸1

𝑒1
−→ 𝐸2

𝑒2
−→ · · ·

𝑒𝑑−1
−−−→ 𝐸𝑑

𝑔
−→ 𝑌 → 0

in M with 𝑋, 𝐸1, 𝑌 ∈ U , it follows that 𝐸𝑖 ∈ U for 𝑖 = 2, . . . , 𝑑.

Proof. The minimality of the d-extension (see Definition 2.5) gives that 𝑒𝑖 ∈ RadA(𝐸𝑖 , 𝐸𝑖+1) for all
𝑖 = 1, . . . , 𝑑 − 1. Moreover, the sequence

𝐸1
𝑒1
−→ 𝐸2

𝑒2
−→ · · ·

𝑒𝑑−1
−−−→ 𝐸𝑑

𝑔
−→ 𝑌 → 0 (2)

is a d-cokernel of f. If 𝑔 ∈ RadA(𝐸𝑑 , 𝑌 ), then this d-cokernel is minimal. Since 𝐸1 ∈ U , the result then
follows from U being closed under minimal d-quotients by Lemma 3.8.

Suppose hence that 𝑔 ∉ RadA(𝐸𝑑 , 𝑌 ). Recall from Remark 2.7 that the sequence (2) is isomorphic
to the direct sum of the minimal d-cokernel of f and shifted complexes of the form 𝑁

1𝑁
−−→ 𝑁 . However,

since 𝑒𝑖 ∈ Rad𝐴(𝐸𝑖 , 𝐸𝑖+1) for 𝑖 = 1, . . . 𝑑 − 1, it follows that (2) is isomorphic to

𝐸1
𝑒1
−→ 𝐸2

𝑒2
−→ · · ·

𝑒𝑑−2
−−−→ 𝐸𝑑−1

𝑒′𝑑−1=
(
ℎ1
0

)
−−−−−−−−→ 𝐸 ′

𝑑 ⊕ 𝑌 ′′

(
𝑔′ 0
0 1𝑌 ′′

)
−−−−−−−→ 𝑌 ′ ⊕ 𝑌 ′′ → 0,

where 𝑒′𝑑−1 is 𝑒𝑑−1 composed with an isomorphism and

𝐸1
𝑒1
−→ 𝐸2

𝑒2
−→ · · ·

𝑒𝑑−2
−−−→ 𝐸𝑑−1

ℎ1
−−→ 𝐸 ′

𝑑

𝑔′

−→ 𝑌 ′ → 0

is a minimal d-cokernel of f. In particular, the objects 𝐸2, . . . , 𝐸𝑑−1, 𝐸
′
𝑑 are in U as 𝐸1 ∈ U and U is

closed under minimal d-quotients by Lemma 3.8. Since 𝑌 ′ ⊕ 𝑌 ′′ = 𝑌 ∈ U and U is closed under direct
summands, we have that 𝑌 ′′ ∈ U . Hence, 𝐸𝑑 = 𝐸 ′

𝑑 ⊕ 𝑌 ′′ ∈ U , completing the proof. �

We are now ready to prove the first part of our characterisation result.
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Proposition 3.11. Let U ⊆ M be a d-torsion class. ThenU is closed under d-extensions and d-quotients.

Proof. AsU is a d-torsion class inM, we have thatU = T ∩M for some torsion class T inA as in Setup
3.1. Recall from Lemma 3.8 that it suffices to consider minimal d-extensions and minimal d-quotients.

We first show that U is closed under minimal d-quotients. Let 𝑓 : 𝑀 → 𝑈 be a morphism in M with
𝑈 ∈ U and consider its minimal d-cokernel

𝑀
𝑓
−→ 𝑈

𝑓1
−→ 𝑉1

𝑓2
−→ · · ·

𝑓𝑑−1
−−−→ 𝑉𝑑−1

𝑓𝑑
−−→ 𝑉𝑑 → 0.

By construction of the minimal d-cokernel (see Construction 2.9), we have that𝑉𝑖 arises as the minimal
left M-approximation of Coker 𝑓𝑖−1 for all 𝑖 = 1, . . . , 𝑑, where we set 𝑓0 = 𝑓 . As 𝑈 ∈ U = T ∩M and
T is closed under quotients, Lemma 3.3 implies that 𝑉𝑖 ∈ U for all 𝑖 = 1, . . . , 𝑑. This shows that U is
closed under minimal d-quotients.

We next prove that U is closed under minimal d-extensions. Consider a minimal d-exact sequence

0 → 𝑋
𝑒0
−→ 𝐸1

𝑒1
−→ · · ·

𝑒𝑑−1
−−−→ 𝐸𝑑

𝑒𝑑
−−→ 𝑌 → 0

in M with X and Y in U . By Lemma 2.8, the morphism 𝑒𝑖 is left minimal for 𝑖 = 0, . . . , 𝑑 − 2. As U is
a d-torsion class, we obtain the solid part of the diagram

0 𝑋 𝐸1 𝐸2 · · · 𝐸𝑑 𝑌 0

0 𝑡𝐸1 𝐸1 𝑊1 · · · 𝑊𝑑−1 𝑊𝑑 0,

𝑒0

𝑔0

𝑒1

ℎ0

𝑒2

𝑔2
ℎ1

𝑒𝑑−1 𝑒𝑑

𝑔𝑑

ℎ𝑑−1

𝑔𝑑+1
ℎ𝑑

𝜄 𝑤0 𝑤1 𝑤𝑑−2 𝑤𝑑−1

where the bottom row is the d-exact sequence associated to 𝐸1 by U . In particular, the object 𝑡𝐸1 ∈ U
is the d-torsion subobject of 𝐸1 with respect to U by Lemma 3.2, and the sequence

0 → HomA (𝑈,𝑊1) → · · · → HomA(𝑈,𝑊𝑑) → 0 (3)

is exact for every U in U . As 𝜄 is a right T -approximation and 𝑋 ∈ U = T ∩M, there exists a morphism
𝑔0 : 𝑋 → 𝑡𝐸1 making the left square commute. We can hence complete the diagram to a morphism g
of d-exact sequences by using the factorisation property for weak cokernels; see Section 2.1.

Since (3) is exact and 𝑌 ∈ U , the morphism

𝑤𝑑−1 ◦ − : HomA(𝑌,𝑊𝑑−1) → HomA(𝑌,𝑊𝑑)

is surjective. Hence, there exists a morphism ℎ𝑑 : 𝑌 → 𝑊𝑑−1 with 𝑤𝑑−1ℎ𝑑 = 𝑔𝑑+1. As the bottom row
is d-exact, there is an exact sequence

HomA (𝐸𝑑 ,𝑊𝑑−2) → HomA (𝐸𝑑 ,𝑊𝑑−1) → HomA(𝐸𝑑 ,𝑊𝑑).

Using the commutativity of the rightmost square, we get 𝑤𝑑−1 (𝑔𝑑 − ℎ𝑑𝑒𝑑) = 0, so 𝑔𝑑 − ℎ𝑑𝑒𝑑 is in the
kernel of the second morphism. By exactness, there exists a morphism ℎ𝑑−1 : 𝐸𝑑 → 𝑊𝑑−2 such that
𝑔𝑑 − ℎ𝑑𝑒𝑑 = 𝑤𝑑−2ℎ𝑑−1, or equivalently, 𝑔𝑑 = ℎ𝑑𝑒𝑑 + 𝑤𝑑−2ℎ𝑑−1.

We can repeat this process to obtain a homotopy of the map of complexes g. In particular, there
are morphisms ℎ0 and ℎ1 such that 𝑔1 = 1𝐸1 = 𝜄ℎ0 + ℎ1𝑒1. This implies that 𝜄ℎ0𝑒0 = 𝑒0, so 𝜄ℎ0 is an
isomorphism by the left minimality of 𝑒0. The morphism ℎ0 is hence a split monomorphism, so 𝐸1 is
contained in U . By Lemma 3.10, this implies that 𝐸𝑖 ∈ U for 𝑖 = 2, . . . , 𝑑, so the subcategory U is
closed under minimal d-extensions. �

Remark 3.12. Proposition 3.11 implies that every d-torsion class is closed under d-cokernels.
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The remainder of this subsection is devoted to proving the converse of Proposition 3.11. Since any
d-torsion class in M is contravariantly finite in M, we first establish that for a subcategory U ⊆ M to
be contravariantly finite, it is enough to assume closure under d-quotients.

We first need a result on coimage factorisation in a d-cluster tilting subcategory. Recall from Sec-
tion 2.1 that a morphism g in M is a weak cokernel if there exists a morphism f in M such that g is a
weak cokernel of f.

Proposition 3.13. Let 𝑓 : 𝑀 → 𝑁 be a morphism in M. Then there exists a factorisation 𝑓 = 𝑓2 ◦ 𝑓1
in M where 𝑓2 is a monomorphism and 𝑓1 is a composite of left minimal weak cokernels.

Proof. Let 𝐸0 denote the image of f, and let 𝜄0 : 𝐸0 → 𝑀0 be a minimal left M-approximation. The
inclusion 𝐸0 → 𝑁 lifts via 𝜄0 to a morphism 𝑔0 : 𝑀0 → 𝑁 . Let 𝐸1 be the image of 𝑔0, and note
that 𝐸0 ⊆ 𝐸1. Repeating this procedure, we get a subobject 𝐸𝑖 ⊆ 𝑁 , a minimal left approximation
𝜄𝑖 : 𝐸𝑖 → 𝑀𝑖 , and a lift 𝑔𝑖 : 𝑀𝑖 → 𝑁 for each 𝑖 ≥ 0. In particular, the 𝐸𝑖’s form an increasing sequence
𝐸0 ⊆ 𝐸1 ⊆ 𝐸2 ⊆ · · · ⊆ 𝐸𝑖 ⊆ · · · of subobjects of N.

Since A is of finite length, this sequence has to stabilise, say at 𝐸 𝑗 . This implies that the image
of 𝑔 𝑗 : 𝑀 𝑗 → 𝑁 is 𝐸 𝑗 . But then the inclusion 𝜄 𝑗 : 𝐸 𝑗 → 𝑀 𝑗 is a split monomorphism, and hence
an isomorphism since it is also left minimal. This shows that 𝐸 𝑗 ∈ M. Now let 𝑓2 : 𝐸 𝑗 → 𝑁 be the
inclusion, and let 𝑓1 : 𝑀 → 𝐸 𝑗 be the composite 𝑀 → 𝐸0 → 𝐸 𝑗 . Note that this is equal to the composite

𝑀 𝑀0 𝑀1 · · · 𝑀 𝑗−1 𝑀 𝑗 .

𝐸0 𝐸1 𝐸2 · · · 𝐸 𝑗−1 𝐸 𝑗

𝜄0 𝜄1 𝜄2 𝜄 𝑗−1 �

By construction, the morphisms 𝑀 → 𝑀0 and 𝑀𝑖 → 𝑀𝑖+1 for 𝑖 = 0, . . . , 𝑗 − 1 are left minimal weak
cokernels. Since 𝑓1 is a composite of such morphisms and the isomorphism 𝑀 𝑗 � 𝐸 𝑗 , this proves the
claim. �

Lemma 3.14. Let U ⊆ M be closed under d-quotients. If 𝑔 : 𝑀 → 𝑁 is a left minimal weak cokernel
with 𝑀 ∈ U , then 𝑁 ∈ U .

Proof. Assume g is a weak cokernel of a morphism f. Then g is part of a d-cokernel of f, and if g is left
minimal, then it is part of the minimal d-cokernel of f ; see Construction 2.9. This proves the claim. �

We now apply Proposition 3.13 and Lemma 3.14 to show that being closed under d-quotients implies
being contravariantly finite.

Proposition 3.15. Let U ⊆ M be closed under d-quotients and consider 𝑀 ∈ M. Then there exists a
minimal right U -approximation 𝑈 → 𝑀 which is a monomorphism. In particular, the subcategory U is
contravariantly finite in A.

Proof. Consider the set of subobjects 𝑈 ⊆ 𝑀 with 𝑈 ∈ U . Note that this set is nonempty since 0 ∈ U .
We first prove that this set has a unique maximal element. Indeed, since A has finite length, we can

choose 𝑈 ⊆ 𝑀 with 𝑈 ∈ U and where U is of maximal length with this property. Now let 𝑉 ⊆ 𝑀 with
𝑉 ∈ U , and consider the induced morphism U ⊕ V → M. By Proposition 3.13, there exists 𝑊 ⊆ 𝑀 with
𝑊 ∈ M such that 𝑈 ⊆ 𝑊 ⊆ 𝑀 and 𝑉 ⊆ 𝑊 ⊆ 𝑀 , and such that the induced morphism 𝑈 ⊕𝑉 → 𝑊 is a
composite of left minimal weak cokernels. Since U is closed under d-quotients, it follows from Lemma
3.14 that 𝑊 ∈ U . But since U is maximal with respect to the property that𝑈 ∈ U and 𝑈 ⊆ 𝑀 , it follows
that 𝑈 = 𝑊 . This implies that V must be contained in U, and hence, U is the unique maximal subobject
𝑈 ⊆ 𝑀 satisfying 𝑈 ∈ U .

Now let 𝑈 ′ → 𝑀 be an arbitrary morphism with 𝑈 ′ ∈ U . By Proposition 3.13, there exists an object
𝑉 ′ such that 𝑈 ′ → 𝑀 factors through 𝑉 ′ and where the morphism 𝑈 ′ → 𝑉 ′ is a composite of left
minimal weak cokernels and the morphism 𝑉 ′ → 𝑀 is a monomorphism. It follows that 𝑉 ′ ∈ U and 𝑉 ′

is a subobject of M.
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By the maximality of U, we get that 𝑉 ′ ⊆ 𝑈 ⊆ 𝑀 , so the morphism 𝑈 ′ → 𝑀 also factors through
U. This shows that the inclusion 𝑈 ⊆ 𝑀 is a right U -approximation, which is minimal since it is a
monomorphism. This proves the first claim.

Finally, the fact that U is contravariantly finite in A follows from the fact that M is contravariantly
finite in A and U is contravariantly finite in M. �

Using the proposition above, we now show the converse of Proposition 3.11.

Proposition 3.16. Let U ⊆ M be closed under d-extensions and d-quotients. Then U is a d-torsion
class in M.

Proof. Consider an object 𝑀 ∈ M. By the definition of a d-torsion class (see Definition 2.13), we need
to show that there exists a d-exact sequence

0 → 𝑈𝑀 → 𝑀 → 𝑉1 → · · · → 𝑉𝑑 → 0

where 𝑈𝑀 ∈ U and the sequence 0 → HomM (𝑈,𝑉1) → · · · → HomM(𝑈,𝑉𝑑) → 0 is exact for every
U in U .

Since U is closed under d-quotients, Proposition 3.15 shows that we may take a minimal right
U -approximation 𝑓 : 𝑈𝑀 → 𝑀 which is a monomorphism. Taking the minimal d-cokernel of f gives a
d-exact sequence

0 → 𝑈𝑀
𝑓
−→ 𝑀 → 𝑉1 → · · · → 𝑉𝑑 → 0. (4)

Let 𝑈 ∈ U . As f is a right U -approximation, we know that HomM (𝑈, 𝑓 ) is an epimorphism. Thus,
it follows from d-exactness of the sequence (4) that

0 → HomM (𝑈,𝑉1) → · · · → HomM (𝑈,𝑉𝑑−1) → HomM (𝑈,𝑉𝑑)

is exact. To finish our proof, we hence need to show that the rightmost morphism in this sequence is an
epimorphism.

Consider ℎ𝑑 ∈ HomM (𝑈,𝑉𝑑) and take a d-pullback of (4) along ℎ𝑑 . This yields a commutative
diagram

0 𝑈𝑀 𝑊0 𝑊1 · · · 𝑊𝑑−1 𝑈 0

0 𝑈𝑀 𝑀 𝑉1 · · · 𝑉𝑑−1 𝑉𝑑 0,

𝑓0

ℎ0

𝑓𝑑

ℎ𝑑

𝑓

where the upper row is a d-exact sequence. By the dual of Lemma 2.10, this d-extension can be assumed
to be minimal, and then closedness of U under d-extensions implies 𝑊𝑖 ∈ U for all 𝑖 = 0, . . . , 𝑑 − 1
by Lemma 3.8. As f is a right U -approximation, the morphism ℎ0 factors through f, so 𝑓0 is a split
monomorphism. It follows, by [J2, Proposition 2.6] and its dual, that 𝑓𝑑 is a split epimorphism, and
hence, ℎ𝑑 factors through 𝑉𝑑−1. In particular, the morphism HomM (𝑈,𝑉𝑑−1) → HomM (𝑈,𝑉𝑑) is an
epimorphism, as required. �

We can now generalise the classical characterisation of torsion classes; cf. Theorem 2.12. Recall our
standing assumption that subcategories are closed under direct summands.

Theorem 3.17. Let M be a d-cluster tilting subcategory of A. A subcategory U ⊆ M is a d-torsion
class if and only if it is closed under both d-extensions and d-quotients.

Proof. The necessity follows from Proposition 3.11, while the sufficiency follows from
Proposition 3.16. �
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We now demonstrate the use of Theorem 3.17 in our running example.

Example 3.18. Let A and M be as described in Example 2.4. In Example 2.16, we claimed that
T1 = add{3 ⊕ 1} and T2 = add

{
3 ⊕ 2

3 ⊕ 2
}

are torsion classes for which T1 ∩ M = add{3 ⊕ 1} and
T2 ∩M = add

{
3 ⊕ 2

3

}
are not 2-torsion classes in M. We now use Theorem 3.17 to explain why this is

the case.
Consider the exact sequence

0 −→ 3 −→
2
3 −→

1
2 −→ 1 −→ 0.

It is straightforward to check that this is a minimal 2-extension in M. This implies that T1 ∩M is not
closed under 2-extensions, so it is not a 2-torsion class in M by Theorem 3.17.

Similarly, using the same sequence, one can see thatT2∩M is not closed under 2-quotients. Therefore,
Theorem 3.17 implies that T2 ∩M is not a 2-torsion class.

A d-exact category is a pair (C,X ) consisting of an additive category C and a class X of d-exact
sequences in C satisfying certain axioms; see [J2, Definition 4.2]. One immediate consequence of our
characterisation result is that any d-torsion class U in M carries the structure of a d-exact category.

Corollary 3.19. Let U ⊆ M be a d-torsion class. Consider the class X of d-exact sequences in M
where all the terms are in U . Then (U ,X ) is a d-exact category.

Proof. By Theorem 3.17, the subcategory U is closed under d-extensions in M. The result hence
follows by applying [Kl, Corollary 4.15]. �

Note that when viewing M and U as d-exangulated categories – see [HLN1] – Corollary 3.19
moreover implies that U is a d-exangulated subcategory of M in the sense of [H, Definition 3.7].

3.3. Closure under d-extensions

To check if a subcategory U ⊆ M is closed under d-extensions, it is necessary to determine the middle
terms of any minimal d-extension between any two (not necessarily indecomposable) objects in U .
In this subsection, we show that under certain conditions, it is enough to understand the d-extensions
between indecomposable objects. The main result is the following.

Theorem 3.20. Suppose U ⊆ M is closed under d-extensions with indecomposable end terms and all
d-quotients. Then U is closed under all d-extensions.

We apply the theorem above in Sections 5 and 6, where we use it to give a combinatorial description
of d-torsion classes of higher Auslander algebras of type A and higher Nakayama algebras of type A
and A∞

∞.
In order to prove Theorem 3.20, recall first from Lemma 3.8 that we may focus our attention purely on

minimal d-extensions and minimal d-quotients. Our first step is to show that when closing a subcategory
under d-extensions, it may suffice to consider d-extensions where the first term is indecomposable.

Lemma 3.21. Suppose U ⊆ M is closed under d-quotients. If U is closed under d-extensions with
indecomposable first term, then U is closed under all d-extensions.

Proof. Assume that U is closed under d-quotients and under d-extensions with indecomposable first
term. Let

0 → 𝑋 → 𝐸1 → · · · → 𝐸𝑑 → 𝑌 → 0 (5)

be a minimal d-extension with 𝑋,𝑌 ∈ U . We want to show that 𝐸𝑖 ∈ U for all 𝑖 = 1, . . . , 𝑑. By Lemma
3.10, it is sufficient to check that 𝐸1 ∈ U .
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If X is indecomposable, we are done by assumption. Suppose, hence, that 𝑋 = 𝑋1 ⊕ 𝑋2, where 𝑋1 is
indecomposable and 𝑋2 ≠ 0. We take a d-pushout of the d-extension along the projection 𝜋 : 𝑋 → 𝑋1.
This yields a commutative diagram

0 𝑋 𝐸1 · · · 𝐸𝑑 𝑌 0

0 𝑋1 𝐹1 · · · 𝐹𝑑 𝑌 0

where the lower sequence is d-exact and can be assumed to be minimal by Lemma 2.10. As 𝑋1 is
indecomposable, we have 𝐹𝑖 ∈ U for 1 ≤ 𝑖 ≤ 𝑑. By [J2, Proposition 4.8 (ii)], we have a d-exact sequence

0 → 𝑋 → 𝑋1 ⊕ 𝐸1 → 𝐹1 ⊕ 𝐸2 → · · · → 𝐹𝑑−1 ⊕ 𝐸𝑑 → 𝐹𝑑 → 0.

Since 𝑋 � 𝑋1 ⊕ 𝑋2, this complex can be written as the sum of the identity morphism

0 → 𝑋1
1𝑋1
−−−→ 𝑋1 → 0 → · · · → 0 → 0 → 0

and a d-exact sequence

0 → 𝑋2 → 𝐸1 → 𝐹1 ⊕ 𝐸2 → · · · → 𝐹𝑑−1 ⊕ 𝐸𝑑 → 𝐹𝑑 → 0. (6)

Next, we choose a decomposition 𝐸1 � 𝐸 ′′
1 ⊕ 𝐸 ′

1 and 𝐹1 � 𝐸 ′′
1 ⊕ 𝐹1 such that the morphism 𝐸1 → 𝐹1

becomes (
1𝐸′′

1
0

0 𝑓

)
: 𝐸 ′′

1 ⊕ 𝐸 ′
1 → 𝐸 ′′

1 ⊕ 𝐹1

with 𝑓 ∈ RadA(𝐸 ′
1, 𝐹1). In particular, 𝐸 ′′

1 is a summand of 𝐹1 and is therefore contained in U . Hence,
𝐸 ′

1 ∈ U if and only if 𝐸1 ∈ U . Furthermore, (6) can be written as a sum of the identity morphism

0 → 0 → 𝐸 ′′
1

1𝐸′′
1

−−−→ 𝐸 ′′
1 → 0 → · · · → 0 → 0 → 0

and a d-exact sequence

0 → 𝑋2 → 𝐸 ′
1 → 𝐹1 ⊕ 𝐸2 → · · · → 𝐹𝑑−1 ⊕ 𝐸𝑑 → 𝐹𝑑 → 0.

By minimality of (5), the morphism 𝐸1 → 𝐸2 is in the Jacobson radical, and hence, the induced
morphism 𝐸 ′

1 → 𝐸2 is also in the Jacobson radical. Combining this with the fact that 𝑓 : 𝐸 ′
1 → 𝐹1 is in

the Jacobson radical, we get that 𝐸 ′
1 → 𝐹 ′

1 ⊕ 𝐸2 is in the Jacobson radical. Hence, if we let

0 → 𝑋2 → 𝐸 ′
1 → 𝐹 ′

1 → · · · → 𝐹 ′
𝑑−1 → 𝐹 ′

𝑑 → 0

be the minimal d-cokernel of 𝑋2 → 𝐸 ′
1, then this must also give a minimal d-extension. By Proposition

2.6, the term 𝐹 ′
𝑑 is a direct summand of 𝐹𝑑 and must therefore be in U . Obviously, the object 𝑋2 has

fewer indecomposable summands than X. If 𝑋2 is indecomposable, we know that 𝐸 ′
1 ∈ U (which is

equivalent to 𝐸1 ∈ U ), as the end terms 𝑋2 and 𝐹 ′
𝑑 of the above minimal d-extension are in U . If not,

we repeat the argument to eventually show that 𝐸1 ∈ U . �

We are now ready to give the proof of Theorem 3.20.
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Proof of Theorem 3.20. Suppose that we have a minimal d-extension

0 → 𝑋
𝑒0
−→ 𝐸1

𝑒1
−→ 𝐸2

𝑒2
−→ · · ·

𝑒𝑑−1
−−−→ 𝐸𝑑

𝑒𝑑
−−→ 𝑌 → 0

with 𝑋,𝑌 ∈ U . By Lemma 3.21, we may assume that X is indecomposable. Let 𝑌 =
⊕𝑡

𝑗=1𝑌 𝑗 , where
each 𝑌 𝑗 is indecomposable. For each inclusion 𝜄 𝑗 : 𝑌 𝑗 → 𝑌 , consider a d-pullback diagram

0 𝑋 𝐹𝑗 ,1 · · · 𝐹𝑗 ,𝑑 𝑌 𝑗 0

0 𝑋 𝐸1 · · · 𝐸𝑑 𝑌 0.

𝑓𝑗,0

ℎ 𝑗,0

𝑓𝑗,1

ℎ 𝑗,1

𝑓𝑗,𝑑−1 𝑓𝑗,𝑑

ℎ 𝑗,𝑑 𝜄 𝑗

𝑒0 𝑒1 𝑒𝑑−1 𝑒𝑑

(7)

By the dual of Lemma 2.10, the top d-extension can be chosen to be minimal. Consequently, each of
the morphisms 𝑓 𝑗 ,1, . . . , 𝑓 𝑗 ,𝑑−1 is in the Jacobson radical. Moreover, the middle objects 𝐹𝑗 ,1, . . . , 𝐹𝑗 ,𝑑

are in U since U is closed under d-extensions between indecomposables.
Now look at the d-extension

0 →

𝑡⊕
𝑗=1

𝑋
𝑓0
−→

𝑡⊕
𝑗=1

𝐹𝑗 ,1
𝑓1
−→ · · ·

𝑓𝑑−1
−−−→

𝑡⊕
𝑗=1

𝐹𝑗 ,𝑑
𝑓𝑑
−−→

𝑡⊕
𝑗=1

𝑌 𝑗 → 0

given by the direct sum of all the upper d-extensions obtained as in (7). Consider the induced map

0
⊕𝑡

𝑗=1 𝑋
⊕𝑡

𝑗=1 𝐹𝑗 ,1 · · ·
⊕𝑡

𝑗=1 𝐹𝑗 ,𝑑

⊕𝑡
𝑗=1𝑌 𝑗 0

0 𝑋 𝐸1 · · · 𝐸𝑑 𝑌 0

𝑓0

ℎ0

𝑓1

ℎ1

𝑓𝑑−1 𝑓𝑑

ℎ𝑑

𝑒0 𝑒1 𝑒𝑑−1 𝑒𝑑

with ℎ𝑖 = ( ℎ1,𝑖 · · · ℎ𝑡,𝑖 ) for 𝑖 = 0, . . . , 𝑑. This is a d-pushout diagram by [J2, Proposition 4.8], and thus,
the associated mapping cone

0 →

𝑡⊕
𝑗=1

𝑋

(
ℎ0
− 𝑓0

)
−−−−−→ 𝑋 ⊕

𝑡⊕
𝑗=1

𝐹𝑗 ,1

(
𝑒0 ℎ1
0 − 𝑓1

)
−−−−−−−→ 𝐸1 ⊕

𝑡⊕
𝑗=1

𝐹𝑗 ,2 → · · · → 𝐸𝑑 → 0 (8)

is a d-extension. Note that the term 𝑋 ⊕
⊕𝑡

𝑗=1 𝐹𝑗 ,1 lies in U . If (8) is given by the minimal d-cokernel of
the first morphism, we are hence done by closure under minimal d-quotients. So suppose this d-cokernel
is not minimal. By Remark 2.7, it is then isomorphic to the direct sum of the minimal d-cokernel and
shifted complexes of the form 𝑁

1
−→ 𝑁 . In particular, if

𝑋 ⊕

𝑡⊕
𝑗=1

𝐹𝑗 ,1
𝜕1
−−→ 𝑀1

𝜕2
−−→ 𝑀2 → · · · → 𝑀𝑑 → 0
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is the minimal d-cokernel of
(

ℎ0
− 𝑓0

)
, then there is a commutative diagram

𝐸1 ⊕
⊕𝑡

𝑗=1 𝐹𝑗 ,2 𝐸2 ⊕
⊕𝑡

𝑗=1 𝐹𝑗 ,3

𝑀1 ⊕ 𝑁1 𝑀2 ⊕ 𝑁1 ⊕ 𝑁2,

(
𝑒1 ℎ2
0 − 𝑓2

)
(
𝑎 𝑏
𝑐 𝑑

)
𝜙(

𝜕2 0
0 1
0 0

)

where the vertical maps are isomorphisms. Since 𝑒1 ∈ RadA(𝐸1, 𝐸2), the morphism

𝜙 ◦

(
𝑒1
0

)
: 𝐸1 → 𝑀2 ⊕ 𝑁1 ⊕ 𝑁2

also lies in the radical, and thus so does

𝜙 ◦

(
𝑒1
0

)
=
�
�
𝜕2 0
0 1
0 0

���
(
𝑎
𝑐

)
=
�
�
𝜕2 ◦ 𝑎
𝑐
0

���.
This shows that 𝑐 ∈ RadA (𝐸1, 𝑁1). Now let

(
𝛼 𝛽
𝛾 𝛿

)
denote the inverse of

(
𝑎 𝑏
𝑐 𝑑

)
. We have 𝛼𝑎 + 𝛽𝑐 = 1𝐸1 ,

or equivalently, 𝛼𝑎 = 1𝐸1 − 𝛽𝑐. It follows from the definition of the radical that this is an isomorphism,
as 𝑐 ∈ RadA (𝐸1, 𝑁1). This implies that 𝐸1 is a direct summand of 𝑀1. But 𝑀1 ∈ U since U is
closed under minimal d-quotients, and hence, 𝐸1 also lies in U . It then follows from Lemma 3.10 that
𝐸2, . . . , 𝐸𝑑 ∈ U , so we can conclude that U is closed under d-extensions as required. �

4. The lattice of d-torsion classes

The torsion classes in A form a complete lattice with meet given by intersection; see, for example,
[IRTT, Proposition 2.3]. In this section, we use the characterisation of higher torsion classes given in
Theorem 3.17 to show that an analogous statement holds for higher torsion classes.

Let us first recall some relevant definitions.

Definition 4.1. Let P be a poset. For an arbitrary subset 𝐻 ⊆ 𝑃, the join of H, if it exists, is the least
upper bound of H. Dually, the meet of H, if it exists, is the greatest lower bound of H. The poset P is a
complete lattice if for any subset 𝐻 ⊆ 𝑃, the join and the meet of H exist.

For the sake of clarity, note that a least upper bound is unique as it is smaller than any other upper
bound, and similarly for greatest lower bounds. Note also that a complete lattice is bounded (i.e., it has
a minimum and a maximum) obtained by letting H in the definition be empty. The following lemma is
well known; see, for example, [G, Chapter I, Lemma 34].

Lemma 4.2. Let P be a poset. If every subset of P admits a meet or if every subset of P admits a join,
then P is a complete lattice.

For a d-cluster tilting subcategory M of A, we let 𝑑-tors(M) denote the poset of d-torsion classes
in M ordered by inclusion.

Theorem 4.3. Let M be a d-cluster tilting subcategory of A. Then 𝑑-tors(M) is a complete lattice
with meet given by intersection.

Proof. To show that 𝑑-tors(M) is a complete lattice, it suffices to show that it has arbitrary meets by
Lemma 4.2. We note that if 𝑑-tors(M) is closed under arbitrary intersections, then meets are given by
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Figure 2. The Hasse diagram of the lattice of 2-torsion classes in Example 4.4.

intersections, and closure under arbitrary meets follows. Therefore, we only need to show that for any
subset S of 𝑑-tors(M), the intersection

V :=
⋂
U ∈𝑆

U

is a d-torsion class. By Theorem 3.17 and Lemma 3.8, it is enough to show that V is closed under
minimal d-extensions and minimal d-quotients. This follows from the fact that each U ∈ 𝑆 is closed
under d-extensions and d-quotients by Theorem 3.17. �

We illustrate the lattice structure on the set of higher torsion classes in our running example.

Example 4.4. In the setting of Example 2.4, the set of all 2-torsion classes in M is listed in Table 1.
By Theorem 4.3, we know that the poset of all 2-torsion classes in M ordered by inclusion forms a
complete lattice. We include the Hasse diagram in Figure 2.

Another example – namely, the complete lattice of 3-torsion classes for the higher Auslander algebra
𝐴3

3 – can be found in Example 5.21. This example will demonstrate that, unlike in the classical setting,
the lattice of d-torsion classes may not be Hasse-regular or semi-distributive (see e.g. [DIRRT] for the
definitions).

It follows from Theorem 2.15 that there is an injective, order-preserving map

T(−) : 𝑑-tors(M) → tors(A) (9)

which takes a d-torsion class U ⊆ M to the smallest torsion class in A containing U (see [AJST,
Corollary 3.3]). We now give an example that demonstrates that this map is not a morphism of lattices.

Example 4.5. Continuing with Example 4.4, we see that the 2-torsion classes add{3} and add{1} are
both torsion classes in A and thus are sent to themselves under the map (9). However, Figure 2 shows
that the join in 2-tors(M) is M, which is sent to A under (9), while the join in tors(A) is simply
add{3 ⊕ 1}, which is contained in M, but it is not a 2-torsion class.

Remark 4.6. Note that for U ∈ 𝑑-tors(M), the set

torsU (A) := {T ∈ tors(A) | T ∩M = U }
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may contain more than one element, is convex and has a minimal element. Indeed, for the 2-torsion
class U := add{1

2 ⊕ 1} in Example 4.5, we have

add{1
2 ⊕ 1} ∈ torsU (A) and add{2 ⊕ 1

2 ⊕ 1} ∈ torsU (A),

and hence, torsU (A) has more than one element. Also, for U ∈ 𝑑-tors(M), if we have inclusions
T1 ⊆ T ⊆ T2 of torsion classes such that T1, T2 ∈ torsU (A), then

U = T1 ∩M ⊆ T ∩M ⊆ T2 ∩M = U .

This shows that T ∈ torsU (A), and hence, torsU (A) is convex. Finally, 𝑇 (U ) is the minimal element
in torsU (A) by Theorem 2.15, where T(−) is as in (9).

We finish by investigating when the intersection with a d-cluster tilting subcategory gives a map of
posets. The result will be applied in the context of higher Nakayama algebras in Section 6.

Proposition 4.7. Let A1 and A2 be abelian categories of finite length, and let M1 ⊆ A1 and M2 ⊆ A2
be d-cluster tilting subcategories. Assume we have an exact inclusion A2 ⊆ A1 such that M2 ⊆ M1.
The following statements hold:

(1) If U is a d-torsion class in M1, then U ∩M2 is a d-torsion class in M2.
(2) Intersecting with M2 gives a map of posets

𝑑-tors(M1) → 𝑑-tors(M2)

which preserves meets.
(3) If A2 is closed under quotients in A1, then M2 is closed under d-quotients in M1.

Proof. Assume that U is a d-torsion class in M1. Since the inclusion A2 ⊆ A1 is exact, it must
send d-cokernels and d-kernels in M2 to d-cokernels and d-kernels in M1, respectively. In particular,
it preserves d-quotients and d-extensions. Therefore, the subcategory U ∩ M2 must be closed under
d-extensions and d-quotients in M2, since U is closed under d-extensions and d-quotients in M1. This
proves (1).

Part (2) follows from (1) and the fact that meets in 𝑑-tors(M1) and 𝑑-tors(M2) are given by
intersection.

For part (3), note that giving a d-quotient in M1 of an object 𝑌 ∈ M2 is the same as giving a
d-cokernel in M1 of a morphism 𝑋 → 𝑌 with 𝑋 ∈ M1. This is again equivalent to giving an exact
sequence

0 → 𝐶 → 𝑀1 → 𝑀2 → · · · → 𝑀𝑑 → 0,

where C is the cokernel of 𝑋 → 𝑌 and each 𝑀𝑖 is in M1. Now since A2 is closed under quotients in
A1, the cokernel C must be contained in A2. As M2 is d-cluster tilting in A2, we can construct an exact
sequence

0 → 𝐶 → 𝑁1 → 𝑁2 → · · · → 𝑁𝑑 → 0,

where each 𝑁𝑖 is in M2; see [J2, Proposition 3.17]. Since M2 ⊆ M1, this must give a d-cokernel of
𝑋 → 𝑌 in M1 by the observation above. This proves the claim. �

Remark 4.8. Note that if A2 is closed under quotients in A1, it follows from Proposition 4.7(3) that any
minimal d-cokernel in M1 of a morphism 𝑋 → 𝑌 with𝑌 ∈ M2 is a minimal d-cokernel of a morphism
in M2. In particular, a subcategory of M2 is closed under d-quotients in M2 if and only if it is closed
under d-quotients in M1.
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5. Higher Auslander algebras

In this section, we apply Theorem 3.17 to classify and count the d-torsion classes associated to higher
Auslander algebras of type A. Higher Auslander algebras were introduced in [I3] and constitute an
important class of algebras in higher homological algebra. The module category of each such algebra
contains a d-cluster tilting subcategory, which was described combinatorially in [I3] and [OT].

Recall from Theorem 3.17 that d-torsion classes in a d-cluster tilting subcategory are precisely
the subcategories which are closed under d-extensions and d-quotients. In Sections 5.1 and 5.2, we
present results on closure under d-extensions and d-quotients for higher Auslander algebras of type
A, culiminating in a combinatorial characterisation of their higher torsion classes in Theorem 5.13. In
Section 5.3, we employ our results to write an algorithm which computes and counts all these d-torsion
classes.

5.1. Background on higher Auslander algebras

We start by providing a brief introduction to higher Auslander algebras, highlighting combinatorial de-
scriptions which will be important throughout Section 5. We mostly follow the notation and terminology
from [JKPK].

For positive integers n and d, let 𝑁𝑛 = {0, 1, . . . , 𝑛 − 1} with the natural poset structure. Consider
the set

𝑁𝑑
𝑛 = 𝑁𝑛 × · · · × 𝑁𝑛︸�����������︷︷�����������︸

𝑑 times

of d-tuples 𝑥 = (𝑥0, . . . , 𝑥𝑑−1) over 𝑁𝑛. We endow 𝑁𝑑
𝑛 with the product order, meaning that 𝑥 ≤ 𝑦 in

𝑁𝑑
𝑛 if and only if 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖 = 0, 1, . . . , 𝑑 − 1. We consider 𝑁𝑑

𝑛 as a category whose objects are the
elements of 𝑁𝑑

𝑛 , and whose morphisms are given by the poset relations of 𝑁𝑑
𝑛 . Taking the k-linearisation

of this category, we get a finite-dimensional k-algebra; see [JKPK, Section 1.2] for more details. By
abuse of notation, we also denote this algebra by 𝑁𝑑

𝑛 .
Let os𝑑𝑛 be the subset of 𝑁𝑑

𝑛 of non-decreasing d-tuples over 𝑁𝑛. In particular, an element of os𝑑𝑛 is a
tuple 𝑥 = (𝑥0, . . . , 𝑥𝑑−1) with 𝑥0 ≤ 𝑥1 ≤ · · · ≤ 𝑥𝑑−1. The higher Auslander algebra 𝐴𝑑

𝑛 is defined as the
idempotent quotient

𝐴𝑑
𝑛 := 𝑁𝑑

𝑛 /(𝑁
𝑑
𝑛 \ os𝑑𝑛),

where we consider 𝑁𝑑
𝑛 as a finite-dimensional k-algebra as above. Note that 𝐴𝑑

𝑛 is equivalently given by
the opposite of a quiver 𝑄𝑛,𝑑 whose vertices are the elements of the set os𝑑𝑛 , and where there is an arrow
from vertex x to vertex y if we have 𝑦𝑖 = 𝑥𝑖 + 1 for exactly one 0 ≤ 𝑖 ≤ 𝑑 − 1 and 𝑦 𝑗 = 𝑥 𝑗 for 𝑗 ≠ 𝑖. The
relations of 𝐴𝑑

𝑛 are given by an admissible ideal 𝐼𝑛,𝑑 making squares commutative and sending certain
compositions of two arrows to zero; see [HJ].
Remark 5.1. The notation we use is similar to that in [JKPK]. It relates to the notation in [HJ] in
the following way: What we call 𝑄𝑛,𝑑 , 𝐴𝑑

𝑛 and 𝐼𝑛,𝑑 corresponds to what is denoted by 𝑄𝑛,𝑑−1, 𝐴𝑑−1
𝑛

and 𝐼𝑛,𝑑−1 in [HJ]. To see this, note that the poset os𝑑𝑛 is isomorphic to the poset V𝑛,𝑑−1 of increasing
d-tuples 𝑥 ′ = (𝑥 ′0, . . . , 𝑥

′
𝑑−1) over {1, 2, . . . , 𝑛 + 𝑑 − 1} used in [HJ]. The isomorphism is given by

os𝑑𝑛 → V𝑛,𝑑−1 (𝑥0, . . . , 𝑥𝑑−1) ↦→ (𝑥0 + 1, 𝑥1 + 2, . . . , 𝑥𝑑−1 + 𝑑).

The module category of 𝐴𝑑
𝑛 has a d-cluster tilting subcategory

M𝑑
𝑛 := add(𝑀𝑑

𝑛 ) ⊆ mod 𝐴𝑑
𝑛 ,

where 𝑀𝑑
𝑛 =

⊕
𝑥∈os𝑑+1

𝑛
𝑀𝑥 . Here, the notation 𝑀𝑥 is used for the indecomposable 𝐴𝑑

𝑛 -module with
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support in all vertices 𝑦 ∈ os𝑑𝑛 such that 𝑥0 ≤ 𝑦0 ≤ 𝑥1 ≤ · · · ≤ 𝑥𝑑−1 ≤ 𝑦𝑑−1 ≤ 𝑥𝑑 . Note that the
d-cluster tilting subcategory M𝑑

𝑛 contains finitely many indecomposable objects, indexed by os𝑑+1
𝑛 . It is

known that End𝐴𝑑
𝑛
(𝑀𝑑

𝑛 ) and 𝐴𝑑+1
𝑛 are isomorphic as algebras by [I3, Corollary 1.16]; see also [JKPK,

Theorem 2.3]. For examples of the quivers 𝑄𝑛,𝑑 and relevant modules, see [JKPK, Section 2.1] and
[HJ, Example 2.13].

Next, we define the relation

𝑥� 𝑦 if and only if 𝑥0 ≤ 𝑦0 ≤ 𝑥1 ≤ 𝑦1 ≤ · · · ≤ 𝑥𝑑 ≤ 𝑦𝑑

on the set Z𝑑+1 of all (𝑑 + 1)-tuples over Z. Note that 𝑥 � 𝑦 implies 𝑥 ≤ 𝑦. Using the relation�, one
can determine the Hom-spaces between indecomposable modules in M𝑑

𝑛 .

Proposition 5.2 [OT, Theorem 3.6(3)], [JKPK, Proposition 2.8]. Let 𝑥, 𝑦 ∈ os𝑑+1
𝑛 . Then

dim Hom𝐴𝑑
𝑛
(𝑀𝑥 , 𝑀𝑦) =

{
1 if 𝑥� 𝑦

0 otherwise.

The d-extensions in M𝑑
𝑛 have a similar combinatorial description, including a description of all the

middle terms. To this end, we define 𝜏𝑑 : Z𝑑+1 → Z𝑑+1 by

𝜏𝑑 (𝑥0, . . . , 𝑥𝑑) = (𝑥0 − 1, 𝑥1 − 1, . . . , 𝑥𝑑 − 1).

The notation is motivated by the fact that if 𝑥 ∈ os𝑑+1
𝑛 with 𝑥0 > 0, then 𝜏d(Mx)�M𝜏d(x) by [JKPK,

Proposition 2.7(iii)], where 𝜏𝑑 (𝑀𝑥) is the higher Auslander–Reiten translate of 𝑀𝑥 .

Proposition 5.3 [OT, Theorem 3.6(4) and 3.8], [JKPK, Proposition 2.8]. Let 𝑥, 𝑦 ∈ os𝑑+1
𝑛 . Then

dim Ext𝑑
𝐴𝑑
𝑛
(𝑀𝑦 , 𝑀𝑥) =

{
1 if 𝑥� 𝜏𝑑 (𝑦)

0 otherwise.

In particular, if 𝑥� 𝜏𝑑 (𝑦), there is a nontrivial d-extension

0 → 𝑀𝑥 → 𝐸1 → · · · → 𝐸𝑑 → 𝑀𝑦 → 0, (10)

where 𝐸𝑘 =
⊕

𝑧∈𝑍𝑘
𝑀𝑧 for

𝑍𝑘 = {𝑧 ∈ os𝑑+1
𝑛 | 𝑧𝑖 ∈ {𝑥𝑖 , 𝑦𝑖} for each 𝑖 and |{𝑖 | 𝑧𝑖 = 𝑦𝑖}| = 𝑘}.

Remark 5.4. The d-extension (10) in Proposition 5.3 is minimal. This is seen by combining the fact
that 𝐸𝑘 and 𝐸𝑘+1 have no isomorphic direct summands for 𝑘 = 1, . . . , 𝑑 − 1 with Proposition 2.6 and
Remark 2.7.

We will use the following lemma, which can be seen as an immediate consequence of the description
of d-extensions in Proposition 5.3.

Lemma 5.5. Suppose that 𝑥, 𝑦 ∈ os𝑑+1
𝑛 with 𝑥𝑖 = 𝑦𝑖 for all 𝑖 = 0, . . . , 𝑑 − 1 and 𝑥𝑑 ≤ 𝑦𝑑 . Then any

nonzero morphism 𝑀𝑥 → 𝑀𝑦 is a monomorphism.

Proof. If 𝑥𝑑 = 𝑦𝑑 , the only nonzero morphism (up to multiplication by a scalar) is the identity, which
is a monomorphism. If 𝑥𝑑 < 𝑦𝑑 , the result follows from Proposition 5.3 when looking at the extension
between 𝑀𝑥 and 𝑀𝑧 , where 𝑧 = (𝑥1 + 1, . . . , 𝑥𝑑 + 1, 𝑦𝑑). �

Although Proposition 5.3 is limited to describing the middle terms in d-extensions with indecompos-
able end terms, we know from Theorem 3.20 that this knowledge is sufficient for producing d-torsion
classes if we have already established closure under d-quotients.
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5.2. A combinatorial characterisation of d-torsion classes in M𝑑
𝑛 .

The main result of this subsection is a characterisation of higher torsion classes associated to higher
Auslander algebras of type A; see Theorem 5.13. The key ingredient in the proof of this result is a
combinatorial description of how to close a subcategory of M𝑑

𝑛 under d-quotients.
Given 𝑀 ∈ M𝑑

𝑛 , we write dq(𝑀) for the smallest subcategory of M𝑑
𝑛 which contains M and is

closed under d-quotients (see Definition 3.7). We often refer to dq(𝑀) as the d-quotient closure of M.
It is clear that if 𝑁 ∈ dq(𝑀), then dq(𝑁) ⊆ dq(𝑀).

We filter dq(𝑀) as follows:

◦ Set dq(𝑀)0 = add(𝑀).
◦ For 𝑖 ≥ 0, set

dq(𝑀)𝑖+1 = add
{
𝑁 ∈ M𝑑

𝑛

���� ∃ minimal 𝑑-quotient 𝑋 → 𝑌 → 𝐶1 → · · · → 𝐶𝑑 → 0 in
M𝑑

𝑛 with 𝑌 ∈ dq(𝑀)𝑖 and 𝑁 � 𝐶 𝑗 for some 1 ≤ 𝑗 ≤ 𝑑

}
.

We see that dq(𝑀)0 ⊆ dq(𝑀)1 ⊆ . . . and that the chain must stabilise with dq(𝑀)𝑡 = dq(𝑀)𝑡+1 for
some 𝑡 ∈ N because M𝑑

𝑛 has finitely many indecomposables. By definition, we have dq(𝑀) = dq(𝑀)𝑡 .
To completely determine the subcategory dq(𝑀), it is sufficient to describe the indecomposable

modules it contains. With this in mind, we begin by identifying certain indecomposables which must
be contained in d-quotient closures.

Lemma 5.6. Let 𝑥 ∈ os𝑑+1
𝑛 be such that 𝑥𝑖 + 1 ≤ 𝑥𝑖+1 for some 0 ≤ 𝑖 ≤ 𝑑 − 1 and set

𝑦 = (𝑥0, . . . , 𝑥𝑖−1, 𝑥𝑖 + 1, 𝑥𝑖+1, . . . , 𝑥𝑑). Then 𝑀𝑦 ∈ dq(𝑀𝑥).

Proof. Define 𝑧 = (𝑧0, . . . , 𝑧𝑑) such that

𝑧 𝑗 =

{
𝑥 𝑗 if 𝑗 ≠ 𝑖 + 1
𝑥𝑖 if 𝑗 = 𝑖 + 1.

We then have 𝑧 � 𝑥, so there is a nonzero morphism 𝑀𝑧 → 𝑀𝑥 by Proposition 5.2. Because
𝑥𝑖 ≤ 𝑧𝑖+1 < 𝑥𝑖+1, the module 𝑀𝑦 is hence in dq(𝑀𝑥) by [HJ, Lemma 3.8(2)], keeping in mind that this
paper uses a different notation as we outlined in Remark 5.1. �

Lemma 5.6 yields the following corollary.

Corollary 5.7. Given any 𝑥 ∈ os𝑑+1
𝑛 , the set{

𝑀𝑦 ∈ M𝑑
𝑛 | 𝑦 ∈ os𝑑+1

𝑛 , 𝑥 ≤ 𝑦 and 𝑥𝑑 = 𝑦𝑑
}

is contained in dq(𝑀𝑥).

Proof. Suppose 𝑦 ∈ os𝑑+1
𝑛 satisfies 𝑥 ≤ 𝑦 and 𝑥𝑑 = 𝑦𝑑 . Construct a sequence

𝑥 = 𝑧0, 𝑧1, 𝑧2, . . . , 𝑧𝑚 = 𝑦

in os𝑑+1
𝑛 , where the element 𝑧𝑖+1 is constructed from 𝑧𝑖 as follows. If 𝑧𝑖 = 𝑦, then we are fin-

ished. Otherwise, there exists a maximal j such that 𝑧𝑖𝑗 < 𝑦 𝑗 , and we must have 𝑗 < 𝑑. Then
𝑧𝑖𝑗 + 1 ≤ 𝑦 𝑗 ≤ 𝑦 𝑗+1 = 𝑧𝑖𝑗+1, and we define

𝑧𝑖+1
𝑘 =

{
𝑧𝑖𝑘 + 1 if 𝑘 = 𝑗

𝑧𝑖𝑘 if 𝑘 ≠ 𝑗 .
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Notice that 𝑀𝑧𝑖+1 ∈ dq(𝑀𝑧𝑖 ) by Lemma 5.6 and that this process must terminate with 𝑧𝑚 = 𝑦. Thus, we
get

𝑀𝑦 ∈ dq(𝑀𝑧𝑚−1 ) ⊆ · · · ⊆ dq(𝑀𝑥),

as required. �

We now present the key technical lemma needed to describe dq(𝑀𝑥) completely.

Lemma 5.8. Suppose that 𝐶0 → 𝐶1 → · · · → 𝐶𝑑 → 0 is a minimal d-cokernel of a morphism
𝐶−1 → 𝐶0 in M𝑑

𝑛 . If 𝑀𝑧 ∈ add(𝐶𝑖) for some 1 ≤ 𝑖 ≤ 𝑑, then there exists 𝑀𝑥 ∈ add(𝐶0) such that 𝑥 ≤ 𝑧
and 𝑥𝑑 = 𝑧𝑑 .

Proof. Since each 𝐶𝑖 ∈ M𝑑
𝑛 , we may assume that every 𝐶𝑖 is equal to a direct sum of modules of the

form 𝑀𝑧 for 𝑧 ∈ os𝑑+1
𝑛 . Choose 𝑀𝑧 ∈ add(𝐶𝑖). Write the morphism 𝐶𝑖−1 → 𝐶𝑖 as(

𝑓
𝑔

)
: 𝐶𝑖−1 → 𝑀𝑧 ⊕ 𝐶 ′

𝑖 .

By the construction of minimal d-cokernels, this morphism factors through the cokernel K of the
morphism 𝐶𝑖−2 → 𝐶𝑖−1 as indicated in the diagram

𝐶𝑖−1 𝑀𝑧 ⊕ 𝐶 ′
𝑖 ,

𝐾

(
𝑓
𝑔

)
𝜋 (

𝑓 ′

𝑔′

)

where
(

𝑓 ′

𝑔′

)
is a minimal left M𝑑

𝑛-approximation of K.
There exists some 𝑀𝑤 ∈ add(𝐶𝑖−1) with a nonzero morphism 𝑀𝑤 → 𝑀𝑧 . Indeed, if this is not the

case, then 𝑓 = 0. However, since 𝜋 is an epimorphism, this would imply 𝑓 ′ = 0, contradicting
(

𝑓 ′

𝑔′

)
being left minimal. Consequently, we may write 𝐶𝑖−1 = 𝐷 ⊕ 𝐷 ′, where 𝐷 ≠ 0 and 𝐷 ′ is the largest
summand of 𝐶𝑖−1 that maps to zero under f. This means that the morphism

(
𝑓
𝑔

)
may be written as(

𝑓1 0
𝑔1 𝑔2

)
: 𝐷 ⊕ 𝐷 ′ −→ 𝑀𝑧 ⊕ 𝐶 ′

𝑖 ,

where 𝑓1 is nonzero. For every 𝑀𝑣 ∈ add(𝐷), there is a nonzero morphism to 𝑀𝑧 . Hence, Proposi-
tion 5.2 shows that 𝑣 � 𝑧. Since 𝐷 ≠ 0, we may choose 𝑀𝑦 ∈ add(𝐷) with 𝑦𝑑 maximal (i.e. for all
𝑀𝑣 ∈ add(𝐷), we have 𝑣𝑑 ≤ 𝑦𝑑).

With z and y fixed and knowing that 𝑦� 𝑧, we may now consider 𝑧′ = (𝑧0, 𝑧1, . . . , 𝑧𝑑−1, 𝑦𝑑). Notice
that 𝑧′� 𝑧. Proposition 5.2 and Lemma 5.5 thus yield that there exists a monomorphism 𝜄 : 𝑀𝑧′ → 𝑀𝑧 .
Moreover, by the maximality of 𝑦𝑑 , we have 𝑣 � 𝑧′ for all 𝑀𝑣 ∈ add(𝐷). Hence, by Proposition 5.2,
there exists a morphism ℎ : 𝐷 → 𝑀𝑧′ such that 𝑓1 = 𝜄 ◦ ℎ. In particular, the solid part of the diagram

𝐷 ⊕ 𝐷 ′ 𝑀𝑧′ ⊕ 𝐶 ′
𝑖

𝐾 𝑀𝑧 ⊕ 𝐶 ′
𝑖

(
ℎ 0
𝑔1 𝑔2

)
𝜋=
(
𝜋1
𝜋2

) (
𝜄 0
0 1
)

𝑡

(
𝑓 ′

𝑔′

)
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commutes. Since
(
𝜄 0
0 1
)

is a monomorphism, this implies that the composition of the morphism
𝐶𝑖−2 → 𝐶𝑖−1 and

(
ℎ 0
𝑔1 𝑔2

)
is zero. Thus, there is a morphism 𝑡 : 𝐾 → 𝑀𝑧′ ⊕ 𝐶 ′

𝑖 making the upper
triangle in the diagram above commute.

Note that the lower triangle also commutes as 𝜋 is an epimorphism. Finally, since
(

𝑓 ′

𝑔′

)
is an

M𝑑
𝑛-approximation, there exists a morphism 𝑠 : 𝑀𝑧 ⊕ 𝐶 ′

𝑖 → 𝑀𝑧′ ⊕ 𝐶 ′
𝑖 such that

𝑡 = 𝑠 ◦

(
𝑓 ′

𝑔′

)
.

It follows that (
𝑓 ′

𝑔′

)
=

(
𝜄 0
0 1

)
◦ 𝑡 =

(
𝜄 0
0 1

)
◦ 𝑠 ◦

(
𝑓 ′

𝑔′

)
,

and thus,
(
𝜄 0
0 1
)
◦ 𝑠 is an isomorphism, since

(
𝑓 ′

𝑔′

)
is left minimal. Therefore, the monomorphism 𝜄 is

also an epimorphism, so it must be an isomorphism, and we have 𝑀𝑧 � 𝑀𝑧′ . This shows that 𝑦𝑑 = 𝑧𝑑 ,
and hence, 𝑀𝑦 ∈ add(𝐶𝑖−1) satisfies both 𝑦� 𝑧 (and thus, 𝑦 ≤ 𝑧) and 𝑦𝑑 = 𝑧𝑑 .

We can now repeat the argument with 𝑀𝑦 and keep going until we get 𝑀𝑥 ∈ add(𝐶0) with 𝑥 ≤ 𝑦 ≤ 𝑧
and 𝑥𝑑 = 𝑦𝑑 = 𝑧𝑑 . �

Lemma 5.8 enables us to fully describe dq(𝑀𝑥) for an indecomposable module 𝑀𝑥 ∈ M𝑑
𝑛 .

Corollary 5.9. Given any 𝑥 ∈ os𝑑+1
𝑛 , we have

dq(𝑀𝑥) = add
{
𝑀𝑦 ∈ M𝑑

𝑛 | 𝑦 ∈ os𝑑+1
𝑛 , 𝑥 ≤ 𝑦 and 𝑥𝑑 = 𝑦𝑑

}
.

Proof. By Corollary 5.7, it suffices to show that for any 𝑀𝑦 ∈ dq(𝑀𝑥), we must have 𝑥 ≤ 𝑦 and 𝑥𝑑 = 𝑦𝑑 .
Let 𝑖 ≥ 0 be such that 𝑀𝑦 ∈ dq(𝑀𝑥)𝑖 . If 𝑖 = 0, we have 𝑀𝑦 ∈ dq(𝑀𝑥)0 = add(𝑀𝑥), so 𝑀𝑦 = 𝑀𝑥 , and
the statement holds. Assume hence, 𝑖 > 0. By Lemma 5.8, there exists 𝑀𝑧 ∈ dq(𝑀𝑥)𝑖−1 such that 𝑧 ≤ 𝑦
and 𝑧𝑑 = 𝑦𝑑 .

Repeating this argument, we will eventually find some 𝑀𝑤 ∈ dq(𝑀𝑥)0 such that 𝑤 ≤ 𝑦 and 𝑤𝑑 = 𝑦𝑑 .
As dq(𝑀𝑥)0 = add(𝑀𝑥) yields 𝑀𝑤 = 𝑀𝑥 , the result follows. �

Remark 5.10. It follows from Corollary 5.9 that any 𝑀𝑦 , 𝑀𝑧 ∈ dq(𝑀𝑥) satisfy 𝑦𝑑 = 𝑥𝑑 = 𝑧𝑑 , and thus
there are no nontrivial d-extensions between them by Proposition 5.3. In particular, the subcategory
dq(𝑀𝑥) is closed under d-extensions, and it is hence the smallest d-torsion class containing 𝑀𝑥 by
Theorem 3.17.

We now consider the d-quotient closure of a set of indecomposables.

Proposition 5.11. Given any subset 𝐼 ⊆ os𝑑+1
𝑛 , suppose that 𝑀𝑦 ∈ dq

(⊕
𝑥∈𝐼 𝑀𝑥

)
. Then 𝑀𝑦 ∈ dq(𝑀𝑥)

for some 𝑥 ∈ 𝐼.

Proof. We prove this by induction on the filtration of dq(
⊕

𝑥∈𝐼 𝑀𝑥). If

𝑀𝑦 ∈ dq

(⊕
𝑥∈𝐼

𝑀𝑥

)
0

= add

(⊕
𝑥∈𝐼

𝑀𝑥

)
,

the statement clearly holds.
Now suppose 𝑀𝑦 ∈ dq

(⊕
𝑥∈𝐼 𝑀𝑥

)
𝑖 for some 𝑖 > 0 and that the result is known for all

𝑀𝑧 ∈ dq
(⊕

𝑥∈𝐼 𝑀𝑥
)
𝑖−1. By construction, there must exist a minimal d-quotient

𝑋
𝑓
−→ 𝑌 → 𝐶1 → · · · → 𝐶𝑑 → 0
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in M𝑑
𝑛 of some morphism f such that 𝑌 ∈ dq

(⊕
𝑥∈𝐼 𝑀𝑥

)
𝑖−1 and 𝑀𝑦 ∈ add(𝐶 𝑗 ) for some 1 ≤ 𝑗 ≤ 𝑑.

Hence, combining Lemma 5.8 with Corollary 5.7 shows that there exists

𝑀𝑧 ∈ add(𝑌 ) ⊆ dq

(⊕
𝑥∈𝐼

𝑀𝑥

)
𝑖−1

such that 𝑀𝑦 ∈ dq(𝑀𝑧). By the induction hypothesis, we have 𝑀𝑧 ∈ dq(𝑀𝑥) for some 𝑥 ∈ 𝐼, and thus,
it follows that 𝑀𝑦 ∈ dq(𝑀𝑧) ⊆ dq(𝑀𝑥), as required. �

Using Proposition 5.11, we are able to give a complete description of the d-quotient closure of any
module in M𝑑

𝑛 .

Corollary 5.12. Given a subset 𝐼 ⊆ os𝑑+1
𝑛 , the set of indecomposable modules in dq

(⊕
𝑥∈𝐼 𝑀𝑥

)
is

precisely ⋃
𝑥∈𝐼

{
𝑀𝑦 ∈ M𝑑

𝑛 | 𝑦 ∈ os𝑑+1
𝑛 , 𝑥 ≤ 𝑦 and 𝑥𝑑 = 𝑦𝑑

}
.

Proof. Since it is clear that dq(𝑀𝑥) ⊆ dq
(⊕

𝑥∈𝐼 𝑀𝑥
)

for each 𝑥 ∈ 𝐼, this is a direct consequence of
Corollary 5.9 and Proposition 5.11. �

For a set of indecomposable modules in M𝑑
𝑛 , Corollary 5.12 gives a purely combinatorial description

of all the indecomposables in their d-quotient closure. Unlike what we saw in Remark 5.10, there may
now exist nontrivial d-extensions, so the d-quotient closure is not necessarily a d-torsion class. However,
using the results developed in this subsection, we give a full combinatorial description of the subsets
corresponding to d-torsion classes. Note that any subcategory of M𝑑

𝑛 which is closed under direct
summands is uniquely determined by its indecomposable modules (i.e., by a subset of os𝑑+1

𝑛 ). We hence
use the notation

U𝐼 := add{𝑀𝑦 ∈ M𝑑
𝑛 | 𝑦 ∈ 𝐼}

for the subcategory of M𝑑
𝑛 associated to a subset 𝐼 ⊆ os𝑑+1

𝑛 .

Theorem 5.13. Consider a subset 𝐼 ⊆ os𝑑+1
𝑛 . The subcategory U𝐼 is a d-torsion class in M𝑑

𝑛 if and
only if the following hold for any elements 𝑥, 𝑧 ∈ os𝑑+1

𝑛 :

(1) If 𝑥 ≤ 𝑧 and 𝑥𝑑 = 𝑧𝑑 , then 𝑥 ∈ 𝐼 implies 𝑧 ∈ 𝐼.
(2) If 𝑥� 𝜏𝑑 (𝑧) and 𝑥, 𝑧 ∈ 𝐼, then any 𝑦 ∈ os𝑑+1

𝑛 with 𝑦𝑖 ∈ {𝑥𝑖 , 𝑧𝑖} for each i must be in I.

Remark 5.14. The product order on 𝑁𝑑+1
𝑛 restricts to a partial order on the subset

{𝑦 ∈ os𝑑+1
𝑛 | 𝑦𝑑 = 𝑚} ⊆ 𝑁𝑑+1

𝑛 .

Theorem 5.13(1) is equivalent to {𝑦 ∈ 𝐼 | 𝑦𝑑 = 𝑚} being an upper set in {𝑦 ∈ os𝑑+1
𝑛 | 𝑦𝑑 = 𝑚} for each

𝑚 = 0, . . . , 𝑛 − 1.

Proof of Theorem 5.13. By Corollary 5.12, condition (1) holds if and only if U𝐼 is closed under
d-quotients. It follows from Proposition 5.3 and Remark 5.4 that condition (2) is equivalent to U𝐼

being closed under d-extensions by indecomposables. Moreover, if U𝐼 is closed under d-quotients, it
is closed under d-extensions by indecomposables if and only if it is closed under all d-extensions by
Theorem 3.20. From Theorem 3.17, we know that U𝐼 is a d-torsion class if and only if it is closed under
d-extensions and d-quotients, which proves the claim. �
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5.3. Computational results

We are now ready to present two algorithms for explicitly computing higher torsion classes associated
to higher Auslander algebras of type A. The first algorithm computes the minimal d-torsion class
containing a given module. The second computes all d-torsion classes associated to a higher Auslander
algebra. Python code implementing the algorithms is available as a Google Colab notebook.1

We extend our notation for the sake of readability. In particular, for an element 𝑥 ∈ os𝑑+1
𝑛 , we set

dq(𝑥) = {𝑦 ∈ os𝑑+1
𝑛 | 𝑀𝑦 ∈ dq(𝑀𝑥)}. By Corollary 5.9, we know that

dq(𝑥) =
{
𝑦 ∈ os𝑑+1

𝑛 | 𝑥 ≤ 𝑦 and 𝑥𝑑 = 𝑦𝑑
}
.

Given a set of indecomposable modules 𝑀𝑥1 , . . . , 𝑀𝑥𝑟 in M𝑑
𝑛 , we let U (𝑀𝑥1 , . . . , 𝑀𝑥𝑟 ) denote the

smallest d-torsion class in M𝑑
𝑛 containing 𝑀𝑥1 , . . . , 𝑀𝑥𝑟 . For a set 𝑋 = {𝑥1, . . . , 𝑥𝑟 } ⊆ os𝑑+1

𝑛 , we let
𝑈 (𝑋) be the set of (𝑑 + 1)-tuples in os𝑑+1

𝑛 corresponding to the indecomposables in U (𝑀𝑥1 , . . . , 𝑀𝑥𝑟 ).
If the set X is empty, then 𝑈 (𝑋) is also empty and corresponds to the trivial d-torsion class {0}.

Algorithm 5.15. Given a set of initial indecomposable modules in M𝑑
𝑛 , or equivalently, a subset of

os𝑑+1
𝑛 , this algorithm computes the minimal d-torsion class containing those modules.
Input: Integers d ≥ 1, n ≥ 1 and a set X = {x1, . . . , xr}⊃ os𝑑+1

𝑛 .

(1) Let I = X.
(2) For each pair x, y ∈ I such that x� 𝜏d(y), add the (d + 1)-tuple (x0, . . . , xd−1, yd) to I.
(3) For every x ∈ I, add the elements of dq(x) to I.
(4) If new elements were added to I in step (2) or (3), repeat from step (2). Otherwise, terminate the

process.

Output: The set I.

Since os𝑑+1
𝑛 is a finite set, Algorithm 5.15 will always terminate and give a subset 𝐼 ⊆ os𝑑+1

𝑛 as
output. Recall that we use the notation

U𝐼 := add{𝑀𝑦 ∈ M𝑑
𝑛 | 𝑦 ∈ 𝐼}

for the corresponding subcategory of M𝑑
𝑛 . Proposition 5.16 shows that the set I produced in Algorithm

5.15 indeed corresponds to the minimal d-torsion class containing the indecomposable modules we
started with.

Proposition 5.16. The set I constructed in Algorithm 5.15 satisfies U𝐼 = U (𝑀𝑥1 , . . . , 𝑀𝑥𝑟 ).

Proof. We need to show that U𝐼 is the minimal d-torsion class containing 𝑀𝑥1 , . . . , 𝑀𝑥𝑟 . Step (1) of
the algorithm ensures that 𝑀𝑥1 , . . . , 𝑀𝑥𝑟 ∈ U𝐼 . By Proposition 5.11, step (3) implies that U𝐼 is closed
under d-quotients.

Consider two indecomposable modules 𝑀𝑥 , 𝑀𝑦 ∈ U𝐼 with Ext𝑑
𝐴𝑑
𝑛
(𝑀𝑦 , 𝑀𝑥) ≠ 0. This means that the

pair 𝑥, 𝑦 ∈ 𝐼 satisfies 𝑥 � 𝜏𝑑 (𝑦) by Proposition 5.3. Moreover, if 𝑀𝑧 is a direct summand in one of
the middle terms in the nontrivial d-extension from 𝑀𝑥 to 𝑀𝑦 described in Proposition 5.3, then either
𝑧 ∈ dq(𝑥) or 𝑧 ∈ dq((𝑥0, . . . , 𝑥𝑑−1, 𝑦𝑑)). Step (2) followed by step (3) thus ensures that 𝑀𝑧 ∈ U𝐼 , so U𝐼

is closed under d-extensions with indecomposable end terms. By Theorem 3.20, this implies that U𝐼 is
closed under all d-extensions. We can hence conclude that U𝐼 is a d-torsion class by Theorem 3.17.

We now know that U𝐼 is a d-torsion class containing the modules 𝑀𝑥1 , . . . , 𝑀𝑥𝑟 . However, objects
added to I in the algorithm correspond to either 𝑀𝑥1 , . . . , 𝑀𝑥𝑟 or to indecomposable direct summands
obtained from minimal d-quotients or minimal d-extensions – see Remark 5.4 – and the result follows.

�

1https://colab.research.google.com/drive/172Q-UZHvdPOhngGkl1T_xdYLzntg31dY
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Remark 5.17. An improvement of Algorithm 5.15, omitted for the sake of readability, is that on
subsequent iterations it suffices to only consider (𝑑 + 1)-tuples added in the previous iteration in step
(3). Similarly, in step (2), one only needs to consider pairs where at least one (𝑑 + 1)-tuple was added
in the previous iteration.

Building on Algorithm 5.15, we give an algorithm that determines all d-torsion classes in M𝑑
𝑛 .

Algorithm 5.18. This algorithm computes all higher torsion classes associated to a higher Auslander
algebra.

Input: Integers d ≥ 1, n ≥ 1.

(1) Let 𝔘 be the singleton set containing the empty set. Set l = 1.
(2) For all sets X consisting of l distinct (d + 1)-tuples in os𝑑+1

𝑛 , compute U(X) using Algorithm 5.15
and add it to 𝔘.

(3) If new elements were added to 𝔘 in step (2), increase l by one and repeat from step (2). Otherwise,
terminate the process.

Output: The set 𝔘.

Similarly as in the case of Algorithm 5.15, it should be noted that the algorithm above must terminate
as os𝑑+1

𝑛 is a finite set.

Proposition 5.19. The d-torsion classes in M𝑑
𝑛 are indexed by 𝔘. In other words,

𝑑-tors(M𝑑
𝑛) = {U𝐼 | 𝐼 ∈ 𝔘}.

Proof. First, observe that the trivial d-torsion class {0} = U∅, and ∅ ∈ 𝔘. As M𝑑
𝑛 has finitely many

indecomposable objects, any nontrivial d-torsion classV inM𝑑
𝑛 can be written asV = U (𝑀𝑥1 , . . . , 𝑀𝑥𝑚 )

for some positive integer m.
Let r be the lowest positive integer for which any d-torsion class of the form U (𝑀𝑥1 , . . . , 𝑀𝑥𝑟 ) can

also be written as U (𝑀𝑦1 , . . . , 𝑀𝑦𝑠 ) for some 𝑠 < 𝑟 . By construction, the set 𝔘 indexes all d-torsion
classes of the form U (𝑀𝑥1 , . . . , 𝑀𝑥𝑙 ) for 𝑙 < 𝑟 .

Suppose that V is a nontrivial d-torsion class, and let 𝑚 ≥ 0 be minimal such that

V = U (𝑀𝑥1 , . . . , 𝑀𝑥𝑚 ).

We claim that V = U𝐼 for some 𝐼 ∈ 𝔘 (i.e., that 𝑚 < 𝑟). Indeed, if 𝑚 ≥ 𝑟 , consider the d-torsion class
V ′ = U (𝑀𝑥1 , . . . , 𝑀𝑥𝑟 ). By the assumption on r, we can write V ′ as U (𝑀𝑧1 , . . . , 𝑀𝑧𝑠 ) for some 𝑠 < 𝑟 .
But then V is of the form U (𝑀𝑧1 , . . . 𝑀𝑧𝑠 , 𝑀𝑥𝑟+1 , . . . 𝑀𝑥𝑚 ) and can hence be generated by 𝑚 + 𝑠− 𝑟 < 𝑚
indecomposable modules. This contradicts the minimality of m, and the result follows. �

Remark 5.20. As before, Algorithm 5.18 is presented in its simplest form for the sake of readability.
For efficient computations, we use the following improvements:

◦ We precalculate whether 𝑥� 𝑦 and 𝑥� 𝜏𝑑 (𝑦) for all 𝑥, 𝑦 ∈ os𝑑+1
𝑛 .

◦ If a set X contains 𝑥, 𝑦 with 𝑦 ∈ dq(𝑥), then 𝑈 (𝑋) has already been added to 𝔘, so we skip the
computation of 𝑈 (𝑋) in step (2).

Using Algorithm 5.18, we can compute the number of higher torsion classes associated to a higher
Auslander algebra. These computational results are summarised in Table 2.

In addition to computing the full set of d-torsion classes inM𝑑
𝑛 , our code also produces the associated

Hasse diagram. Note that it gives a fully annotated version of the Hasse diagram, specifying the
indecomposable modules contained in each d-torsion class.

Example 5.21. Consider the higher Auslander algebra 𝐴3
3. The Hasse diagram of the 3-torsion classes

in the 3-cluster tilting subcategory M3
3 is shown in Figure 3. We note that the vertices labelled w, x and v

have valency 3, 4 and 5, respectively, so the lattice is not Hasse-regular. We moreover note that the lattice
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Table 2. The number of d-torsion classes in the d-cluster tilting subcategory M𝑑
𝑛 of

the higher Auslander algebra 𝐴𝑑
𝑛..

n
1 2 3 4 5 6

d

1 2 5 14 42 132 429
2 2 6 25 140 1036 10040
3 2 7 46 643 22224
4 2 8 87 4147
5 2 9 168 36543
6 2 10 329 427527
7 2 11 650
8 2 12 1291

is not semi-distributive as it fails the criterion of meet-semi-distributivity [G, p. 479]. Indeed, using the
notation ∨ for join and ∧ for meet, we see that 𝑥 ∧ 𝑦 = 𝑣 = 𝑥 ∧ 𝑧, but that 𝑥 ∧ (𝑦 ∨ 𝑧) = 𝑥 ∧ 𝑤 = 𝑥 ≠ 𝑣.

6. Higher Nakayama algebras

Higher Nakayama algebras were introduced in [JKPK] as a higher-dimensional generalisation of classical
Nakayama algebras. In this section, we extend the combinatorial description of higher torsion classes
from Theorem 5.13 to the setup of higher Nakayama algebras. We first consider higher Nakayama
algebras of type A in Section 6.1, before moving on to type A∞

∞ in Section 6.2.

6.1. Higher Nakayama algebras of type A

We start by giving a brief introduction to the construction of higher Nakayama algebras of type A. Let
n and d be positive integers, and recall the definitions of os𝑑𝑛 , 𝐴𝑑

𝑛 , M𝑑
𝑛 and 𝑀𝑥 from Section 5.1.

A (connected) Kupisch series of typeA𝑛 is a tuple ℓ = (ℓ0, ℓ1, . . . , ℓ𝑛−1) of positive integers satisfying

ℓ0 = 1 and 2 ≤ ℓ𝑖 ≤ ℓ𝑖−1 + 1 for 𝑖 = 1, . . . , 𝑛 − 1.

Given such a Kupisch series ℓ, consider the subset

os𝑑+1
ℓ := {𝑦 ∈ os𝑑+1

𝑛 | ℓℓ(𝑦) ≤ ℓ𝑦𝑑 },

where ℓℓ(𝑦) = 𝑦𝑑 − 𝑦0 + 1. Note that ℓℓ(𝑦) is equal to the Loewy length of the module 𝑀𝑦 in mod 𝐴𝑑
𝑛 ;

see [JKPK, Lemma 2.9]. For 𝑑 ≥ 2, the d-th Nakayama algebra with Kupisch series ℓ is the idempotent
quotient

𝐴𝑑
ℓ := 𝐴𝑑

𝑛/(os𝑑𝑛 \ os𝑑ℓ ).

In other words, if we let 𝑒ℓ be the idempotent consisting of the sum of the vertices in os𝑑𝑛 \ os𝑑ℓ ,
then 𝐴𝑑

ℓ is isomorphic to 𝐴𝑑
𝑛/𝐴

𝑑
𝑛𝑒ℓ𝐴

𝑑
𝑛 . It follows from [JKPK, Proposition 2.24] that the subcategory

M𝑑
ℓ

:= M𝑑
𝑛 ∩mod 𝐴𝑑

ℓ is d-cluster tilting in mod 𝐴𝑑
ℓ , and that M𝑑

ℓ = add (𝑀𝑑
ℓ ) for 𝑀𝑑

ℓ =
⊕

𝑥∈os𝑑+1
ℓ

𝑀𝑥 .

Note that the isomorphism classes of indecomposable modules in M𝑑
ℓ are in bijection with elements

of os𝑑+1
ℓ . Using our results, we can characterise the subsets of os𝑑+1

ℓ which correspond to higher torsion
classes in M𝑑

ℓ . We use the notation

U𝐼 := add{𝑀𝑦 ∈ M𝑑
ℓ | 𝑦 ∈ 𝐼}

for the subcategory of M𝑑
ℓ associated to a subset 𝐼 ⊆ os𝑑+1

ℓ .
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Figure 3. The Hasse diagram of the 3-torsion classes in the 3-cluster tilting subcategory M3
3 of the

higher Auslander Algebra 𝐴3
3.
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Theorem 6.1. Let ℓ be a Kupisch series of type A𝑛 and consider a subset 𝐼 ⊆ os𝑑+1
ℓ . The subcategory

U𝐼 is a d-torsion class in M𝑑
ℓ if and only if the following hold for any elements 𝑥, 𝑧 ∈ os𝑑+1

ℓ :

(1) If 𝑥 ≤ 𝑧 and 𝑥𝑑 = 𝑧𝑑 , then 𝑥 ∈ 𝐼 implies 𝑧 ∈ 𝐼.
(2) If 𝑥� 𝜏𝑑 (𝑧) and 𝑥, 𝑧 ∈ 𝐼, then any 𝑦 ∈ os𝑑+1

ℓ with 𝑦𝑖 ∈ {𝑥𝑖 , 𝑧𝑖} for each i must be in I.

Proof. By Corollary 5.12, condition (1) is equivalent to U𝐼 being closed under d-quotients in M𝑑
𝑛 . For

objects in M𝑑
ℓ , the minimal d-quotients in M𝑑

ℓ are the same as the minimal d-quotients in M𝑑
𝑛 by

Proposition 4.7(3) and Remark 4.8. Hence, condition (1) is also equivalent to U𝐼 being closed under
d-quotients in M𝑑

ℓ .
Note next that d-extensions in M𝑑

ℓ coincide with d-extensions in M𝑑
𝑛 with all terms in M𝑑

ℓ . By
Proposition 5.3 and Remark 5.4, condition (2) hence implies that U𝐼 is closed under d-extensions by
indecomposables in M𝑑

ℓ . Assuming both (1) and (2) thus yields that U𝐼 is closed under all d-extensions
in M𝑑

ℓ by Theorem 3.20, so U𝐼 is a d-torsion class in M𝑑
ℓ by Theorem 3.17.

It remains to show that if U𝐼 is a d-torsion class in M𝑑
ℓ , then condition (2) is satisfied. We will use

that we already know condition (1) holds. Consider 𝑥, 𝑧 ∈ 𝐼 with 𝑥� 𝜏𝑑 (𝑧), and suppose that 𝑦 ∈ os𝑑+1
ℓ

satisfies 𝑦𝑖 ∈ {𝑥𝑖 , 𝑧𝑖} for each i. We need to show that 𝑦 ∈ 𝐼.
As 𝑥� 𝜏𝑑 (𝑧), there is a minimal d-extension

0 → 𝑀𝑥 → 𝐸1 → · · · → 𝐸𝑑 → 𝑀𝑧 → 0 (11)

in M𝑑
𝑛 with 𝑀𝑦 as a direct summand in one of the middle terms by Proposition 5.3 and Remark 5.4.

Let us first assume 𝑧𝑑 − 𝑥0 + 1 ≤ ℓ𝑧𝑑 . Using that 𝑥, 𝑧 ∈ os𝑑+1
ℓ and 𝑥0 ≤ 𝑧0 − 1, we see that all the terms in

(11) are in M𝑑
ℓ in this case. Hence, we must have 𝑀𝑦 ∈ U𝐼 and 𝑦 ∈ 𝐼 as U𝐼 is closed under d-extensions

in M𝑑
ℓ .

Consider now the case 𝑧𝑑 − 𝑥0 + 1 > ℓ𝑧𝑑 . Note that we have 𝑥 ≤ 𝑦. If 𝑦𝑑 = 𝑥𝑑 , condition (1)
hence yields that 𝑦 ∈ 𝐼, so we can assume 𝑦𝑑 = 𝑧𝑑 . Now 𝑦0 = 𝑥0 would contradict the assumption
𝑧𝑑 − 𝑥0 + 1 > ℓ𝑧𝑑 as 𝑦 ∈ os𝑑+1

ℓ , so we must have 𝑦0 = 𝑧0.
If 𝑦 = 𝑧, we have 𝑦 ∈ 𝐼, so assume that 𝑦𝑖 = 𝑥𝑖 for some 1 ≤ 𝑖 ≤ 𝑑 − 1. This ensures that

𝑘 := min{𝑖 | 𝑧𝑖−1 ≤ 𝑥𝑖} exists. Note that for 𝑗 < 𝑘 , we have 𝑧 𝑗−1 − 1 ≥ 𝑥 𝑗 . Combining this with the
inequality 𝑥 𝑗 ≥ 𝑧 𝑗−1 − 1 coming from 𝑥� 𝜏𝑑 (𝑧), we get that 𝑥 𝑗 = 𝑧 𝑗−1 − 1 for 𝑗 > 0. Let

𝑤 = (𝑧0, 𝑧1, . . . , 𝑧𝑘−1, 𝑥𝑘 , . . . , 𝑥𝑑−1, 𝑧𝑑) = (𝑥1 + 1, 𝑥2 + 1, . . . , 𝑥𝑘−1 + 1, 𝑧𝑘−1, 𝑥𝑘 , . . . , 𝑥𝑑−1, 𝑧𝑑),

and observe that 𝑤 ∈ os𝑑+1
ℓ with 𝑤 ≤ 𝑦 and 𝑤𝑑 = 𝑦𝑑 since y is of the form

𝑦 = (𝑧0, 𝑧1, . . . , 𝑧𝑘−1, 𝑦𝑘 , . . . , 𝑦𝑑−1, 𝑧𝑑)

under our current assumptions. Consequently, it suffices to show that 𝑤 ∈ 𝐼, as this implies 𝑦 ∈ 𝐼 by
condition (1).

To this end, define

𝑥 = (𝑧0, 𝑧1, . . . , 𝑧𝑘−1, 𝑥𝑘 , . . . , 𝑥𝑑)

𝑧 = (𝑧0 + 1, 𝑧1 + 1, . . . , 𝑧𝑘−1 + 1, 𝑧𝑘 , . . . , 𝑧𝑑).

We see that 𝑥, 𝑧 ∈ os𝑑+1
ℓ . Observe moreover that 𝑥 ≤ 𝑥 with 𝑥𝑑 = 𝑥𝑑 and 𝑧 ≤ 𝑧 with 𝑧𝑑 = 𝑧𝑑 , so

𝑥, 𝑧 ∈ 𝐼 by condition (1). Furthermore, we have 𝑥 � 𝜏𝑑 (𝑧) and 𝑤𝑖 ∈ {𝑥𝑖 , 𝑧𝑖} for all i. Finally, notice
that 𝑧𝑑 − 𝑥0 + 1 = 𝑧𝑑 − 𝑧0 + 1 ≤ ℓ𝑧𝑑 . It follows that 𝑤 ∈ 𝐼 by the same argument as earlier in this proof,
and we can conclude that 𝑦 ∈ 𝐼. �
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Figure 4. The quiver of the 2-cluster tilting subcategory M2
ℓ in Example 6.2.

The following example illustrates the use of Theorem 6.1.

Example 6.2. Fix 𝑛 = 4, 𝑑 = 2 and ℓ = (1, 2, 2, 3). The higher Nakayama algebra 𝐴2
ℓ has a 2-cluster

tilting subcategory M2
ℓ , whose associated quiver can be found in Figure 4. Note that we identify the

indecomposable objects of M2
ℓ with os3

ℓ and that we use a shortened notation for the sake of simplicity.
The following subcategories are examples of 2-torsion classes in M2

ℓ :

◦ add{0}
◦ M2

ℓ

◦ add{000, 133, 222, 223, 233, 333}
◦ add{112, 113, 122, 123, 222, 133, 223, 233, 333}.

Remark 6.3. With the results in this section, we can extend Algorithms 5.15 and 5.18 to the higher
Nakayama setting with a few changes:

◦ The input needs to include the Kupisch series ℓ.
◦ Elements must be chosen from os𝑑+1

ℓ , rather than os𝑑+1
𝑛 .

We have implemented the extended algorithm in the Google Colab Notebook associated to this paper.2

6.2. Higher Nakayama algebras of type A∞
∞

The goal of this subsection is to further extend the combinatorial description of d-torsion classes to
higher Nakayama algebras of type A∞

∞ as introduced in [JKPK]. We start by giving a brief introduction
to this class of algebras.

In contrast to earlier in this paper, we now need to consider quivers with infinitely many vertices.
Hence, associated to a quiver with relations is a category C rather than an algebra. The objects of C
are the vertices of the quiver, and a basis of the morphisms spaces are given by the arrows modulo
the given relations. A right module over C is a k-linear functor 𝑀 : Cop → Modk. The module M is
called finite-dimensional if the sum

⊕
𝑥∈C 𝑀 (𝑥) is finite-dimensional. We let fd C denote the category

of finite-dimensional right modules over C. For more details, see [JKPK, Sections 1.1 and 1.2].
Let os𝑑 denote the set of non-decreasing d-tuples 𝑥 = (𝑥0, . . . , 𝑥𝑑−1) over Z. Consider Z𝑑 as a

k-linear category given by the k-linearisation of the poset Z𝑑 endowed with the product order. The
mesh category of type ZA𝑑−1

∞ is defined to be the additive quotient

𝐴𝑑
∞ := Z𝑑/(Z𝑑 \ os𝑑).

Note that 𝐴𝑑
∞ can be represented by the opposite of an infinite quiver 𝑄𝑑 with relations. The vertices of

𝑄𝑑 are elements in os𝑑 , and there is an arrow from vertex x to vertex y if 𝑦𝑖 = 𝑥𝑖 + 1 for exactly one
𝑖 = 0, . . . , 𝑑−1 and 𝑦 𝑗 = 𝑥 𝑗 for 𝑗 ≠ 𝑖. The relations of 𝐴𝑑

∞ are given by a certain admissible ideal making
squares commutative and sending certain compositions of two arrows to zero; see [JKPK, Section 3.1]
for more details.

2https://colab.research.google.com/drive/172Q-UZHvdPOhngGkl1T_xdYLzntg31dY
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Following [JKPK, Appendix B], we say that a Kupisch series of type A∞
∞ is an infinite tuple

ℓ = (. . . , ℓ−1, ℓ0, ℓ1, . . . ), where ℓ𝑖 is either a nonnegative integer or equal to ∞, and where the inequality

ℓ𝑖 ≤ ℓ𝑖−1 + 1

holds for all 𝑖 ∈ Z. We write KS(A∞
∞) for the set of Kupisch series of type A∞

∞. Given such a Kupisch
series ℓ, define the subset

os𝑑+1
ℓ := {𝑦 ∈ os𝑑+1 | ℓℓ(𝑦) ≤ ℓ𝑦𝑑 },

where ℓℓ(𝑦) = 𝑦𝑑 − 𝑦0 + 1 as before. For 𝑑 ≥ 2, the category 𝐴𝑑
ℓ is defined as the idempotent quotient

𝐴𝑑
ℓ := 𝐴𝑑

∞/(os𝑑 \ os𝑑ℓ ).

Note that we have an inclusion fd 𝐴𝑑
ℓ → fd 𝐴𝑑

∞ between the categories of finite-dimensional modules.
Associated to the Kupisch series ℓ, we also have the subcategory

M𝑑
ℓ := add{𝑀𝑥 ∈ fd 𝐴𝑑

∞ | 𝑥 ∈ os𝑑+1
ℓ }

of fd 𝐴𝑑
∞. Here, we use the notation 𝑀𝑥 for the indecomposable 𝐴𝑑

∞-module with support in all vertices
𝑦 ∈ os𝑑 satisfying 𝑥0 ≤ 𝑦0 ≤ 𝑥1 ≤ · · · ≤ 𝑥𝑑−1 ≤ 𝑦𝑑−1 ≤ 𝑥𝑑 . This extends the analogous definition
in Section 5.1. By [JKPK, Appendix B], the subcategory M𝑑

ℓ is d-cluster tilting in fd 𝐴𝑑
ℓ . For certain

choices of ℓ, this gives an example of a d-cluster tilting subcategory of an abelian category with no
nonzero projective or injective objects (e.g., if ℓ𝑖 = ∞ for all 𝑖 ∈ Z); see [JKPK, Proposition 3.6].

Now consider the partial order on the set KS(A∞
∞) given by the product order. If ℓ ≤ ℓ′, then we have

a natural functor 𝐴𝑑
ℓ′
→ 𝐴𝑑

ℓ of categories. This gives an inclusion fd 𝐴𝑑
ℓ → fd 𝐴𝑑

ℓ′
such that the equality

M𝑑
ℓ = M𝑑

ℓ′ ∩ fd 𝐴𝑑
ℓ

holds. Similarly, if ℓ1 ≤ ℓ2 ≤ · · · is an increasing sequence of Kupisch series which converges to
ℓ ∈ KS(A∞

∞) (in the natural way), then

fd 𝐴𝑑
ℓ =
⋃
𝑖≥1

fd 𝐴𝑑
ℓ𝑖

and M𝑑
ℓ =
⋃
𝑖≥1

M𝑑
ℓ𝑖
.

A Kupisch series ℓ ∈ KS(A∞
∞) is called finite if ℓ 𝑗 = 0 for all but finitely many 𝑗 ∈ Z. Note that for any

ℓ ∈ KS(A∞
∞), we can find a sequence ℓ1 ≤ ℓ2 ≤ · · · of finite Kupisch series in KS(A∞

∞) which converges
to ℓ. We use this to give a characterisation of the d-torsion classes in M𝑑

ℓ in Theorem 6.5 below.

Remark 6.4. Let ℓ be a Kupisch series of type A𝑛. Then ℓ can be identified with a finite Kupisch series
ℓ′ of type A∞

∞ which is nonzero only in positions 0, . . . , 𝑛 − 1. In this case, there is a bijection between
the sets os𝑑ℓ and os𝑑

ℓ′
, so the algebra 𝐴𝑑

ℓ and the category 𝐴𝑑
ℓ′

can be naturally identified. Note that up
to isomorphism, the set os𝑑

ℓ′
and the category 𝐴𝑑

ℓ′
remain unchanged when shifting ℓ′ some number of

steps to the left or right.
In general, if ℓ is a finite Kupisch series of type A∞

∞, then ℓ is obtained by gluing together shifts of
Kupisch series of type A. Hence, the set os𝑑ℓ is in bijection with a disjoint union

⋃𝑚
𝑗=1 os𝑑ℓ 𝑗

where ℓ 𝑗 is a

Kupisch series of type A𝑛 𝑗 for some integer 𝑛 𝑗 ≥ 1. The associated category 𝐴𝑑
ℓ can thus be identified

with a finite product

𝐴𝑑
ℓ1
× · · · × 𝐴𝑑

ℓ𝑚
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where 𝐴𝑑
ℓ 𝑗

is a higher Nakayama algebras of type A𝑛 𝑗 . With this identification, the category fd 𝐴𝑑
ℓ is

equivalent to the product mod 𝐴𝑑
ℓ1
×· · ·×mod 𝐴𝑑

ℓ𝑚
, and the d-cluster tilting subcategoryM𝑑

ℓ is equivalent
to the productM𝑑

ℓ1
×· · ·×M𝑑

ℓ𝑚
. Since any Kupisch series ℓ of typeA∞

∞ can be represented by a converging
sequence of finite Kupisch series, it follows that the associated d-cluster tilting subcategory M𝑑

ℓ is the
union of finite products of d-cluster tilting subcategories of higher Nakayama algebras of type A.

As before, we use the notation

U𝐼 := add{𝑀𝑦 ∈ M𝑑
ℓ | 𝑦 ∈ 𝐼}

for the subcategory of M𝑑
ℓ associated to a subset 𝐼 ⊆ os𝑑+1

ℓ .

Theorem 6.5. Let ℓ be a Kupisch series of type A∞
∞ and consider a subset 𝐼 ⊆ os𝑑+1

ℓ . The subcategory
U𝐼 is a d-torsion class in M𝑑

ℓ if and only if the following hold for any elements 𝑥, 𝑧 ∈ os𝑑+1
ℓ :

(1) If 𝑥 ≤ 𝑧 and 𝑥𝑑 = 𝑧𝑑 , then 𝑥 ∈ 𝐼 implies 𝑧 ∈ 𝐼.
(2) If 𝑥� 𝜏𝑑 (𝑧) and 𝑥, 𝑧 ∈ 𝐼, then any 𝑦 ∈ os𝑑+1

ℓ with 𝑦𝑖 ∈ {𝑥𝑖 , 𝑧𝑖} for each i must be in I.

Proof. Choose an increasing sequence ℓ1 ≤ ℓ2 ≤ · · · of finite Kupisch series which converges to ℓ.
Then we have that

U𝐼 ∩M𝑑
ℓ𝑖
= U𝐼∩os𝑑+1

ℓ𝑖

for each 𝑖 ≥ 1. Fix 𝑖 ≥ 1, and set 𝐽𝑖 = 𝐼 ∩ os𝑑+1
ℓ𝑖

. We have an equivalence between M𝑑
ℓ𝑖

and a finite
product M𝑑

ℓ𝑖1
× · · · × M𝑑

ℓ𝑖𝑚
as in Remark 6.4. The subcategory U𝐽 𝑖 of M𝑑

ℓ𝑖
is hence equivalent to a

product U1 × · · · × U𝑚, where U𝑘 is a subcategory of M𝑑
ℓ𝑖𝑘

for each k. Note that os𝑑+1
ℓ𝑖

is in bijection

with the disjoint union
⋃𝑚

𝑘=1 os𝑑+1
ℓ𝑖𝑘

as in Remark 6.4. We let 𝐽𝑖𝑘 denote the intersection of os𝑑+1
ℓ𝑖𝑘

with the

image of 𝐽𝑖 under this bijection. Then we get U𝑘 = U𝐽 𝑖
𝑘
.

Note that I satisfies the conditions (1) and (2) in the statement if and only if the set 𝐽𝑖 satisfies the
analogous conditions for each 𝑖 ≥ 1. Furthermore, this holds if and only if each 𝐽𝑖𝑘 satisfies the conditions
of Theorem 6.1. By Theorem 6.1, this is again equivalent to U𝐽 𝑖

𝑘
being a d-torsion class in M𝑑

ℓ𝑖𝑘
for all

i and k (i.e., that U𝐽 𝑖 � U𝐽 𝑖
1
× · · · × U𝐽 𝑖

𝑚
is a d-torsion class in M𝑑

ℓ𝑖
for all 𝑖 ≥ 1). Hence, it suffices to

show that U𝐼 is a d-torsion class in M𝑑
ℓ if and only if U𝐽 𝑖 is a d-torsion class in M𝑑

ℓ𝑖
for all 𝑖 ≥ 1.

If U𝐼 is a d-torsion class in M𝑑
ℓ , then U𝐽 𝑖 = U𝐼 ∩M𝑑

ℓ𝑖
is a d-torsion class in M𝑑

ℓ𝑖
= M𝑑

ℓ ∩ fd 𝐴𝑑
ℓ𝑖

for
all 𝑖 ≥ 1 by Proposition 4.7(1). Conversely, assume U𝐽 𝑖 is a d-torsion class in M𝑑

ℓ𝑖
for all 𝑖 ≥ 1. Since

we have

U𝐽 1 ⊆ U𝐽 2 ⊆ · · · and U𝐼 =
⋃
𝑖≥1

U𝐽 𝑖 ,

the subcategory U𝐼 must be closed both under d-extensions and d-quotients in M𝑑
ℓ =
⋃

𝑖≥1 M𝑑
ℓ𝑖

, since
U𝐽 𝑖 is closed under d-extensions and d-quotients in M𝑑

ℓ𝑖
for all 𝑖 ≥ 1. By Theorem 3.17, this shows that

U𝐼 is a d-torsion class. �
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