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Abstract. A subgroup H is called weakly M-supplemented in a finite group G
if there exists a subgroup B of G provided that (1) G = HB, and (2) if H,/Hg is a
maximal subgroup of H/Hg, then HB = BH| < G, where Hg is the largest normal
subgroup of G contained in H. In this paper we will prove the following: Let G be a
finite group and P be a Sylow p-subgroup of G, where p is the smallest prime divisor
of |G|. Suppose that P has a non-trivial proper subgroup D such that all subgroups
E of P with order |D| and 2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there
exists D; < E < P with 2|D| = |D| and E/D; is cyclic of order 4) have p-nilpotent
supplement or weak M-supplement in G, then G is p-nilpotent.

2010 Mathematics Subject Classification. 20D10, 20D20.

1. Introduction. All groups considered in this paper are finite. Most of the
notations are standard and can be found in [3] and [9].

It is well known that the relationship between the properties of primary subgroups
and the structure of finite groups has been investigated extensively by many authors.
For instance, in 1980 Srinivasan [14] proved that a finite group is supersolvable if
every maximal subgroup of the Sylow subgroup is normal. By considering normal
c-supplement of some primary subgroups, Wang [16] in 1996 obtained some new
conditions for the solvability and supersolvability of a finite group. Furthermore,
Guo and Shum [7] in 2003 considered the c-normal maximal subgroups and minimal
subgroups of a Sylow p-subgroup of G, and got some new results about p-nilpotent
groups. In 2004, Guo, Sun and Shum [8] showed that if there is a maximal subgroup M
of a group G and a prime p for which every cyclic subgroup of p-power order in M is c-
supplemented in G, then G is solvable. In 2005, Guo, Shum and Skiba [6] obtained some
new properties of supersolvable groups by using conditionally permutable subgroups.

Recently, as an interesting application of these generalisations, Skiba [12, 13]
fixed in every noncyclic Sylow subgroup P of G a group D satisfying 1 < |D| < |P|,
and investigated the structure of G under the assumption that all subgroups H with
|H| = |D| are c-quasinormal or weakly s-permutable in G. Moreover, Guo [4] proposed
the conception of F-supplemented subgroup and obtained some new results about
supersolvable and solvable groups. Guo and Skiba [5] introduced s-embedded and
n-embedded subgroups, and obtained some new results about supersolvable groups.
Miao and Lempken [10] presented the definition of M-supplemented subgroup, and
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got some new information on the structure of finite groups. More recently, Miao and
Lempken [11] generalised M-supplemented and c-normal subgroups with weakly M-
supplemented subgroups, and obtained some new results about supersolvable groups.

As a continuation, we will extensively investigate the properties of the weakly
M-supplemented subgroups in a finite group G.

DEFINITION 1.1. A subgroup H of a group G is said to be weakly M-supplemented
in G if there exists a subgroup B of G such that (1) G = HB, and (2) if H;/Hg is a
maximal subgroup of H/Hg, then H|B = BH| < G, where Hg is the largest normal
subgroup of G contained in H; in this case, B is also called a weak M-supplement of
Hin G.

Recall that a subgroup H is called M-supplemented in a finite group G [10] if
there exists a subgroup B of G such that G = HB and H| B is a proper subgroup of
G for every maximal subgroup H; of H. Moreover, a subgroup H is called weakly
s-permutable in G [13] if there exists a subnormal subgroup K of G such that G = HK
and H N K < H,g, where Hyg is the largest s-quasinormal subgroup of G contained
in H.

It is clear that every M-supplemented subgroup and every c-normal subgroup
are weakly M-supplemented. The following examples indicate that the weak M-
supplementation of subgroups can neither be deduced from Skiba’s result nor from
other related results.

EXAMPLE 1.2. Let G = Sy and H = ((1234)) be a cyclic subgroup of order 4. Then
G = HA,4, where Ay is the alternating group of degree 4. Clearly, since A4 < G, we have
A4 permutes all maximal subgroups of H and hence H is weakly M-supplemented in
G. On the other hand, we have H,; = 1. Otherwise, if H is s-quasinormal in G, then
H is normal in G, a contradiction. If Hyg = ((13)(24)) is s-quasinormal in G, then
((13)(24)) is normal in G, a contradiction. Therefore H is not weakly s-permutable
in G.

ExAMPLE 1.3. Let G = Sy and H be a Sylow 2-subgroup of G. Clearly, H is weakly
M-supplemented in G and G = H A4. Furthermore, H is not M-supplemented in G.

2. Preliminaries. For the sake of convenience, we first list here some known
results that will be useful in the sequel.

LEMMA 2.1 [11, Lemma 2.1]. Let G be a group. Then,

(1) If H is weakly M-supplemented in G, H < M < G, then H is weakly M-
supplemented in M.

(2) Let N < Gand N < H. Then H is weakly M-supplemented in G if and only if
H/N is weakly M-supplemented in G/N.

(3) Let be aset of primes. Let K be a normal w'-subgroup and H be a i -subgroup of
G. If H is weakly M-supplemented in G, then HK /K is weakly M-supplemented
in G/K.

(4) Let R be a solvable minimal normal subgroup of group G and R; be a maximal
subgroup of R. If R, is weakly M-supplemented in G, then R is a cyclic group of
prime order.

(5) Let P be a p-subgroup of G, where p is a prime divisor of | G|. If P is weakly M-
supplemented in G, then there exists a subgroup B of G such that |G : TB| =p
for every maximal subgroup T of P containing Pg.
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LEMMA 2.2 [10, Lemma 2.11]. Let p be the smallest prime divisor of |G| and
P e Syl,(G). Then G is p-nilpotent if and only if P is M-supplemented in G.

LEMMA 2.3 [17, Theorem 4.1]. Let F be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup H such that G/H € F.
If all minimal and all cyclic subgroups with order 4 of F(H) are c-supplemented in G,
then G € F.

LEMMA 2.4 [3, Theorem 1.8.17]. Let N be a non-trivial solvable normal subgroup
of agroup G. If N N\ ®(G) = 1, then the Fitting subgroup F(N) of N is the direct product
of minimal normal subgroups of G that are contained in N.

LEMMA 2.5 [18, Proposition 4.6]. If H is a subgroup of G with |G : H| = p, where
p is the smallest prime divisor of |G|, then H < G.

LEMMA 2.6 [2, main theorem]. Suppose a finite group G has a Hall r-subgroup,
where 7t is a set of primes not containing 2. Then all Hall w-subgroups of G are conjugate.

LEMMA 2.7[9, IV, Theorem 5.4]. Suppose that G is a group which is not p-nilpotent
but whose proper subgroups are all p-nilpotent. Then G is a group which is not nilpotent
but whose proper subgroups are all nilpotent.

LEMMA 2.8 [3, Theorem 3.4.11]. Suppose that G is a group which is not nilpotent
but whose proper subgroups are all nilpotent. Then
(1) G has a normal Sylow p-subgroup P for some prime p and G/P = Q, where Q is
a non-normal cyclic g-subgroup for some prime q % p.
(2) P/®(P) is a minimal normal subgroup of G/ ®(P).
(3) If P is non-abelian and p # 2, then the exponent of P is p.
(4) If P is non-abelian and p = 2, then the exponent of P is 4.
(5) If P is abelian, then P is of exponent p.

LEMMA 2.9 [3, Lemma 3.6.10]. Let K be a normal subgroup of G, and P be a
p-subgroup of G, where p is a prime divisor of |G|. Then Ng;x(PK/K) = Ng(P1)K/K,
here Py is a Sylow p-subgroup of PK.

3. Main results.

THEOREM 3.1. Let G be a finite group and P be a Sylow p-subgroup of G, where p
is the smallest prime divisor of |G|. If every maximal subgroup of P has a p-nilpotent
supplement or a weak M-supplement in G, then G is p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of the
smallest order.

Let P; be a maximal subgroup of P. By hypotheses, if P; has a p-nilpotent
supplement in G, then there exists a p-nilpotent subgroup K of G such that G = P, K.
Furthermore, since K is p-nilpotent, we have K < Ng(K,,), where K, is a Hall p’-
subgroup of K and also of G. Therefore, G = P;K = PNg(K}). Clearly, P £ Ng(K,)
and PN Ng(Ky) <L, <Ly, where L; is a maximal subgroup of P and L, is a
maximal subgroup of L;. Otherwise, if PN Ng(K,) = Ly, then |G : Ng(K,)| = |P:
PN NGg(Ky)| =p. By Lemma 2.5, we know that Ng(K,) < G and hence K, < G,
a contradiction. Furthermore, if L; has a p-nilpotent supplement in G, then there
exists a p-nilpotent subgroup H in G such that G = LiNg(H,y), where Hy is a
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Hall p’-subgroup of G. By Lemma 2.6, there exists an element g of L; such that
Ng(Ky) = (Ng(Hy))s. So we have G = LiNg(Hy) = Li(Ng(Hy))® = LiNg(Ky) and
P=PNLNg(Ky)=Li(PNNsKy)) = Ly, a contradiction.

So we may assume that L; is weakly M-supplemented in G. If L; is normal in G,
then |G/L1|, = p and hence G/ L is p-nilpotent by the Burnside p-nilpotent Theorem.
Let L/L; be a normal p-complement of G/L;. By the Schur-Zassenhaus Theorem,
L =[L]Ly and G = LNg(L,) = L1 Ng(L,), with the similar discussion, we get the
contradiction.

If 1 < (L1)g < L; by the definition of a weakly M-supplemented subgroup, then
there exists a subgroup B of G such that G = L;B and TB < G for every maximal
subgroup T of L; containing (L;)s. By Lemma 2.1(2), G/(L)¢ satisfies the condition
of the theorem, the minimal choice of G implies that G/(L)¢ is p-nilpotent. The same
arguments as above show that G is p-nilpotent, which also is a contradiction.

Next we may assume (L) = 1. By Lemma 2.1(5), |G : TB| = p for every maximal
subgroup T of L;. Particularly, |G : L,B] = p and hence L,B < G by Lemma 2.5.
Clearly, PN L, B = L(P N B) is a maximal subgroup of P. By hypotheses, if L,(P N B)
has a p-nilpotent supplement in G, we get a contradiction. So we have that L,(P N B)
is weakly M-supplemented in G. Moreover, if (L (PN B))g # 1, then we denote
(L2(P N B))g := Sand G/S is p-nilpotent, since the hypotheses hold on G/S. G/S has a
normal Hall p’-subgroup X/S and X = [S]X,,, where X}, is also a Hall p’-subgroup of
G. By the Frattini Argument we have G = X Ng(Xy) = SNg(X,y) = Lo(P N B)Ng(Xy).
By Lemma 2.6, there exists an element x in L, (P N B) such that Ng(K,y) = (Ng(X,))*.
So we have G = Ly(P N B)Ng(X,) = Lo(P N BY(NG(X,))* = Ly(P N B)NG(K,;) and
P = PN Ly(PN BNG(Ky) = Lo(P N B)(P N Ng(Ky)) = Ly(PN B), a contradiction.
Therefore, (Ly(PN B))g =1 and the Sylow p-subgroup L,(PN B) of LB is M-
supplemented in L,B by Lemma 2.1(1). So L,B is p-nilpotent by Lemma 2.2, a

contradiction.
Therefore P; is weakly M-supplemented in G. With the similar argument as above,
G is p-nilpotent, a final contradiction. ]

THEOREM 3.2. Let G be a finite group and P be a Sylow p-subgroup of G, where
p is the smallest prime divisor of |G|. If every minimal subgroup of P and every cyclic
subgroup of order 4 have p-nilpotent supplement or weak M-supplement in G, then G is
p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of the
minimal order.

Clearly, the hypotheses is inherited by all proper subgroups of G by Lemma 2.1(1).
Thus, G is a minimal non-p-nilpotent group. Now Lemma 2.7 implies that G is a
group which is not nilpotent but whose proper subgroups are all nilpotent. Then by
Lemma 2.8, G has a normal Sylow p-subgroup P and G = [P]Q, where Q is a non-
normal cyclic Sylow g-subgroup of G, and P/®(P) is a minimal normal subgroup of
G/ ®(P). We consider the following cases.

Case 1. p # 2. By Lemma 2.8, the exponent of Pis p. Let E be a minimal subgroup
of P. By hypotheses, E has a p-nilpotent supplement in G or is weakly M-supplemented
in G. Clearly, if E has a p-nilpotent supplement in G, then we have that G is p-
nilpotent, a contradiction. Therefore E is weakly M-supplemented in G. If E is non-
normal in G, then E has a complement B in G. By Lemma 2.5, B < G and hence G is
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nilpotent, a contradiction. So every minimal subgroup of P is normal in G, we also get
a contradiction.

Case 2. p = 2. If the exponent of P is 2, then with the similar discussion as case 1,
we have the same contradiction. So we may assume P is of exponent 4 and so is non-
abelian. Let 4 be a cyclic subgroup of P of order 4. By hypotheses, if 4 has a p-nilpotent
supplement in G, then there exists a p-nilpotent subgroup L such that G = AL. Clearly,
L < G and hence L is nilpotent by Lemma 2.8. Next we consider N¢(L,), where L,
is a Sylow p-subgroup of L. If L, =1, then P = A4 is cyclic, a contradiction. Since
L < Ng(L,), we have that |G : Ng(L,)l =2o0r |G : Ng(L,)| =1.1If | G : Ng(L,)| = 2,
then Ng(L,) < G by Lemma 2.5 and hence G is 2-nilpotent, a contradiction. If | G :
Ng(Ly)| =1, then L, < G. Since P/®(P) is the minimal normal subgroup of G/ ®(P),
we have P = L, or L, < ®(P). Itisclear that P = L, is impossible. If L, < ®(P), then
P = AL, = A, a contradiction. So we may assume that 4 is weakly M-supplemented
in G. If 4 is normal in G, then 4®(P)/D(P) = P/P(P) and A = P is abelian by
Lemma 2.8, a contradiction. If 4 is not normal in G, then 1 < A/®(P) < P/P(P).
Since A4 is weakly M-supplemented in G, there is a subgroup B of G such that AB = G
and 4B < G for every maximal subgroup A4; contained Ag. Let T = 4, B. Then
G = AT = PT, clearly, ®(P) < T since |G : T| = 2. Since P/®(P) is minimal normal
in G/ ®(P), G/ ®(P) = (P/P(P))(T/®(P)) = [P/P(P)|(T/P(P))and hence | P/ P(P)| =
|G/ ®(P) : T/®(P)| = 2. It follows that P/ (P) is cyclic of order 2, a contradiction.

The final contradiction completes our proof. [

THEOREM 3.3. Let G be a finite group and P be a Sylow p-subgroup of G, where
p is the smallest prime divisor of |G|. Suppose that P has a subgroup D such that
1 < D < P, and all subgroups E of P with order |D| and 2|D| (if P is a non-abelian
2-group, |P : D| > 2 and there exists Dy < E < Pwith2|D,| = |D| and E/D; is cyclic of
order 4) have p-nilpotent supplement or weak M-supplement in G, then G is p-nilpotent.

Proof. Assume that the Theorem is false and choose G to be a counterexample of
minimal order.

By hypotheses, P has a subgroup D such that 1 < D < P, and all subgroups E of
P with order |D| and order 2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there
exists D; < E < P with 2|D| = |D| and E/D; is cyclic of order 4) have p-nilpotent
supplement or weak M-supplement in G. Fix a subgroup E of P with order |D|. We
will derive a contradiction in several steps.

Step 1. 0,(G) = 1.

If 0,(G) # 1, Lemma 2.1(3) guarantees that G/O,/(G) satisfies the hypotheses of
the theorem. Thus, G/ O, (G) is p-nilpotent by the choice of G. Then G is p-nilpotent,
a contradiction.

Step 2. |D| > p. Suppose |D|=p. By Theorem 3.2, G is p-nilpotent, a
contradiction.

Step 3. |P: D| > p. If |P: D| = p, then every maximal subgroup of P has a p-
nilpotent supplement or a weak M-supplement in G and hence G is p-nilpotent by
Theorem 3.1, a contradiction.

Step 4. If there exists a minimal normal subgroup N of G contained in P, then
IN| < |DI.

If |N| > | D], then we may choose a subgroup E of P with order |D| such that
E < N. By hypotheses, if E has a p-nilpotent supplement in G, then there exists a p-
nilpotent subgroup K of Gsuch that G = EK. Clearly, N N K € {1, N}, acontradiction.
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So FE is weakly M-supplemented in G. Therefore there exists a subgroup B of G such
that G = EB and E| B < G for every maximal subgroup E; of E containing Eg. Since
N is a minimal normal subgroup of G contained in P, we have Eg =land NN B =1
or N.IFNNB=1,then N = E, a contradiction. f NN B = N, then B= G, isalsoa
contradiction.

Step 5. G/N is p-nilpotent.

If |N| < |D|, clearly, G/N satisfies the hypotheses by Lemma 2.1(2). Therefore
G/N is p-nilpotent by the minimal choice of G. So we may assume |N| = |D|. Next we
will show that every cyclic subgroup of P/N of order p and order 4 (if P is a non-abelian
2-group) have p-nilpotent supplement or weak M-supplement in G/N.

Let K < P and |K/N| = p. Clearly, N is not cyclic. Otherwise, N; char N and
N < G, where N is the maximal subgroup of N, it follows that N; < G, which is
contrary to the minimality of N. So all subgroups containing N are not cyclic. Hence,
there exists a maximal subgroup L of K such that K = LN and |D| = |L| = |N|.If L has
a p-nilpotent supplement in G, then K/N = LN /N also has a p-nilpotent supplement
in G/N. So we have L that is weakly M-supplemented in G. If L is normal in G, then
K/N is normal in G/N. If L is not normal in G, then there exists a subgroup B of G
such that G = LB and TB < G for every maximal subgroup T of L containing L.
By Lemma 2.1(5) |G : TB| = p and hence TB < G by Lemma 2.5. By Lemma 2.1(1),
T B satisfies the condition of the theorem. Therefore 7'B is p-nilpotent by the minimal
choice of G and hence G is p-nilpotent, a contradiction.

If X/ N is a cyclic group of order 4 and K/N is a maximal subgroup of X/N, then
K is maximal in X and |K/N| = 2. Since X is not cyclic and X/N is cyclic, there exists
a maximal subgroup L of X such that N £ L. Thus, X = LN and |L| = |[K| = 2|D|,
X/N=LN/NZ=L/LNN is cyclic of order 4. If L has a p-nilpotent supplement in
G, then X/N = LN/N also has a p-nilpotent supplement in G/N. By hypotheses, L is
weakly M-supplemented in G. If L is normal in G, then LN/N is also normal in G/N.
So we may assume that L is not normal in G. There exists a subgroup C of G such that
G = LC and TC < G for every maximal subgroup T of L containing Ls. By Lemma
2.1(5) |G : TC| =2 and hence TC < G by Lemma 2.5. By Lemma 2.1(1), T C satisfies
the condition of the theorem. Therefore T'C is p-nilpotent by the minimal choice of G
and, hence, G is p-nilpotent, a contradiction.

Step 6. 0,(G) = 1.

Suppose O,(G) # 1. Let N be a minimal normal subgroup of G contained in O,(G).
By Step 5, G/N is p-nilpotent. Clearly, N is the unique minimal normal subgroup
of G contained in O,(G). Furthermore, O,(G) N ®(G) = 1 since the class of all p-
nilpotent groups is a saturated formation. By Lemma 2.4, 0,(G) = N. There exists a
maximal subgroup M of G such that G = NM = NNg(M,), where M), is the Hall
p'-subgroup of M and also of G. If M, = M N P =1, then N = P, contrary to step
4. If |D| < |M N P|, then we may choose a subgroup E of M N P with order |D| and
hence E; = 1. By hypotheses, if £ has a p-nilpotent supplement in G, then there
exists a p-nilpotent subgroup K of G such that G = EK. On the other hand, there
exists a maximal subgroup P; of P such that E < PNM < P; < Pand G = EK =
PiK. Since K is p-nilpotent, we have G = P1K = P;Ng(K,/), where K, is the Hall
p'-subgroup of K and also of G. By Lemma 2.6, there exists an element g of P
such that N(;(Mp/) = (N(;(Kp/))g. SoG = PlNG(Kpf) =P (N(;(Kpr))g = PlNG(Mpr) and
P=PNPNg(Mpy)=Pi(PNNg(My,)) = Py, a contradiction. So we may assume £
is weakly M-supplemented in G. There exists a subgroup B of G such that G = EB
and E;B < G for every maximal subgroup E; of E containing Eg. By Lemma 2.1(5), we
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have |G : E;B| = p and hence E;B < G. Since |P : D| > p, E;B satisfies the condition
of the theorem. The minimal choice of G implies that E;B is p-nilpotent and hence G
is p-nilpotent, a contradiction.

If |M N P| < |D|, then we may choose a subgroup E containing M N P with order
|D| and get a contradiction with the similar argument as above.

Step 7. Final contradiction.

If all subgroups E of P with order |D| and all cyclic subgroups of P of order
2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there exists D; < E < P with
2|D;| = |D| and E/D; is cyclic of order 4) have p-nilpotent supplement in G, then all
maximal subgroups of P have p-nilpotent supplement in G and hence G is p-nilpotent,
a contradiction. There exists at least a subgroup E of P with order |D|, which is weakly
M-supplemented in G. Since O,(G) = 1 by step 6, E is not normal in G and hence there
exists a subgroup B of G such that G = EB and E;B < G for every maximal subgroup
E; of E containing E;. By Lemma 2.1(5), we have |G : E;B| = p and hence E;B < G by
Lemma 2.5. Since |P : D| > p, E;B satisfies the hypotheses and E;B is p-nilpotent by
the minimal choice of G. Put R = E;B. Then Rp/ char Rand R < G. Therefore Rpr 4G
and G is p-nilpotent, a contradiction.

The final contradiction completes our proof. O

THEOREM 3.4. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of
G. If Ng(P) is p-nilpotent and every maximal subgroup of P is weakly M-supplemented
in G, then G is p-nilpotent.

Proof. Assume that the assertion is false and choose G to be a counterexample of
the minimal order. Furthermore, we have

(1) 0y (G) = 1.

In fact, if O,(G) # 1, then we consider the quotient group G/0,(G). By Lemmas
2.1(3) and 2.9, G/ O, (G) satisfies the condition of the theorem, the minimal choice of
G implies that G/ O, (G) is p-nilpotent and hence G is p-nilpotent, a contradiction.

(2) If S is a proper subgroup of G containing P, then S is p-nilpotent.

Clearly, Ns(P) < Ng(P) and hence Ng(P) is p-nilpotent. Applying Lemma 2.1(1),
we find that S satisfies the hypotheses of our theorem. Now, by the minimality of G, S
is p-nilpotent.

(3) G = PQ, where Q is the Sylow g-subgroup of G with ¢ # p.

Since G is not p-nilpotent, by Thompson [15, Corollary 1], there exists a
characteristic subgroup H of P such that Ng(H) is not p-nilpotent. Since Ng(P)
is p-nilpotent, we may choose a characteristic subgroup H of P such that Ng(H)
is not p-nilpotent, but Ng(K) is p-nilpotent for any characteristic subgroup K of
P with H < K < P. Since Ng(P) < Ng(H) and Ng(H) is not p-nilpotent, we have
Ng(P) < Ng(H). Then by (2), we have Ng(H) = G. Thisleads to 0,(G) # 1 and Ng(K)
is p-nilpotent for any characteristic subgroup K of P such that 0,(G) < K < P. Now
by Thompson [15, Corollary 1], again G/O,(G) is p-nilpotent and, therefore, G is
p-solvable. Since G is p-solvable, for any g € 7 (G) with g # p, there exists a Sylow
g-subgroup Q of G such that PQ = QP is a subgroup of G by Gorenstein [1, Theorem
6.3.5]. If PQ < G, then PQ s p-nilpotent by (2). This leads to Q < Cg(0,(G)) < O,(G)
by Guo [3, Theorem 1.8.18] since O,(G) = 1, a contradiction. Thus, we have proven
that G = PQ.

(4) Conclusion.

Since O,(G) # 1, we may take a minimal normal subgroup L of G with L < 0,(G).
Clearly, G/L satisfies the condition of the theorem. Now, the minimality of G implies
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that G/ L is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation,
we may assume that L is the unique minimal normal subgroup of G contained in O,(G)
and L £ ®(G). Thus, by Lemma 2.4, we have 0,(G) = L is an elementary abelian p-
group. Furthermore, there exists a maximal subgroup M of G such that G = LM and
LNM=1.Hence, P=PNLM = L(PNM)and PN M = P*is a Sylow p-subgroup
of M. If P* =1, then P = L, and therefore G = Ng(L) = Ng(P) is p-nilpotent, which
is a contradiction. So we may assume P* # 1. Pick a maximal subgroup P; of P
with P* < P,. If P* = Py, then |L| = p. If p < ¢, then LQ is p-nilpotent and therefore
0 < Cg(L) = C(0,(G)), which contradicts Cg(0,(G)) < O,(G). On the other hand,
if g < p,then M = G/N = Ng(N)/ Cg(N) is isomorphic to some subgroup of Aut(N),
since Cg(N) = C(0,(G)) = O,(G) = N. Therefore Q is a cyclic group. Since Q is
cyclicand ¢ < p, G is g-nilpotent and therefore P is normal in G. Hence, Ng(P) = G is
p-nilpotent, a contradiction.

So we may assume P* < P;. By hypotheses, P, is weakly M-supplemented in
G. There exists a subgroup B such that G = P;B and TB < G for every maximal
subgroup (P1)g < T. If (P1)g # 1, then we have L < (Py)g < P1, a contradiction. So
we have (P;)g = 1. By Lemma 2.1(5), |G : TB| = p for every maximal subgroup 7" of
Py. Particularly, there exists at least a maximal subgroup 7" of P; such that L £ T'B.
We may choose a maximal subgroup 7" of Py such that P* < T. Clearly, L £ TB.
Otherwise, L < TB and TB = LTB = PB = G, a contradiction. Therefore, |L| = p
and we may get a contradiction with the similar discussion as above.

The final contradiction completes our proof. Il

COROLLARY 3.5 [7, Theorem 3.1]. Let p be an odd prime dividing G and P a Sylow
p-subgroup of G. If Ng(P) is p-nilpotent and every maximal subgroup of P is c-normal in
G, then G is p-nilpotent..

THEOREM 3.6. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of
G. If Ng(P) is p-nilpotent and suppose that P has a subgroup D such that 1 < D < P,
and every subgroup E of P with order |D| is weakly M-supplemented in G, then G is
p-nilpotent.

Proof. Assume that the assertion is false and choose G to be a counterexample of
the minimal order. Furthermore, we have

(1) Oy(G) = 1.

In fact, if O, (G) # 1, then we consider the quotient group G/O,(G). By Lemma
2.1(3), G/ O, (G) satisfies the condition of the theorem, the minimal choice of G implies
that G/O,/(G) is p-nilpotent and hence G is p-nilpotent, a contradiction.

(2) If S is a proper subgroup of G containing P, then S is p-nilpotent.

Clearly, Ng(P) < Ng(P) and hence Ng(P) is p-nilpotent. Applying Lemmas 2.1(1)
and 2.9, S satisfies the hypotheses of our theorem. Then the minimal choice of G
implies that S is p-nilpotent.

(3) G = PQ, where Q is the Sylow g-subgroup of G with ¢ # p.

Since G is not p-nilpotent, by Thompson [15, Corollary 1] there exists a
characteristic subgroup H of P such that Ng(H) is not p-nilpotent. Since Ng(P)
is p-nilpotent, we may choose a characteristic subgroup H of P such that Ng(H)
is not p-nilpotent, but Ng(K) is p-nilpotent for any characteristic subgroup K of
P with H < K < P. Since Ng(P) < Ng(H) and Ng(H) is not p-nilpotent, we have
Ng(P) < Ng(H). Then by (2), we have Ng(H) = G. Thisleads to O,(G) # 1 and Ng(K)
is p-nilpotent for any characteristic subgroup K of P such that 0,(G) < K < P. Now
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by Thompson [15, Corollary 1], again we see that G/ O,(G) is p-nilpotent and therefore
G is p-solvable. Since G is p-solvable, for any g € 7 (G) with g # p, there exists a Sylow
g-subgroup Q of G such that PQ = QP is a subgroup of G by Gorenstein [1, Theorem
6.3.5]. If PQ < G, then PQ is p-nilpotent by (2). This leads to QO < Cg(0,(G)) < 0,(G)
by Guo [3, Theorem 1.8.18] since O, (G) = 1, a contradiction. Thus, we have proven
that G = PQ.

4)ID| > p.

Suppose |D| = p. By hypotheses, every minimal subgroup of P is weakly M-
supplemented in G; in fact, in this case every minimal subgroup of P is also c-
supplemented in G; by (1) and (3) we have F(G) = O,(G). It follows that G is super
solvable by Lemma 2.3. If p < ¢, then G is p-nilpotent by Theorem 3.2, a contradiction.
Ifp > ¢q,then Gis g-nilpotent and hence G has a normal Sylow p-subgroup P. Therefore
G = Ng(P) is p-nilpotent, also a contradiction.

5 |P:D| > p.

If | P : D| = p, then every maximal subgroup of P is weakly M-supplemented in
G and hence G is p-nilpotent by Theorem 3.4.

(6) 0,(G) = N is a unique minimal normal subgroup of G and Cg(N) = N.

If [N| > |D|, by hypotheses we may choose a subgroup E of P with order |D| such
that E < N. Since E is weakly M-supplemented in G, there exists a subgroup B of
G such that G = EB and TB < G for every maximal subgroup 7 of E. Since N is a
minimal normal subgroup of G, wehave NN B=1or N.If NN B=1,then N = E,
a contradiction. If NN B = N, then B = G, which is also a contradiction.

If [N| < |D|, clearly G/ N satisfies the hypotheses of the Lemma by Lemma 2.1(2).
Therefore G/N is p-nilpotent by the minimal choice of G. So we may assume |N| = |D|.
Let K < P and |K/N| = p. Clearly, N is not cyclic. Otherwise, N; char N and N < G,
where N; is the maximal subgroup of N, it follows that Ny < G, contrary to the
minimality of N. So all subgroups containing N are not cyclic. Hence, there exists a
maximal subgroup L of K such that K = LN and |D| = |L| = |N|. If L is normal in
G, then K/N is normal in G/N. If L is non-normal in G, then there exists a subgroup
B of G such that G = LB and TB < G for every maximal subgroup T of L containing
L. If NB = G, then G = NTB and hence |[N| = |G : TB| = p, this is contrary to (4).
So we have NB < G and G/N = (LN/N)(BN/N). Therefore G/N is p-nilpotent.

Clearly, N is the unique minimal normal subgroup of G contained in O,(G).
Furthermore, O0,(G) N ®(G) = 1 since the class of all p-nilpotent groups is a saturated
formation. By Lemma 2.4, 0,(G) = N.

(7) Final contradiction.

There exists a maximal subgroup M of G such that G = NM and NN M = 1.
If M,=MnNP=1, then N = P, a contradiction. Let P; be a maximal subgroup of
P containing M,,. Clearly, Py = PPN NM, = M,(P1NN).If P,NN =1, then |[N| =
p. If p < q, then NQ is p-nilpotent and therefore O < Cs(N) = Cs(0,(G)), which
contradicts Cg(0,(G)) < O0,(G). On the other hand, if ¢ < p, then, since Cg(N) =
Cs(0,(G)) = 0,(G) = N, M = G/N = NG(N)/Cg(N) is isomorphic to a subgroup of
Aut(N) and therefore M, and particular Q is a cyclic group. Since Q is a cyclic group
and ¢ < p, G is g-nilpotent and therefore P is normal in G. Hence, Ng(P) = G is
p-nilpotent, a contradiction.

So we may assume L = Pi NN # 1. By (6), |N| < |D|. Choose a subgroup E
of P, containing L with |E| = |D|. Clearly, N £ E and E=ENP,=ENLM, =
L(E N M,). By hypotheses, E is weakly M-supplemented in G and Eg = 1. There
exists a subgroup B of G such that G = EB and T'B < G for every maximal subgroup
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T of E, since Eg = 1. Furthermore, we may choose a maximal subgroup P, of
E such that EN M, < P,. Therefore P, = P,N(PINN)YENM,)=(ENM,)(P>N
PN N)=(ENM,)(P>NN). Then we may choose T'= P,. If N < P, B, then P,B =
NP,B = EB = G, a contradiction. So NN P,B=1and |G : P,B| = |[N| = p. With a
similar discussion as above, we get a final contradiction. ]
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