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Abstract

In this article we study the Kähler–Ricci flow, the corresponding parabolic Monge–
Ampère equation and complete non-compact Kähler–Ricci flat manifolds. Our main
result states that if (M, g) is sufficiently close to being Kähler–Ricci flat in a suitable
sense, then the Kähler–Ricci flow has a long time smooth solution g(t) converging
smoothly uniformly on compact sets to a complete Kähler–Ricci flat metric on M .
The main step is to obtain a uniform C0-estimate for the corresponding parabolic
Monge–Ampère equation. Our results on this can be viewed as parabolic versions of the
main results of Tian and Yau [Complete Kähler manifolds with zero Ricci curvature. II,
Invent. Math. 106 (1990), 27–60] on the elliptic Monge–Ampère equation.

1. Introduction

Let (Mn, g0) be a complete non-compact Kähler manifold with complex dimension n. Consider
the following Kähler–Ricci flow on M :

∂gi̄
∂t

=−Ri̄
gi̄(x, 0) = (g0)i̄.

(1)

We are interested in studying when (1) admits a long time solution g(t) converging smoothly
on M to a complete Kähler metric g(∞). Such a limit g(∞) must be Kähler–Einstein with zero
scalar curvature by (1). We are thus interested in studying when (Mn, g0) converges to a Kähler–
Ricci flat metric under (1). When M is compact, Cao [Cao85] established that a necessary and
sufficient condition for such convergence is that

(R0)i̄ = (f0)i̄ (2)

for a smooth potential function f0 on M where (R0)i̄ is the Ricci tensor of g0. This re-
establishes the famous Calabi conjecture first proved by Yau [Yau78]. In Theorem 1 we establish
a non-compact version of Cao’s result. We prove that when (Mn, g0) is complete, non-compact
with bounded curvature, with volume growth Vx0(r) 6 Cr2n for some x0 and C for all r, and
satisfies a certain Sobolev inequality, then:
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under the above conditions, the Kähler–Ricci flow (1) has a long time solution g(t)
converging smoothly on M provided (2) is satisfied and |f0|(x) 6 C/(1 + ρ2+ε

0 (x)) for
some C, ε > 0 and all x.

See Theorem 1 for details. The result is motivated by the work of Tian–Yau [TY86, TY90] on
the existence of complete non-compact Kähler–Ricci flat manifolds. In particular in [TY90] they
roved the existence of a Kähler–Ricci flat metric in the complement of a smooth divisor D
in a compact Kähler manifold M under the following conditions: D is neat, almost ample
and admissible so that D admits a Kähler–Einstein metric with positive scalar curvature and
−KM − βLD for some β > 1, where KM is the canonical line bundle of M and LD is the line
bundle associated with D (see [TY90] for details). Their method was to first construct a Kähler
metric satisfying the conditions in Theorem 1, then solve the elliptic complex Monge–Ampère
equation to obtain a Kähler–Ricci flat metric. Our results can thus be viewed as a parabolic
version of the result on the elliptic Monge–Ampère equation in [TY90].

Related results on the convergence of the Kähler–Ricci flow to Kähler–Einstein metrics with
negative scalar curvature were obtained in [Cao85, Cha04]. In [Cao85], it was proved that (1)
converges after re-scaling to a Kähler–Einstein metric with negative scalar curvature provided
that (R0)i̄ + (g0)i̄ = (f0)i̄ for smooth f0. A non-compact version of this result was proved
in [Cha04].

2. The main result

Let (Mn, g0) be a complete non-compact Kähler manifold with complex dimension n such that (2)
holds for some smooth potential f0 on M . When f0 = 0, then (Mn, g0) is Kähler–Einstein with
zero scalar curvature. We are thus interested in the behavior of the Kähler–Ricci flow on complete
Kähler manifolds which are close to being Kähler –Einstein. We prove the following theorem.

Theorem 1. Let (Mn, g0) be a complete non-compact Kähler manifold with bounded curvature
and n > 3. Assume the following:

(a) the Ricci tensor of g0 has a smooth potential f0, (i.e. (2) holds for some smooth f0), such
that f0 satisfies

|f0|(x) 6
C1

1 + ρ2+ε
0 (x)

(3)

for some C1, ε > 0, and all x ∈M where ρ0(x) is the distance function from a fixed o ∈M ;

(b) the following Sobolev inequality is true(∫
M
|φ|2n/(n−1) dV0

)(n−1)/n

6 C2

∫
M
|∇0φ|2 dV0 (4)

for some C2 > 0 and all φ ∈ C∞0 (M);
(c) there exists a constant C3 > 0 such that

V0(r) 6 C3r
2n (5)

for some C3 > 0 and all r where V0(r) is the volume of the geodesic ball with radius r
centered at some o ∈M .

Then (1) has a long time solution g(t). Moreover, as t→∞, g(t) converges uniformly on compact
sets in the C∞ topology on M to a complete Kähler–Ricci flat metric g∞ on M which is uniformly
equivalent to g0.

Here and below∇t and ∆t denote the covariant derivative and Laplacian with respect to g(t).
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In order to prove the theorem, as in [Cao85] we use the following parabolic Monge–Ampère
equation corresponding to (1):

∂u

∂t
= log

det((g0)kl̄ + ukl̄)
det((g0)kl̄)

− f0

u(x, 0) = 0.
(6)

The relationship between the two equations can be described as follows, see [Cha04, Proof of
Lemma 4.1]. If (6) has a smooth solution u on M × [0, T ), then gi̄ = (g0)i̄ + ui̄ is a smooth
solution to (1). Conversely, if (1) has a solution g, then

u(x, t) =
∫ t

0
log

det(gi̄)
det((g0)i̄)

(x, s) ds− tf0(x) (7)

is a solution to (6).
Since the curvature of g0 is bounded by some constant k0, by [Shi97, Theorem 1.1] (1) has a

solution g(t) on M × [0, T ] where T depends only on k0 and n. Moreover, the curvature tensor
Rm(t) of g(t) satisfies:

|∇mt Rm(t)| 6 C(m, k0, n)
tm

(8)

for all m > 0 and T > t > 0, where C(m, k0, n) is a constant depending only on m, k0 and n.

Remark 1. Let [0, Tmax), with Tmax 6∞, be the maximal time interval such that (1) has a
smooth solution in M × [0, Tmax). By the estimates in [Shi89, Shi97], for any 0< T0 < T1 < Tmax

the curvature tensor g(t) is uniformly bounded in M × [0, T1] and the covariant derivatives of the
curvature tensor are uniformly bounded in M × [T0, T1].

Let u(x, t) be as in (7). The major step in proving the main Theorem 1 is to obtain a
uniform C0 bound on u. Once this is obtained, the higher order estimates for u can be obtained
by somewhat more standard estimates for (6) (see Lemma 5). To get the C0 estimate for u, we
introduce the function f =−ut and derive initial estimates for f . We will do this using maximum
principle arguments. While there are various versions of the maximum principle which can be
used here (see [EH91, NT04, Shi97]), the version in Ecker–Huisken [EH91] seems to be most
suitable in our setting. The following is a consequence of their more general result.

Lemma 1 (Ecker–Huisken [EH91, Theorem 4.3]). Let g(t) be a solution of (1) on M × [0, T ]
with uniformly bounded curvature tensor. Let h be a smooth function on M × [0, T ] such that

∂h

∂t
6 ∆th+ 〈a,∇th〉t

for some vector field a which is uniformly bounded on M × [0, T ]. Suppose that h satisfies∫ T

0

(∫
M

exp(−αρ2
t )|∇th|2 dVt

)
dt <∞

for some α > 0, where ρt is the distance function of g(t) from a fixed point o ∈M . If h 6 0 at
t= 0, then h 6 0 in M × [0, T ].

Corollary 1. Let g(t) be as in Lemma 1. Let h be a smooth function on M × [0, T ] such that
∂h/∂t 6 ∆th and h(∂h/∂t) 6 h∆th. Suppose that∫ T

0

(∫
M

exp(−αρ2
t )h

2 dVt

)
dt+

∫
M

exp(−αρ2
0)h2 dV0 =A<∞

for some α > 0. Then supM×[0,T ] h 6 supx∈M h(x, 0).

261

https://doi.org/10.1112/S0010437X09004369 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004369


A. Chau and L.-F. Tam

Proof. We may assume that supx∈M h(x, 0)<∞. Since g(t) has uniformly bounded curvature,
by [Shi97, Lemma 4.5] there exists a smooth exhaustion function η independent of t such that for
some positive constants K1, K2, K3, depending only on n, T and the uniform bound on Rm(x, t)
on M × [0, T ], η satisfies

(1) K1(ρt + 1) 6 η 6K2(ρt + 1);
(2) |∇tη|, |∇2

t η| 6K3;

for all t ∈ [0, T ]. Now take a smooth function ψ : R→ R which is equal to one on [−1, 1] and
has support in [−2, 2]. Define the function ϕR := ψ(η/R). Then ϕR is equal to one on B0(R)
and zero outside B0(2R), and there exists C > 0 such that for all R, supM×[0,T ] |∇tϕR|t 6 C/R.
We have

∂

∂t

(∫
M
ϕ2
Rh

2 dVt

)
6

∫
M

2ϕ2
Rh∆th dVt −

∫
M
ϕ2
Rh

2R(t) dV0

6 4
∫
M
|∇tϕR|2th2 dVt −

∫
M
ϕ2
R|∇th|2t dVt + C1

∫
M
ϕ2
Rh

2 dVt (9)

for some constant C1 depending only on the bound of the curvature of g(t). Here R(t) is the
scalar curvature of g(t). Integrating from zero to T , and using the assumption on h and the fact
that Rm(t) is uniformly bounded we have∫ T

0

∫
B0(R)

|∇th|2t dVt 6 C2 exp(βR2)

for some constants C2 and β > 0 depending only on the bound of Rm(t), α and A. Hence, there
exists γ > 0 depending only on T and the bound of Rm(t), such that∫ T

0

∫
B0(R)\B0(R/2)

exp(−γρ2
t )|∇th|2t dVt 6 C2 exp(−R2)

for all R> 0. Therefore, ∫ T

0

∫
M

exp(−γρ2
t )|∇th|2t dVt <∞.

Applying Lemma 1 to the function h− supx∈M h(x, 0), the result follows. 2

Lemma 2. Let (Mn, g0) be a complete non-compact Kähler manifold with bounded curvature
such that (2) holds for a smooth bounded potential f0. Suppose that g(t) is a smooth solution
to (1) on M × [0, T ] such that g(t) has uniformly bounded curvature in M × [0, T ]. If u(x, t) is
the corresponding solution to (6), then f(x, t) =−ut(x, t) satisfies the following.

(i) We have supM×[0,T ](f2 + t|∇tf |2) 6 supM f2
0 .

(ii) For each 0< t 6 T , the covariant derivatives of f(x, t) relative to g(t) are bounded on M
by constants depending only on bounds for the curvature tensor of g(t) and its covariant
derivatives.

(iii) If, in addition, |f0(x)| 6 C/(1 + ρ0(x))N for some N > 1, where ρ0 is the distance function
relative some o ∈M with respect to g(0), then there is a constant C ′ depending only on T ,
a bound on the curvature tensor of g in M × [0, T ], and a bound on |ρN0 f0(x)| such that
|f(x, t)| 6 C ′/(1 + ρt(x))N where ρt(x) is the distance relative to o with respect to g(t).
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Proof. We first prove part (i). First note that f(x, 0) = f0(x). By (1), (6) and the assumption
that g(t) has bounded curvature in M × [0, T ], we see that f =−ut is uniformly bounded in
M × [0, T ]. Now differentiating (6) gives(

∂

∂t
−∆t

)
f = 0. (10)

By Corollary 1, we have
sup
x∈M
|f(x, t)| 6 sup

M
|f0|. (11)

Direct computation shows
∂

∂t
|∇tf |2 = ∆t|∇tf |2 − |fij |2 − |fi̄|2.

Hence, we have
∂

∂t
(|∇tf |2 + 1)1/2 6 ∆t(|∇tf |2 + 1)1/2

and for any T > t0 > 0
∂

∂t
((t− t0)|∇tf |2 + f2) 6 ∆t((t− t0)|∇tf |2 + f2)

for T > t > t0, see [Cho01]. By the proof of Corollary 1, we see that∫ T

0

∫
M

exp(−αρ2
t )|∇tf |2 dVt <∞.

for some α > 0.
By part (ii), which is proved below, we see that supx∈M |∇t0f |2(x, t0) is bounded. Hence, one

can apply Lemma 1 to (|∇tf |2 + 1)1/2 to conclude that

sup
M×[t0,T ]

|∇tf |2 <∞.

By applying Lemma 1 to (t− t0)|∇tf |2 + f2, we conclude that

sup
M×[t0,T ]

(t− t0)|∇tf |2 + f2 6 sup
x∈M

f2(x, t0)

from which we conclude, by applying Lemma 1 to f and letting t0→ 0, that

sup
M×[t0,T ]

(t|∇tf |2 + f2) 6 sup
x∈M

f2
0 .

Now part (ii) can be shown as follows. By (8), for fixed T > t > 0 all of the covariant derivatives
of Rm(t) are bounded. On the other hand, ∆tf(t) =R(t). By lifting this equation to the tangent
space by the exponential map, and using Schauder estimates we conclude that part (ii) is true
by (11).

We now prove part (iii). Let η be the smooth exhaustion function as in the proof of Corollary 1.
Direct computation gives

d

dt
(η2Nf2) 6 η2N∆tf

2

= ∆t(η2Nf2)− (∆tη
2N )f2 − 2〈∇tη2N ,∇tf2〉t

= ∆t(η2Nf2)− 2Nη2N−1(∆tη)f2

− 2N(2N − 1)η2N−2|∇tη|2t f2 − 4Nη2N−1〈∇tη,∇tf2〉t
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6 ∆t(η2Nf2) + C1η
2Nf2

− 4Nη2N−1

〈
∇tη,

(
∇t(η2Nf2)−∇t(η2N )f2

η2N

)〉
t

6 ∆t(η2Nf2) + C2η
2Nf2 − 4Nη−1〈∇tη,∇t(η2Nf2)〉t (12)

for constants C1, C2 > 0 depending only on n, N, T and the bound on Rm(x, t) on M × [0, T ].
Let h= exp(−C2t)η2Nf2, then by (12)

∂

∂t
h 6 ∆th− 4Nη−1〈∇tη,∇th〉t. (13)

By our hypothesis on f0 and the first property for η we have that h is bounded at t= 0. Let
h1 = h− supM h(0). Then h1 satisfies (13) while h1(0) 6 0. By Lemma 1 we conclude that h(t) 6 0
for all t ∈ [0, T ]. By the first property for η we conclude that part (iii) is true. 2

Remark 2. We make the following remarks.

(i) Since f(t) is a potential for the Ricci tensor of g(t), the lemma implies that for t > 0 small
enough, g(t) also satisfies the conditions in Theorem 1.

(ii) By Remark 1, if we take t0 > 0 small enough to be the initial time, we may assume that
the curvature tensor of g(t) and all of its covariant derivatives are uniformly bounded on
M × [0, T ] for any T < Tmax.

(iii) Hence, each covariant derivative of f(x, t) is uniformly bounded on M × [0, T ] for any
T < Tmax, and since f =−ut, this is also true for u.

In the following, we assume these are all true for the solution g(t).

To obtain a C0 estimate of u, we begin by showing that the evolving Lp norms of f remain
bounded independent of t for certain p.

Lemma 3. Let (M, g0) be a complete non-compact Kähler manifold with bounded curvature
satisfying conditions (a) and (c) in Theorem 1 with n > 3 and let g(t) be the solution of the
Kähler–Ricci flow (1) defined on M × [0, Tmax). For any p0 > n with (p0 + 1)(2 + ε)/(n+ p0)> 2
and p∗ = n(p0 + 1)/(n+ p0)> 2n/(2 + ε), we have

sup
t∈[0,Tmax)

∫
M
|f(t)|p∗

dVt <∞.

Proof. Let p0 > n be such that
p0 + 1
n+ p0

(2 + ε)> 2

and p∗ = n(p0 + 1)/(n+ p0)> 2n/(2 + ε). Such a p0 exists because n > 3.
By the assumption on f0, the volume growth of (M, g0) and Lemma 2, we see that for any

Tmax > t > 0 and p > p∗, ∫
M
|f(t)|p dVt <∞. (14)

Here we have used the fact that for any finite T < Tmax, g(t) is uniformly equivalent to g for
0 6 t 6 T .
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For any even integer p > p∗ + 2, we have
d

dt

∫
M
|f |pdVt =

d

dt

∫
M
fp dVt

= p

∫
M
fp−1∆tf dVt −

∫
M
fp∆tf dVt

= −p(p− 1)
∫
M
fp−2|∇tf |2t dVt + p

∫
M
fp−1|∇tf |2t dVt

6 −(p(p− 1)− pC1)
∫
M
fp−2|∇tf |2t dVt, (15)

where C1 = supM |f0| and we have used the fact that for any t, |∇f |t is bounded on M and the
fact that p− 2> p∗ to justify the integration by parts. Hence, if p > 1 + C1, then∫

M
|f(t)|p dVt 6

∫
M
|f0|p dV0 <∞. (16)

We have to improve (16).
Let v = max{f, 0} and for a fixed R> 0 let ϕ= ϕR be the cutoff function on M defined in

the proof of Corollary 1 (thus, ϕ is independent of t). For any p > p∗ − 1> 1,∫ T

0

∫
M
ϕ2vp

∂

∂t
f dVt dt =

∫ T

0

∫
M
ϕ2vp∆tf dVt dt

= −
∫ T

0

∫
M
pvp−1ϕ2|∇tv|2t dVt dt− 2

∫ T

0

∫
M
vpϕ〈∇tϕ,∇tv〉t dVt dt

6
1
p

∫ T

0

∫
M
vp+1|∇tϕ|2t dVt dt. (17)

On the other hand,∫ T

0

∫
M
ϕ2vp

∂f

∂t
dVt dt = −

∫
M
ϕ2

∫ T

0
vp
(
∂v

∂t

)
ef0−f dt dV0

=
1

p+ 1

∫
M
ϕ2

∫ T

0

∂

∂t
[vp+1ef0−f ] dt dV0

+
1

p+ 1

∫
M
ϕ2

∫ T

0
vp+1ef0−f

∂f

∂t
dt dV0. (18)

Combining this with (17), we have∫
M
ϕ2vp+1ef0−f dVt|t=T 6

∫
M
ϕ2vp+1 dVt|t=0 +

p+ 1
p

∫ T

0

∫
M
vp+1|∇tϕ|2t dVt dt

−
∫
M
ϕ2ef0

∫ T

0
vp+1

∞∑
k=0

(−f)k

k!
∂v

∂t
dt dV0

=
∫
M
ϕ2vp+1dVt|t=0 +

p+ 1
p

∫ T

0

∫
M
vp+1|∇tϕ|2t dVt dt

−
∫
M
ϕ2ef0

∞∑
k=0

(−1)kvp+k+2

k!(p+ k + 2)
dV0|t=T

+
∫
M
ϕ2ef0

∞∑
k=0

(−1)kvp+k+2

k!(p+ k + 2)
dV0|t=0. (19)
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Now

−
∫
M
ϕ2ef0

∞∑
k=0

(−1)kvp+k+2

k!(p+ k + 2)
dV0|t=T +

∫
M
ϕ2ef0

∞∑
k=0

(−1)kvp+k+2

k!(p+ k + 2)
dV0|t=0

=−
∫
M
ϕ2vp+2ef0

∞∑
k=0

(−1)kvk

k!(p+ k + 2)
dV0|t=T

+
∫
M
ϕ2vp+2ef0

∞∑
k=0

(−1)kvk

k!(p+ k + 2)
dV0|t=0

6 C2

∫
M
vp+2 dVt|t=T + C3

∫
M
vp+2 dVt|t=0

6 C2

∫
M
vp+2dVt|t=T + C4(p) (20)

where C2, C3, C4 are independent of T . Here we have used the fact that f(t) is uniformly bounded
in spacetime. Combine (19) and (20) to give∫

M
ϕ2vp+1 dVt|t=T 6 C5 +

p+ 1
p

∫ T

0

∫
M
vp+1|∇tϕ|2t dVt dt

+ C2

∫
M
vp+2 dVt|t=T (21)

for some constants C2, C5 independent of T . Letting R→∞, gives∫
M
vp+1 dVt|t=T 6 C5 + C2

∫
M
vp+2 dVt|t=T . (22)

Similarly one can prove that if w = max{−f, 0}, then∫
M
wp+1 dVt|t=T 6 C5 + C2

∫
M
wp+2 dVt|t=T (23)

by modifying C5 and C2 if necessary, while still independent of T . Hence, we have∫
M
|f |p+1 dVt|t=T 6 2C5 + C2

∫
M
|f |p+2|t=T (24)

for all p > p∗ − 1. By iteration and (16), we conclude that∫
M
|f |p∗

dVt|t=T 6 C5 (25)

for some constant C5 independent of T . 2

In the next lemma we show that |u| remains uniformly bounded along (6) independent of t.
Our approach can be described roughly as follows. In [TY90] the elliptic Monge–Ampère equation

0 = log
det(gkl̄ + ukl̄)

det(gkl̄)
− f (26)

was studied on a complete non-compact Kähler manifold (M, gi̄) where f is a given function
on M . In particular, an a priori C0 estimate was established for u provided that g and f satisfy
basically the same hypothesis as in Theorem 1. This was done using a non-compact version of
the Nash–Moser iteration for (26) established in [Yau78] in the compact case. Now for each t
we may treat (6) as an elliptic Monge–Ampère equation as in (26) simply by subtracting ut
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from both sides of (6). Doing this for each t, our hypothesis on (M, g0) together with (25) will
essentially allow us to proceed as in [TY90] to estimate the C0 norm of u independent of t. This
method of using estimates for the elliptic Monge–Ampère equation to derive estimates for the
corresponding parabolic equation was first done in [Cao85] in the compact case.

Lemma 4. Let (M, g0) be as in Theorem 1 and let g(t) be the solution of the Kähler–Ricci
flow (1) in M × [0, Tmax). Then

sup
M×[0,Tmax)

|u|<∞.

Proof. Fix some Tmax > t > 0 and let ω0 be the Kähler form corresponding to g(0) and let
ω = ω0 + (

√
−1/2)∂∂̄u be the Kähler form corresponding to g(t). Then by (6)

ωn = ef0−fωn0

and

(ef0−f − 1)ωn0 = (ωn − ωn0 )

=
√
−1
2

∂∂̄u ∧
(n−1∑
j=0

ωj0 ∧ ω
n−j−1

)
. (27)

(See [Cao85, (1.13)].) For any p > 1, multiply both sides by−φ2|u|p sign(u) and integrate, where φ
is a smooth function with compact support. After integrating by parts and some computation
(see [Cao85] for a similar computation in the compact case), we have

2
∫
M
φ2|u|p|ef0−f − 1| dV0

>
p

(p+ 1)2

∫
M
|∇|u|(p+1)/2φ|2 dV0 −

3
p

∫
M
|u|p+1|∇φ|2 dV0 (28)

where we have used the fact that (
√
−1/2)∂u ∧ ∂̄u ∧ ωj0 ∧ ωn−j−1 > 0 for all j.

Note that for all t, |u| also decays as ρ−2−ε
t by Lemma 2. Let φ be such that φ= 1 in B0(r)

and φ= 0 outside B0(2r) such that |∇0φ| 6 C/r for some constant C independent of r. Using
the fact that the curvature of g(t) is bounded in M × [0, T ] for all T < Tmax, the last term in the
right-hand side of (28) will tend to zero as r→∞ provided that p > p∗. Hence, using the Sobolev
inequality (4) we obtain the following for p > p0 > p∗ (here p0 and p∗ are as in Lemma 3):(∫

M
|u|(p+1)κ dV0

)1/κ

6 C1p

∫
M
|u|p|ef0−f − 1| dV0

6 C2p

∫
M
|u|p|f0 − f | dV0

6 C3p

(∫
M
|u|p+1 dV0

)p/(p+1)(∫
M
|f0 − f |p+1 dV0

)1/(p+1)

6 C4p

(∫
M
|u|p+1 dV0

)p/(p+1)

6 C4p

(∫
M
|u|p+1 dV0 + 1

)
. (29)

Here C1, . . . , C4 are constants independent of t, p and κ= n/(n− 1)> 1 and we have
used Lemma 3 and the fact that f(t) is uniformly bounded on space and time. Take p= p0,
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we also have(∫
M
|u|(p0+1)κ dV0

)1/κ

6 C2p0

∫
M
|u|p0 |f0 − f | dV0

6 C2p0

(∫
M
|u|(p0+1)κ dV0

)p0/(p0+1)κ

×
(∫

M
|f0 − f |(p0+1)κ/(p0+1)κ−p0 dV0

)1−p0/(p0+1)κ

= C2p0

(∫
M
|u|(p0+1)κ dV0

)p0/(p0+1)κ(∫
M
|f0 − f |p

∗
dV0

)1/p∗

. (30)

Hence, by Lemma 3, we have (∫
M
|u|(p0+1)κ dV0

)1/(p0+1)κ

6 C5 (31)

for some constant C5 independent of t. By (29) and Young’s inequality we have that for p > p0:∫
M
|u|(p+1)κ dV0 + 1 6 (C4p)κ

[∫
M
|u|p+1 dV0 + 1

]κ
+ 1

6 (C4p)κ
[∫

M
|u|p+1 dV0 + 2

]κ
6 (2C4p)κ

[∫
M
|u|p+1 dV0 + 1

]κ
. (32)

Hence, we have[∫
M
|u|(p+1)κ dV0 + 1

]1/κ(p+1)

6 (2C4p)1/(p+1)

[∫
M
|u|p+1 dV0 + 1

]1/(p+1)

6 (2C4(p+ 1))1/(p+1)

[∫
M
|u|p+1 dV0 + 1

]1/(p+1)

. (33)

That is to say, for all q > p0 + 1,[∫
M
|u|κq dV0 + 1

]1/κq

6 (2C4q)1/q

[∫
M
|u|q dV0 + 1

]1/q

. (34)

By iteration (see [TY90]), it is straightforward to show that

sup
M
|u| 6 C6

[∫
M
|u|(p0+1)κ dV0 + 1

]1/(p0+1)κ

6 C7

for some constants C6, C7 > 0 independent of t. Here we have used (31). This completes the proof
of the lemma. 2

Once we obtain a C0 bound for u, then we may obtain bounds on the higher-order derivatives
of u as in [Cha04, § 5].1 See also [Cao85, Yau78].

1 The equation treated in [Cha04] was actually (6) with an additional term −u on the right: the equation for
negative Kähler–Einstein metrics. Despite the difference in these equations, the a priori estimates for higher-order
derivatives of u in terms of the C0 norm of u follow from essentially the exact same calculations. We refer also
to [Cao85] for similar a priori estimates for (6) in the compact case.
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Lemma 5. Let g(t) be the solution to (1) on M × [0, T ] such that the curvature of g(t) and all
of its covariant derivatives are uniformly bounded. Assume that the initial Ricci tensor has a
bounded potential f0 and let u and f be as before. Assume also that all of the covariant derivatives
of f(t) with respect to g(t) are uniformly bounded inM × [0, T ]. Suppose that supM×[0,T ] |u|=A.
Then for any k > 1, there is a constant C depending only on A, k, f0 and g(0) such that

|∇k0u| 6 C.

Corollary 2. Let (Mn, g0) be a complete non-compact Kähler manifold with bounded
curvature such that (2) is satisfied for a smooth bounded potential f0. Then (1) has a long
time smooth solution.

Proof. Let u and f be as before. By Lemma 2(i) we have |f(x, t)| 6 supM |f0|. Hence, |u(x, t)| 6
t supM |f0| for all (x, t) ∈M × [0, Tmax) and supM u(x, t) cannot blowup in finite time. By
Lemma 5, the curvature tensor of g(t) cannot blowup in finite time. By [Shi89], we conclude
that T =∞ and thus (1) has a long time smooth solution. 2

We now prove Theorem 1.

Proof of Theorem 1. By Lemmas 3, 4, and 5, we conclude that for all t > 0, g(t) is uniformly
equivalent to g0 independent of t, and that for any sequence tk→∞ some subsequence of u(x, tk)
(which we still denote by u(x, tk)) converges in the C∞ sense on compact subsets of M to a
smooth limit v on M . Thus, by Lemma 2(i), we conclude that ∂u

∂t (x, tk) =−f(x, tk) converges
uniformly on M to a constant c. Lemma 3 and the fact that M has infinite volume imply that c
must be zero. Hence, gi̄ + vi̄ is a smooth complete Kähler–Ricci flat metric on M . On the other
hand, Lemma 6 below implies that the limit metric gi̄ + vi̄ is independent of the tk. We conclude
that u(x, t) converges to v in the C∞ sense on compact subsets of M . This completes the proof
of the theorem. 2

The following was basically proved in [Cha05], and says that bounded limits of (6) are unique.

Lemma 6. Let g and h be two equivalent complete Kähler metrics on a non-compact complex
manifold M such that:

(i) hi̄ = gi̄ + vi̄ for some smooth bounded function v;

(ii) g has nonnegative Ricci curvature; and

(iii)

log
det(gi̄ + vi̄)

det(gi̄)
= 0.

Then g = h.

Proof. We sketch the proof. Since

0 =
∫ 1

0

∂

∂s
log det(gi̄ + svi̄)

=
(∫ 1

0
gij̄(s) ds

)
vi̄

where gi̄(s) = gi̄ + svi̄. Hence, v satisfies aij̄vi̄ = 0 for some Kähler metric ai̄ which is uniformly
equivalent to g. As g has nonnegative Ricci curvature, v must be constant by [Gri92, Sal92]. 2
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