
GENERALIZED CASIMIR OPERATORS 

A. J. DOUGLAS 

Throughout this paper, 5 will be a ring (not necessarily commutative) 
with an identity element ls 7e- 0^. We shall use R to denote a second ring, and 
<£: 5 —>• R will be a fixed ring homomorphism for which <f)ls = 1R. 

1. Introduction. In (7), Higman generalized the Casimir operator of 
classical theory and used his generalization to characterize relatively pro­
jective and injective modules. As a special case, he obtained a theorem which 
contains results of Eckmann (3) and of Higman himself (5), and which also 
includes Gaschutz's generalization (4) of Maschke's theorem. (For a discussion 
of some of the developments of Maschke's idea of averaging over a finite group, 
we refer the reader to (2, Chapter IX).) In the present paper, we define the 
Casimir operator of a family of S-homomorphisms of one i^-module into 
another, and we again use this operator to characterize relatively projective 
and injective modules. In § 4, we give some special cases, the first of which 
covers the result of Higman (7) referred to above. 

In § 5, we extend (7, Theorem 6) for a special class of pairs R, S. Our result 
contains a theorem of Popescu (9, Proposition 1.3) which in turn generalizes a 
result of Cartan and Eilenberg (1, Chapter IV, Proposition 2.3) on the ring 
of dual numbers. 

2. Relatively projective and injective modules. An abelian group M 
which is both a left and a right 5-module and for which 

(su)s' = s (us'), s, s' £ S, u G M, 

will be referred to as an S-bimodule. 
A left i^-module M may be treated as a left S-module by putting 

su = (cj)s)u, s G S, u Ç M, 

and similarly for right modules. In particular, R itself may be regarded as a 
left or right 5-module. 

When M is a left 5-module and X is an S-bimodule, the tensor product 
X 0 s M may be considered as a left 5-module by taking 

s(x (x) u) = sx (g) u, s Ç S, x Ç X, u G M. 
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Furthermore, the abelian group Hom s(X, M) of 5-homomorphisms of X into 
M may be regarded as a left S-module by putting 

(sf)x = f(xs), s e S,f e Hom s(X, M), x G X. 

Suppose now that M is a left 5-module; it follows from what we said above 
that R 0S M may be considered as a left S-module. In fact, it may be regarded 
as a left i^-module by taking, in addition, 

fi(>2 ®u)= nr2 (x) u, fi, r2 £ R, u £ M. 

When i f is a left i^-module, the mapping 

t: R ®s M -> M 
given by the relation 

t{r (x) u) = ru 

is easily checked to be an i?-homomorphism. If K: M —> R (x)5 M is the 
5-homomorphism under which u —> 1R ® u, then the composition 

K t 
M-^R ®SM-+ M 

is the identity mapping, which proves that ker t is an 5-direct summand of 
R ®sM. 

Definition. The left i?-module M will be said to be ^-projective if ker / is an 
indirect summand of R ®s M. Clearly, if M is .^-projective, then it is 
(^-projective. Our first result forms part of (1, Chapter II, Proposition 6.3). 

(1) THEOREM. For any left S-module M, R ®s M is ^-projective. 

If M isaleft^S-module, then the left 5-module Hoirie (i?, M) maybe regarded 
as a left J\-module by setting 

(rif)r2 = /(r2ri) , fi, r2 e R, f t Homs(R, M). 

When M is a left i^-module, the mapping tf: M —» Homs(i^, M) for which 
(t'u)r = ru is an i^-homomorphism, and if K': Homs(R, M)-+M is the 
5-homomorphism under wh ich / -^ / l f f , then the composition 

*' K' 

M->Homs(R,M)-*M 

is the identity mapping, which proves that Im t' is an 5-direct summand of 
Horn* (i?, M). 

Definition. The left i^-module M is said to be 4>-injective if Im t' is an indirect 
summand of Hom 5 (^ , M). 

If M is i^-injective, then it is obviously 0-injective. Dual to (l) we have the 
following result. 

https://doi.org/10.4153/CJM-1969-164-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-164-7


1498 A. J . DOUGLAS 

(1;) THEOREM. For any left S-module M, Homs(R} M) is ^-infective. 

If M i s a left i?-module and there exists an ^-isomorphism Hom s (5 , M) = 
R (x)s M, then M is (^-projective if and only if it is $-injective. 

3. Casimir operators. Throughout this paper, I will denote an indexing 
set and {Ri} ï € j , {R/} tei will be families of 5-bimodules which are contained in 
R. 

Definition. Let M and H be left 5-modules and i?-modules, respectively. For 
each i G 7, an 5-homomorphism of Rt (x)s M -^ H will be said to be quasi-R-
linear if 

li(rr' (x) u) = rôi(r' (g) u) whenever r G R, rf, rrf G i^ , and w G M. 

Dually, an 5-homomorphism If ff-^Homg(5/, M) will also be said to be 
quasi-R-linear if 

(êirh)rf = (eih)(r'r) whenever r £ R, h £ H, r\ r'r G i£/ . 

For each i G 7, we suppose that to every left 5-module M there corresponds 
an 5-homomorphism 

Kt: M-+Ri 0s M 

which is such that, if H is a left i^-module and ôf M —+ H is an 5-homo­
morphism, then there exists a unique quasi-i^-linear homomorphism 
ôf Ri ®s M —* H for which 5* = liKU i.e. for which the diagram 

M—+H 

is commutative. 
We shall also suppose that, for each i G I, there corresponds to every M an 

5-homomorphism 

Kt': Uoms(RS,M)->M 

which is such that, if H is a left i^-module and ef H —̂  M is an 5-homo­
morphism, then there exists a unique quasi-i^-linear homomorphism 
ef H —•> Horns(i?/, ikf) for which e* = /c/e*, i.e. for which the diagram 

YLoms(Rt',M) 

- \ \ -

M <—H 

is commutative. 
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Let M be a fixed left i^-module, and, for each i Ç 7, let 

Pi: Rt^sM-^R^s M, p/: Homs(R, M) -> Homs(R/9 M) 

be the 5-homomorphisms induced by the inclusion mappings 

Ri —> R, Ri —> R, 

respectively. 
We shall suppose that, for each i Ç 7, there exists an 5-homomorphism 

X,: HomsGR/, M) -» Rt ®s M. 

Definitions. Let M and N be left i^-modules and let {at} i € / be a family of 
5-homomorphisms of iV into M. If, for each v 6 iV, tpiXiâjV = 0 for almost 
all i, then the 5-homomorphism 

X) tpiXiâi'.N-ïM, 
iÇI 

is called EL first Casimir operator of the family {a*} iei and is denoted by c{ai}. 
Again, let {fti} iei be a family of 5-homomorphisms of M into iV; if, for each 

u Ç i7, Pikip/t'u = 0 for nearly all i, then the 5-homomorphism 

TEt&t\iPt't:M-+N 

is called a second Casimir operator of {0*}^/ and is denoted by c'{/3<}. (The 
terminology is that used in (8, § 8); for a justification of the use of "Casimir 
operator", see the Remark following (4) in § 4.) 

Note. The sets {a*} iei and {/3Z} i67 possess first and second Casimir operators, 
respectively, whenever the indexing set 7 is finite. 

(2) THEOREM. Suppose that, as an S-bimodule, R = J^i^Ri (direct sum) 
and let M be a left R-module. If 

(a) M possesses a family {a*} i€7 of S-endomorphisms such that 

X) Pi^taf. M->R ®SM 

is an R-homomorphism and c{af} = id^, the identity mapping of M, 
then 

(b) M is ^-projective. 
For each i £ 7, let at be the S-homomorphism R ®s M —> Rt (g)5 M induced 

by the projection mapping R-^ Ri. If each Xt is an S-isomorphism and each 
\i~lGi is quasi-R-linear, then (a) and (b) are equivalent. 

Proof, (a) implies (b) at once. Suppose then that each X̂  is an 5-isomorphism, 
that each X*-1^ is quasi-i^-linear, and that M is ^-projective. There exists an 
jR-homomorphism g: M —» R ®s M such that tg = idM- Let at = A C / X ^ V ^ ; 

since X*-1^ is quasi-i?-linear, then so is Xf^ig, and it follows that at = Xf^ig. 
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Hence 

since Y,ta Pi^i = '^R®S^' Also, 

c{a<} = S tp&ifrt = S ^o'ig = tg = idM-

Dual to (2), we have the following result. 

(2r) THEOREM. Let the indexing set I be finite. Suppose also that, as an 
S-bimodule, R = ^^R/ (direct sum), and that M is a left R-module. If 

(a') M possesses a family {Pi} iei of S-endomorphisms such that 

ZivPiliPt': Homs(R, M)-*M 

is an R-homomorphism and cr{$i) = iâM, 
then 

(l/) M is ^-infective. 
For each i Ç / , let a/: Homs(R/, M) —» Homs(i^, M) be the S-homomorphism 

induced by the projection R —> R/. If each \ t is an S-isomorphism and each 
a/Xf1 is quasi-R-linear, then (a') and (1/) are equivalent. 

4. Examples. 

Example 1. We suppose that the indexing set I consists of a single element, 
and we take Rt = R/ = R. If M is a left S-module, H is a left i^-module and 
ô: M —> H, e: H —> M are ,S-homomorphisms, then there exist unique i^-homo-
morphisms 8: R (x)̂  M —-> H, i: H —> Homs(i^, ikf) such that ô = 5/c, e = K'É, 
namely the mappings under which r (x) u —> r(<5 )̂ and h -^f, where fr = e(W&). 
We shall assume that, when M is a left i^-module, there exists an i^-homo-
morphism 

X: Horns(2?, Af ) -> R <g>s M. 

From (2) and (2') we have the following results. 

(3) COROLLARY. Let M be a left R-module. If 
(a) M possesses an S-endomorphism a such that c{a] = idM, 

then 
(b) M is ^-projective. 
If X is an R-isomorphism, then (a) and (b) are equivalent. 

(3') COROLLARY. Let M be a left R-module. If 
(a') M possesses an S-endomorphism $ such that c'{fi] = idM> 

then 
(W) M is <j)-injective. 
If X is an R-isomorphism, then (a') and (b') are equivalent. 

Note. When X is an .^-isomorphism, it follows from the remark at the end of 
§ 2 that the conditions (a), (b), (a7), (b') are equivalent. 
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The results (3) and (3') above were proved by Higman (7, Theorem 5) for a 
situation similar to the present one. As an application, he considered the 
situation in which S is a subring of R and R possesses a right 5-basis {ri, . . . , rn] 
and a set {r/, . . . , rn') of elements such that 

n n 

(i) Uj = XI ricSjk (r G R, sjk £ S) implies that r/r = X) **/*'• 

In this case, for any left i?-module M, the mapping 

X: Homs(R, M) -^ R ®s M, 
under which 

is an i^-homomorphism. If N is a second i^-module and a: N —> M is an 
S-homomorphism, then it is easily checked that 

n 

c{a} = c'{a] = X) r/*r/. 

Furthermore, when j r / , . . . , r /} is a left S-basis of R, X is an ^-isomorphism. 
The following result is then an immediate consequence of (3) and (3'). 

(4) COROLLARY. Suppose that S is a subring of R and let 4>: S —> R be the 
inclusion mapping. Let {ri, . . . , rn) be a right S-basis of R and let {r/, . . . , rn'} 
be a set of elements of R which satisfy (i). Suppose also that M is a left R-module. 
The condition (a) M possesses an S-endomorphism a such that 

n 

X rprj = idM 

implies (3) (b) and (3') (b'). If {^/, • • • , rn'} is a left S-basis of R, then each of 
these conditions is equivalent to (a). 

Remark. Let R be a separable algebra over a field S, and suppose that 
{fi, • • • , Tn) is a basis of R and that {r/, . . . , rn

f] is a dual basis of R with 
respect to some discriminant matrix. If a: is a linear transformation of a repre­
sentation module for R over 5, then c{a) is the Casimir operator of classical 
theory; see (6). 

For applications of (4) to algebras, separable algebras, and groups, the reader 
is referred to (7, Part I I I ) . 

In § 5 we extend (4) for a special class of pairs R, S. 

Example 2. Let / be an indexing set which is partitioned into a family 
{Ji} ÏÇJ of finite subsets. Suppose also that {r^^j is a right 5-basis of R and 
that {r/}j£j is a family of elements of R, the members of which are not 
necessarily distinct, such that 

fjfos) = (0s)ry, r / (0s) = (<l>s)r/} j £ J, s £ S. 
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For each i G / , letRt betherightS-submoduleof R generated by the set {rj}jeJi; 
we note that Ri is an S-bimodule and that R = X<€/Rt (direct sum). Also, 
for each i, let R/ be an S-bimodule which is contained in R and which contains 
the set {r/} jtzj;. Finally, we assume that, for each left S-module M and each 
i G I, there exists an ^-homomorphism 

K/: Hom8(Rt',M) -> M 

with the properties specified in § 3. For each i G / , we define an 5-homo-
morphism 

X,: HomstR/ , M) -> Rt ®s M 
by 

KJi 

(5) LEMMA. Let M be a left R-module and let {af} ia be a family of S-endo-
morphisms of M such that 

(ii) for each u G M, àtu = 0 for almost all i G / . 

A necessary and sufficient condition for X*€/ Pi^iàù M'—>• R ®s M to be an 
R-homomorphism is the following: 

ifr G R and if, for all j G J,rrj = J^JCZJ rksjk, where sjk G S, then, for k G Ju 

X (àiu)[ X sjkr/) = (âtru)rk, u £ M. 

Proof. Suppose that r G R, that rrj = X*€J- rksjk for all j G / , and that 
(iii) holds; then 

X Pi^iàAu) = X rpiXiâfU = E H S r i ® {àiu)rj 

= X X) \rrJ ® (âi«)r/J = X Z ) Z rksjk) ® (« ,«>/ ( 

= X) YJ X) rk ® (âiU)(sjkr/) = X jur*®\ (àiU)[ X * W ) \ 
k£J iU j£Ji k£J i£I V \j€Ji ' ' 

= X X r* ® (àiru)rk
f, by (iii), 

= X) Pi^iàiru = ( X P i X ^ J ^ ) , 

and thus X*€/ Pi^i^-i is a n i^-homomorphism. 
Since {r j) jeJ is a right 5-basis of R, each element of R ®s M can be expressed 

uniquely in the form YLJ^J^J ®VJ, where the Vj belong to M. That (iii) is a 
necessary condition for 5Z<€/PAi«< to be an i^-homomorphism can be seen 
from the first part of this proof. 

The next result follows from (2) and (5). 
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(6) THEOREM. Let M be a left R-module. If 
(a) M possesses a family {at} iei of S-endomorphisms which satisfy conditions 

(ii) and (iii) and such that c{ai) = id^, 
then 

(b) M is ^-projective. 
For each i ^ I let at: R ®s M —» Rt (g)s M be the mapping induced by the 

projection R—^Ri. If each X* is an isomorphism and each \fl<ii is quasi-R-
linear, then (a) and (b) are equivalent. 

5. Throughout this section, S will be a subring of R and $: S —> R will be the 
inclusion mapping. We shall suppose that the elements fi, . . . , rn, r\ , . . . , rn' 
of R commute with every member of 5, and that {ri, . . . , rn}, {r/, . . . , rn') 
are S-bases of R which satisfy condition (i). We assume also that 

riVi = r2'r2 = . . . = rn'rn = a, say, 
and that 

(iv) r/rk = 0 when j < k. 

(7) THEOREM. For any left R-module M, the following conditions are 
equivalent: 

(a) M is ^-projective; 
(a') M is 4>-injective; 
(b) M possesses an S-endomorphism a such that 

n 

(v) 22 r3arI = idM/ 

(c) M ^R R ® s aikf; 
(c') Af ^ B H o m s ( 5 , aM). 

Proof. The equivalence of (a), (a'), and (b) follows from (4). 
(b) => (c). Multiplying both sides of (v) on the left by rk and using (iv), we 
see that 

k 

(vi) 22 n'rfior/ = rk'. 

The relation 
n 

\[/u = 22 ^ ® aar/u 
3=1 

defines a mapping, namely 
\p: M —> R ®s aM. 

U r e R and rr3 = L L i V # (j = 1, . . . , n), then 

n n / n \ 

r(^«) = 22 r rJ ® fla^/« = 22 V 22 Vi* ) ® aar/w 
;= i ;= i \ *=i / 

w / w \ n 

= 22 ^ ® ao\ 22 * W P = 22 r* ® aa(rk'r)uf 
£ = 1 V ; = 1 / * = l 
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since condition (i) is satisfied, and hence 

n 

r(\j/u) = 2^ ry <8) aar/(ru) = yp(ru), 
3=1 

thus proving that \p is an i?-homomorphism. If \pu = 0, then, since {fi, . . . , rn] 
is an 5-base for R, we can infer that aar/u = 0 for eachj. Replacing k in (vi) by 
1, . . . , n in succession, we see that rfu = 0 for each j . I t follows from (v) 
that u = 0. Thus \p is injective. 

We next show that \f/ is surjective. Multiplying both sides of (vi) on the right 
by rk and using (iv), we have 

(vii) aaa = a. 

Suppose now that v G aM. We can put v = au, where u G M, and then 

aark (rkav) = aaaaau = au, by (vii), 

and hence 

aark(rkav) = v. 

In addition, when j < k, aar/ (rkav) = 0. Thus, \f/ is surjective, and hence is an 
^-isomorphism. 

The implication (b) => (c') follows at once since Hom5(i^, aM) ~R R (g)saM; 
cf. Example 1. 

The implications (c) => (a), (c') ==> (a') were cited in (1) and (V). 

(8) THEOREM. The R-module M is projective if and only if there exists a 
projective S-module N such that M ~R R ® s TV. Dually, M is injective if and 
only if there exists an injective S-module N such that M =R Hom)S(i?, N). 

Proof. If M is ^-projective, then it is also ^-projective, and hence it follows 
from (7) that there exists an 5-module N such that M =R R ®s N. Since 
R is 5-free, it follows that M is S-projective; and thus N, being 5-isomorphic 
to a direct summand of M, is 5-projective. The converse follows from (1, 
Chapter II, Proposition 6.1). 

6. Examples. 

Example 3. Let R be the free left 5-module on the set {ls, d, . . . , dn~1}. We 
make R into a ring by means of the identity 

(sols + s^ + . . . + 5 n _ 1 *- 1 ) (Vls + si'd + . . . + s .- i '^-1) 

= SoSols + (sosi + Sis0')d + . . . + (soSn-.i + SA-2 + . . . + Sn^s^d71-1 

(s0, • • • So . . . . i SJI—1 

so that dn = 0. We may regard 5 as a subring of R by identifying 5 and sls for 
every 5 G S, in which case d commutes with every member of 5. I t is clear that 
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if M is a left 5-module having an 5-endomorphism d for which dn = 0, then 

M is a left i^-module. In (7), we can take 

ri = U r2 = d, . . . , rn = d*"1, r / = <*-i, r2 ' = ^ " 2 , . . . , rn' = 18, 

the ident i ty in (7) (b) then becomes 

lsad?-1 + dadn~2 + . . . + dn~2ad + dn~lals = idM , 

and we have (9, Proposition 1.3). Taking n = 2 yields (1, Chapte r IV, 

Proposition 2.3). W e remark tha t , in the former case, a = dn~l. 

Example 4. Le t R be the free left 5-module on the set { l s , d\, d2, d\d2\. W e 

make R in to a ring by means of the ident i ty 

(SQ1S + sidi + s2d2 + Szdid2)(sols + Si'di + s2d2 + sz'did2) 

= S^SQIS + (SQSI + S!So)di + (s0S2 + S2So)d2 

+ (s0Ss + S!S2 + s2Si + szsv)did2 (s0, . . . , sz, So, . . . , sz Ç S), 

so t h a t 

didi = d2d2 = 0 and d2di = d\d2, 

and, when we identify sls and s for each s Ç S, it follows t h a t 

d\S = sd%, d2s — sd2. 

In (7) we can pu t 

r\ = ls, r2 = du rz = d2, r± = did2, t\ = dxd2, r2 = d2, rz' = d1} rA' = ls. 

T h e ident i ty in (7) (b) then becomes 

lsadid2 + diad2 + d2ad± + d i r a i s = id*/, 

and a = d\d2. 
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