GENERALIZED CASIMIR OPERATORS

A. J. DOUGLAS

Throughout this paper, S will be a ring (not necessarily commutative)
with an identity element 15 ## 0g. We shall use R to denote a second ring, and
¢: S — R will be a fixed ring homomorphism for which ¢15 = 1.

1. Introduction. In (7), Higman generalized the Casimir operator of
classical theory and used his generalization to characterize relatively pro-
jective and injective modules. As a special case, he obtained a theorem which
contains results of Eckmann (3) and of Higman himself (5), and which also
includes Gaschiitz’s generalization (4) of Maschke's theorem. (For a discussion
of some of the developments of Maschke's idea of averaging over a finite group,
we refer the reader to (2, Chapter IX).) In the present paper, we define the
Casimir operator of a family of S-homomorphisms of one R-module into
another, and we again use this operator to characterize relatively projective
and injective modules. In § 4, we give some special cases, the first of which
covers the result of Higman (7) referred to above.

In § 5, we extend (7, Theorem 6) for a special class of pairs R, S. Our result
contains a theorem of Popescu (9, Proposition 1.3) which in turn generalizes a
result of Cartan and Eilenberg (1, Chapter IV, Proposition 2.3) on the ring
of dual numbers.

2. Relatively projective and injective modules. An abelian group M
which is both a left and a right S-module and for which

(su)s" = s(us’), s, €8S, uec M,

will be referred to as an S-bimodule.
A left R-module M may be treated as a left S-module by putting

su = (¢s)u, sE€S, uc M,

and similarly for right modules. In particular, R itself may be regarded as a
left or right S-module.

When M is a left S-module and X is an S-bimodule, the tensor product
X ®s M may be considered as a left S-module by taking

slx @u) = sx Qu, se€S, x€X,u€ M.
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Furthermore, the abelian group Homg(X, M) of S-homomorphisms of X into
M may be regarded as a left S-module by putting

(sf)x = f(xs), s €S, f€ Homg(X, M), x € X.

Suppose now that M is a left S-module; it follows from what we said above
that R ®¢ M may be considered as a left S-module. In fact, it may be regarded
as a left R-module by taking, in addition,

ri(rs @u) = rirs @ u, ry, 72 € R, u € M.
When M is a left R-module, the mapping

R Qs M—->M
given by the relation
tr Qu) = ru
is easily checked to be an R-homomorphism. If x: M —- R ®s M is the

S-homomorphism under which # — 1z ® #, then the composition

K ¢
is the identity mapping, which proves that ker ¢ is an S-direct summand of
R ®s M.

Definition. The left R-module M will be said to be ¢-projective if ker ¢ is an
R-direct summand of R ®s M. Clearly, if M is R-projective, then it is
¢-projective. Our first result forms part of (1, Chapter 11, Proposition 6.3).

(1) THEOREM. For any left S-module M, R ®s M is ¢-projective.

If M isaleft S-module, then the left.S-module Homg (R, M) may be regarded
as a left R-module by setting

(rif )re = f(rar1), 71,72 € R, f € Homg(R, M).

When M is a left R-module, the mapping ¢': M — Homg(R, M) for which
(#u)r = ru is an R-homomorphism, and if «': Homg(R, M) — M 1is the
S-homomorphism under which f — flg, then the composition
' K’
M — Homg(R, M) > M

is the identity mapping, which proves that Im ¢’ is an S-direct summand of
Homg(R, M).

Definition. The left R-module M is said to be ¢-injective if Im ¢’ is an R-direct
summand of Homg(R, M).

If M is R-injective, then it is obviously ¢-injective. Dual to (1) we have the
following result.
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(1") THEOREM. For any left S-module M, Homg(R, M) s ¢-injective.

If M is aleft R-module and there exists an R-isomorphism Homg(R, M) =
R ®s M, then M is ¢-projective if and only if it is ¢-injective.

3. Casimir operators. Throughout this paper, I will denote an indexing

set and {R} ier, { R/} 1¢; Will be families of S-bimodules which are contained in
R.

Definition. Let M and H be left S-modules and R-modules, respectively. For
each ¢ € I, an S-homomorphism §,: R; ®s M — H will be said to be quasi-R-
linear if

§;(rr' @u) = ré;(r ®u) wheneverr € R, 7', r' € R;, and u € M.
Dually, an S-homomorphism &;: H — Homg(R,, M) will also be said to be
quast-R-linear if

(&rh)r = (€h)(r'r) wheneverr € R, h € H, ', 7'r € R/.

For each ¢ € I, we suppose that to every left S-module M there corresponds

an S-homomorphism
Kit M — Rz ®s M
which is such that, if H is a left R-module and §;: M — H is an S-homo-

morphism, then there exists a unique quasi-R-linear homomorphism
§;: R; ®s M — H for which §; = §x;, i.e. for which the diagram

R, @M

—
Msi

is commutative.
We shall also suppose that, for each ¢ € I, there corresponds to every M an
S-homomorphism

ki Homg(R/, M) - M

which is such that, if H is a left R-module and ¢;: H — M is an S-homo-
morphism, then there exists a unique quasi-R-linear homomorphism
é¢: H— Homg(R/, M) for which €; = k/&, i.e. for which the diagram

Homs(Ri’yM)

is commutative.
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Let M be a fixed left R-module, and, for each 7z € I, let
pi: Ry s M — R ®s M, pi: Homg(R, M) — Homg(R/, M)
be the S-homomorphisms induced by the inclusion mappings
R, — R, R/ — R,

respectively.
We shall suppose that, for each ¢ € I, there exists an S-homomorphism

>\i: Homs(Ri’, M) '—>R¢ ®S M.

Definitions. Let M and N be left R-modules and let {a;}:; be a family of
S-homomorphisms of N into M. If, for each v € N, tp\;@;v = 0 for almost
all 7, then the S-homomorphism

Z tpi)\idii N — M,
i€l
is called a first Casimir operator of the family {a;}:c; and is denoted by c{a;}.

Again, let {8;} ic; be a family of S-homomorphisms of M into N; if, for each

w € M, B:\ip/t'u = 0 for nearly all 7, then the S-homomorphism

Z Bihiplt': M > N

1€l
is called a second Casimir operator of {B.}ic; and is denoted by ¢’{8;}. (The
terminology is that used in (8, § 8); for a justification of the use of “Casimir
operator”’, see the Remark following (4) in § 4.)

Note. The sets {a;} iy and {84} s possess first and second Casimir operators,
respectively, whenever the indexing set I is finite.

(2) THEOREM. Suppose that, as an S-bimodule, R = 3 ;c; R; (direct sum)
and let M be a left R-module. If
(a) M possesses a family {a} cr of S-endomorphisms such that
> ph@i: M—>R@s M
€7
is an R-homomorphism and cla;} = idy, the identity mapping of M,
then
(b) M 1s ¢-projeciive.
For each 1 € I, let o, be the S-homomorphism R Qs M — R; Qs M induced
by the projection mapping R — R;. If each \; is an S-isomorphism and each
N lo; is quasi-R-linear, then (a) and (b) are equivalent.

Proof. (a) implies (b) at once. Suppose then that each \;is an S-isomorphism,
that each \;7l¢; is quasi-R-linear, and that M is ¢-projective. There exists an
R-homomorphism g: M — R ®s M such that fg = idy. Let a; = k/\"10.g;
since \; 1o is quasi-R-linear, then so is \; 7o, and it follows that &; = \;"lo.g.
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Hence

Z piNidt; = Z picig = &,

€l i€r

since ZiEI pio; = ldR ®g M- AISO,
cla} = D tphidy = > tpioig = tg = idy.
i€1 iel
Dual to (2), we have the following result.

(2') THEOREM. Let the indexing set I be finite. Suppose also that, as an
S-bimodule, R = > c; R, (direct sum), and that M 1s a left R-module. If
(@) M possesses a family {Bi} icr of S-endomorphisms such that

> ier BNip/: Homg(R, M) — M

is an R-homomorphism and ¢’{B;} = idy,
then :
(b)) M s ¢-injective.
Foreacht € I,leto;: Homg(R,/, M) — Homg(R, M) be the S-homomorphism
induced by the projection R — R. If each \; is an S-isomorphism and each
o /N1 is quasi-R-linear, then (a’) and (b') are equivalent.

4. Examples.

Example 1. We suppose that the indexing set I consists of a single element,
and we take R; = R,/ = R. If M is aleft S-module, H is a left R-module and
6: M — H, e H— M are S-homomorphisms, then there exist unique R-homo-
morphisms §: R ®s M — H, & H— Homg(R, M) such that § = 6k, € = «',
namely the mappings under which » @ # — r(6u) and h — f, where fr = e(rh).
We shall assume that, when M is a left R-module, there exists an R-homo-
morphism

N: Homg(R, M) - R ®s M.

From (2) and (2") we have the following results.

(3) CoroLLARY. Let M be a left R-module. If

(a) M possesses an S-endomorphism a such that c{a} = idyy,
then

(b) M s ¢-projective.

If X is an R-isomorphism, then (a) and (b) are equivalent.

(3’) CoroLLARY. Let M be a left R-module. If

(@’) M possesses an S-endomorphism B such that ¢'{8} = idy,
then

(b") M s ¢-injective.

If X is an R-isomorphism, then (') and (b’) are equivalent.

Note. When ) is an R-isomorphism, it follows from the remark at the end of
§ 2 that the conditions (a), (b), (a’), (b’) are equivalent.
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The results (3) and (3") above were proved by Higman (7, Theorem 5) for a
situation similar to the present one. As an application, he considered the

situation in which .S is a subring of R and R possesses a right S-basis {ry, ..., 7,}
and a set {r{, ..., r,’} of elements such that
n n
@) rr; =9 sy (r € R, sy € S) implies that 7,7 = D, s 7.
k=1 k=1

In this case, for any left R-module M, the mapping

\: Homg(R, M) - R ®s M,
under which

f’—’zl 7; ® fry,
£

is an R-homomorphism. If N is a second R-module and a: N — M is an
S-homomorphism, then it is easily checked that

clal = ’fa} = ]z::lr,-arj'.

Furthermore, when {r/, ..., 7’} is a left S-basis of R, \ is an R-isomorphism.
The following result is then an immediate consequence of (3) and (3').

(4) CoroLLARY. Suppose that S is a subring of R and let ¢: S — R be the
wnclusion mapping. Let {rq, . .., r,} be a right S-basis of R and let {r', ..., )}
be a set of elements of R which satisfy (1). Suppose also that M is a left R-module.
The condition (a) M possesses an S-endomorphism a such that

n
Z rjarj' = idM
j=1

implies (3)(b) and (3") (). If {r, ..., 7.} is a left S-basis of R, then each of
these conditions is equivalent to (a).

Remark. Let R be a separable algebra over a field .S, and suppose that
{r1, ..., 7.} is a basis of R and that {r//,..., 7/} is a dual basis of R with
respect to some discriminant matrix. If « is a linear transformation of a repre-
sentation module for R over S, then c{a} is the Casimir operator of classical
theory; see (6).

For applications of (4) to algebras, separable algebras, and groups, the reader
is referred to (7, Part III).

In § 5 we extend (4) for a special class of pairs R, S.

Example 2. Let J be an indexing set which is partitioned into a family
{J:} ier of finite subsets. Suppose also that {r,} je; is a right S-basis of R and
that {r;/};c; is a family of elements of R, the members of which are not
necessarily distinct, such that

ri(@s) = (¢s)r;, r/(¢s) = (¢s)r/, j€J,s¢€S.
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For each 7 € I, let R; be the right S-submodule of R generated by the set {7} jes:;
we note that R; is an S-bimodule and that R = 3 ;; R; (direct sum). Also,
for each 7, let R,/ be an S-bimodule which is contained in R and which contains
the set {7} jes;- Finally, we assume that, for each left S-module M and each
1 € I, there exists an S-homomorphism

ki Homg(R/, M) —> M

with the properties specified in § 3. For each 7 € I, we define an S-homo-
morphism

)\i: I'Ioms(]eil, M) — RZ ®S M
by

Nf =27 @ fr).

JjeJ i
(5) LEMMA. Let M be a left R-module and let {a} ic; be a family of S-endo-
morphisms of M such that
(i1) for each u € M, a;u = 0 for almost all 1 € 1.

A mnecessary and sufficient condition for Y icr pihicii M — R Qs M to be an
R-homomorphism is the following:

ifr € Randif, forallj € J,rr; = 3 es 7uSjx, Wheresy, € S, then, fork € J,,
(iid) > (&m)(Z s,ﬂ/) = (agu)ry, u € M.
i€l JjE€Ji

Proof. Suppose that r € R, that r7; = 3 sy 7S for all j € J, and that
(iii) holds; then

r{(Z p,-xi&i)u} = % rpNidt = r{ Yor,® (&,-u)r,-}

i€l ier ji€Ji

=2 T i@ @/} =2 {(;UWQ ® (5"'”)”'}

i€l jeJi i€l jeJi

=22 2 ® (am)(ar/) =2 7 ® {W)(Z ka’f'>}

keJ i€l jeJi keJ JjeJi

=> D> n® (aru)r, by (i),

i€l k€T
= Z pNdU = (Z Pi)\i&z) (ru),
i€l i€l

and thus 3 ez ps\i@; is an R-homomorphism.

Since {7} jes is a right S-basis of R, each element of R ®s M can be expressed
uniquely in the form e, 7; ® v;, where the v; belong to M. That (iii) is a
necessary condition for Y ;e; psA;&; to be an R-homomorphism can be seen
from the first part of this proof.

The next result follows from (2) and (5).
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(6) THEOREM. Let M be a left R-module. If
(a) M possesses a family {a} icr of S-endomorphisms which satisfy conditions
(i1) and (iii) and such that c{a;} = idyy,

then

(b) M s ¢-projective.

For each © € I let 6t R ®s M — R; s M be the mapping induced by the
projection R — R;. If each \; is an isomorphism and each N ‘e, is quasi-R-
linear, then (a) and (b) are equivalent.

5. Throughout this section, .S will be a subring of R and ¢: S — R will be the

inclusion mapping. We shall suppose that the elements 7y, ..., 7, 7, ..., 7/
of R commute with every member of S, and that {r1, ..., 7}, {r/, ..., '}
are S-bases of R which satisfy condition (i). We assume also that

riry =r'rs = ... =r'r, =a, say,
and that
(iv) ri/ry =0 whenj < k.

(7) THEOREM. For amy left R-module M, the following conditions are
equivalent:

(a) M is ¢-projective;

(@") M 4s ¢-injective;

(b) M possesses an S-endomorphism o such that

(V) Zl r]‘arj, = idM;
=
(C) MgRR ®S aM;
(¢)) M =% Homg(R, aM).

Proof. The equivalence of (a), (a’), and (b) follows from (4).
(b) = (c). Multiplying both sides of (v) on the left by 7’ and using (iv), we
see that

k
(vi) Sorntrar! =1y,
—1
The relation ’
Yu =2 r; @ aaru
=
defines a mapping, namely ’
Yv: M > R ®sal.

Ifr € Randrr; = 2 pcamsy (= 1,...,n), then
r(yu) = > rr; @ aarfu =y, (Z rks]-,c> ® aariu
j=1 =1 N\ k=1

n n n
=>.7n® aa(z s]-kr,-’>u = 7 @ aa(ryr)u,
k=1 j=1 k=1
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since condition (i) is satisfied, and hence

r(yu) = i 7; @ aar (ru) = Y (ru),

thus proving that ¢ is an R-homomorphism. If yu = 0, then, since {ry, ..., 7,}
is an S-base for R, we can infer that aar /4 = 0for each j. Replacing kin (vi) by
1, ..., n in succession, we see that r,/u = 0 for each j. It follows from (v)

that # = 0. Thus ¥ is injective.
We next show that ¢ is surjective. Multiplying both sides of (vi) on the right
by 7 and using (iv), we have

(vii) aaa = a.
Suppose now that v € ¢M. We can put v = au, where » € M, and then
aary (rav) = aaacau = au, by (vii),
and hence
aary (ryaw) = v.

In addition, when j < &, aar; (riav) = 0. Thus, ¢ is surjective, and hence is an
R-isomorphism.

The implication (b) = (¢’) follows at once since Homg(R, aM) =EF R ®sall;
cf. Example 1.

The implications (c) = (a), (¢’) = (a’) were cited in (1) and (1').

(8) THEOREM. The R-module M s projective if and only if there exists a
projective S-module N such that M =% R ®s N. Dually, M is injective if and
only if there exists an injective S-module N such that M =F Homg(R, N).

Proof. If M is R-projective, then it is also ¢-projective, and hence it follows
from (7) that there exists an S-module N such that M =~% R ®g N. Since
R is S-free, it follows that M is S-projective; and thus N, being .S-isomorphic
to a direct summand of M, is S-projective. The converse follows from (1,
Chapter II, Proposition 6.1).

6. Examples.

Example 3. Let R be the free left S-module on the set {14, d, ..., d"1}. We
make R into a ring by means of the identity

(Sols + Sld + e + Sn_ldn_l) (Su’ls + Slld + ... + Sn__lld"—l)
= 5050'Ls 4 (5051 + s150)d 4 . . .+ (SoSu—1’ + S150—2’ + ... + Sp_180)d !
(sﬁy ooy Sp—1, SOIy s ey sn—l/ 6 S)y

so that d* = 0. We may regard .S as a subring of R by identifying s and sl for
every s € .5, in which case d commutes with every member of S. It is clear that
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if M is a left S-module having an S-endomorphism d for which d* = 0, then
M is a left R-module. In (7), we can take

7, = 1s, Yo = d,...,f” =d"—l, ?’1' =d"'_1, 1'2' =d"—2,...,r,,' = ls,
the identity in (7) (b) then becomes
lgad®™ ! 4+ dad™ 2 + ...+ d" 2d + d" 'alg = idy,

and we have (9, Proposition 1.3). Taking #» = 2 yields (1, Chapter IV,
Proposition 2.3). We remark that, in the former case, ¢ = d*1.

Example 4. Let R be the free left S-module on the set {15, d1, d2, did2}. We
make R into a ring by means of the identity

(Sols + s1d1 + sod2 + 83d1d2) (So'ls + si'dy + s)'ds + Sa'dldz)
= soSo'ls 4+ (sost + SISOI)dl + (3052' + sto')dz
+ (8053/ + 5152, + 5281I + SaSo')dldz (So, e ey S3y Sol, e sy S3I E S),

so that
d]d]_ = d2d2 =0 and dzdl = d1d2,

and, when we identify sl5 and s for each s € S, it follows that
dis = sd;, dss = sds.
In (7) we can put
r1 = lg,rs = di, 735 = do, 74 = dids, r' = dids, vy’ = do, vy’ = dy, v/ =154
The identity in (7) (b) then becomes
1sadids + diads + doady + didoals = idyy,
and a = did,.
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