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p-adic Uniformization and the Action of
Galois on Certain Affine Correspondences

Patrick Ingram

Abstract. Given two monic polynomials f and g with coeõcients in a number ûeld K, and some
α ∈ K, we examine the action of the absolute Galois group Gal(K/K) on the directed graph of it-
erated preimages of α under the correspondence g(y) = f (x), assuming that deg( f ) > deg(g)
and that gcd(deg( f ), deg(g)) = 1. If a prime of K exists at which f and g have integral coeõcients
and at which α is not integral, we show that this directed graph of preimages consists of ûnitely
many Gal(K/K)-orbits. We obtain this result by establishing a p-adic uniformization of such corre-
spondences, tenuously related to Böttcher’s uniformization of polynomial dynamical systems over
C, although the construction of a Böttcher coordinate for complex holomorphic correspondences
remains unresolved.

1 Introduction

Let K be a number ûeld and let f (z) ∈ K[z] be a polynomial. Boston and Jones [1]
considered the action of the absolute Galois group Gal(K/K) on the set of iterated
preimages of any α ∈ K under f . _ese preimages form a tree Tf ,α , with edge relation
deûned by the application of f , and so we have an arboreal Galois representation

ρ f ,α ∶Gal(K/K) Ð→ Aut(Tf ,α),
where the latter is the automorphism group of Tf ,α as an abstract graphwith amarked
point α. One naturally wonders when the image of ρ f ,α has ûnite index in Aut(Tf ,α),
or perhaps (less ambitiously) when the paths through Tf ,α break down into only
ûnitely many orbits under Gal(K/K) (see Jones and Levy [6] and for, a broader over-
view, the survey article by Jones [5]).

Now let g(z) ∈ K[z] be another polynomial, and consider the correspondence

(1.1) C ∶ g(y) = f (x).

_at is, consider the (directed) graph whose vertices are the elements of K with an
edge from x to y if and only if g(y) = f (x). For any α ∈ K, let PC ,α denote the
subgraph of backward paths from α. _en again, Gal(K/K) acts on PC ,α , and we are
naturally impelled to inquire as to how free this action is. Onewould like to conjecture
that there are in general few constraints, other than the edge relation deûned by the
correspondence. In other words, one might conjecture that the image of Gal(K/K)
has ûnite index in the graph-theoretic automorphism group Aut(PC ,α), except for
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Figure 1: Two backward paths from α when deg( f ) = 3, deg(g) = 2

some easy-to-describe exceptional class of correspondences. Note that this case con-
tains the previous one, since setting g(y) = y gives PC ,α = Tf ,α . If instead we set
f (x) = x and leave g alone, then PC ,α is a single K-rational path (consisting of the
iterated postimages of α under g). In this case Gal(K/K) surjects onto Aut(PC ,α) in
a fairly unexciting way.

_epurpose of this note is to extend some earlier work of the author [2] on arboreal
Galois representations over local ûelds to the setting of correspondences. If we start
over a number ûeld and there exists a prime such that the conditions of _eorem 1.1
aremet at that localization, then of course the conclusion holds over that number ûeld
as well. In this context it is arguably more natural to think in terms of forward orbits,
but for the sake of consistencywe consider preimages. Moving froma correspondence
C ∶ g(y) = f (x) to its dual Č ∶ f (y) = g(x) swaps the two notions. We will say that
a correspondence as in (1.1) is polarized if and only if deg(g) < deg( f ) (which is the
deûnition in [3] restricted to the current context). If C is deûned over a local ring,
then we will say that C has good reduction if and only if the coeõcients of f and g are
integral, and the leading coeõcient of each is a unit. Denote by P̌C ,α the set of paths
through PC ,α , that is, the set of sequences {αn}n≥0 with α0 = α, and g(αn) = f (αn+1),
an object acted upon naturally by Gal(K/K), if f and g have coeõcients in K. Finally,
if G is a group acting on a set X, we will say that G acts nearly transitively if and only
if X is a union of ûnitely many G-orbits.

_eorem 1.1 Let K be a ûeld of characteristic zero with a discrete non-archimedean
valuation, let C ∶ g(y) = f (x) be a polarized correspondence over K, and let α ∈ K.
Assume the following:
(i) C has good reduction;
(ii) deg( f ) and deg(g) are units in K;
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(iii) gcd(deg( f ), deg(g)) = 1;
(iv) α is not integral.
_en Gal(K/K) acts nearly transitively on P̌C ,α .

More speciûcally, let T be the regular d-branching tree whose vertices are the el-
ements of ⋃n≥0 Z/dnZ (a disjoint union), with gn+1 ∈ Z/dn+1Z sitting above gn ∈
Z/dnZ in the tree if and only if gn+1 ≡ gn (mod dn). _e ends of the tree T (that
is, the inûnite paths beginning at the root) are then naturally identiûed with the el-
ements of the group H = lim←ÐZ/dnZ. _e elements of H are sequences (h0 , h1 , . . . )
with hn ∈ Z/dnZ, subject to the condition that hn+1 ≡ hn (mod dn). Note that there
is a natural action of H on T , with (h0 , h1 , . . . ) taking gn ∈ Z/dnZ ⊆ T to hn + gn ,
which is transitive on each level just because H is a group; the corresponding action
on the ends of T is just the translation action of H on itself. Any subgroup of Aut(T)
that is conjugate to H will be called a d-adic subgroup, a condition that is independent
of the choice of labelling, and hence can be applied to any inûnite d-branching rooted
tree. In other words, a d-adic subgroup is one that arises as H for some labelling of
the vertices of T as above.

_enext theorem sheds somemore light on exactlywhat sorts of actionsGal(K/K)
can have on preimage trees for correspondences.

_eorem 1.2 Let K, C, and α be as in _eorem 1.1, and let G ⊆ Aut(PC ,α) be the
image of Gal(K/K). _en there is a d-adic subgroup H ⊆ Aut(PC ,α) such that G ∩ H
has ûnite index in H.

Note that _eorem 1.2 immediately implies _eorem 1.1, since the H-orbits in
P̌C ,α ≅ H are unions of cosets of G ∩H, and_eorem 1.2 implies that there are only
ûnitely many of these cosets. We note also that the results in this context are weaker
than the analogous results for single-valued polynomial dynamical systems, as found
in [2]. _is is primarily because the proof in the case of correspondences requires us
to pass to a much larger extension of K. We note also that it might be possible obtain
_eorem 1.1 by amore direct argument, relying on a generalized Eisenstein condition,
as in the results of Jones and Levy [6]. We were motivated as much by the application
as by a wish to generalize the Böttcher uniformization to correspondences; it would
be interesting to complete the construction of such a coordinate over C (the work
here gives only a formal uniformization in the archimedean case, with no claim of
convergence).

Our approach is similar to that taken in [2], although things become somewhat
more abstract in the current setting. In broad strokes, we complete K and then con-
struct a partial isomorphism between the correspondence C ∶ g(y) = f (x) and the
correspondence ydeg(g) = xdeg( f ), generalizing the classical Böttcher coordinate [7,
p. 90]. _e natural Galois-equivariance of this isomorphism allows us to reducemany
questions about backward orbits in C to questions about Kummer theory.

More accurately though, our isomorphism is between paths in the ûrst correspon-
dence and paths in the second. As in [3,4] we replace our dynamical correspondence
C ∶ g(y) = f (x) with a single-valued dynamical system σC ∶PC →PC . Here,PC is
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the collection of all possible forward paths through the correspondence (over K), and
σC is the shi�map, which forgets the ûrst vertex of a path and treats the second vertex
as the starting point. Onemight think of this as a dynamical system in the category of
sets, or note that σC is in fact a morphism of K-schemes. Next, we construct a formal
isomorphism of dynamical systems

PC

Ξ
��

σC //PC

Ξ
��

PB σB
//PB ,

with B ∶ ydeg(g) = xdeg( f ). In the case of good reduction, our formal isomorphism
converges to an actual isomorphism exactly on the set of paths whose initial vertex
is non-integral (i.e., on a disk of radius one centred at inûnity). We make the fairly
simple connection between inverse images in the system σC ∶PC →PC and inverse
images relative to the original correspondence C, and then use the relation to the
simpler correspondence B to say something about the action of Galois.

Note that the hypothesis gcd(deg( f ), deg(g)) = 1 in _eorem 1.1 is necessary for
our approach to work. For example, Gal(K/K) cannot act nearly transitively on in-
verse orbits under the correspondence y2 = x4. If α ∈ K, then the n-th preimages of
α under this correspondence are those elements of K of the form ζβ with β2n = α and
ζ4

n = 1. If σ ∈ Gal(K/K) satisûes σ(β) = ζβ, then

β2n = α = σ(α) = σ(β)2n = ζ2nβ2n ,

and so ζ2n = 1. In otherwords, there are at least asmanyGalois orbits amongst the n-th
preimages of α as there are cosets of 4n-th roots of unity by 2n-th roots, in otherwords,
at least 2n orbits. _is speciûc pathology is removed by requiring that f and g are not
of the form f (x) = F ○ h(x) and g(y) = G ○ h(y) for any non-linear polynomial h,
but since we are uniformizing by the correspondence ydeg(g) = xdeg( f ), this ultimately
requires us to assume that deg(g) and deg( f ) have no common factor.

_is paper is organized as follows. In Section 2 we construct the formal isomor-
phism Ξ without regard to convergence. _is construction is very general and is
largely independent of the nature of the ground ûeld. In Section 3, we then show
that if the ground ûeld is a local ûeld, this formal isomorphism gives rise to an actual
isomorphism in a neighbourhood of inûnity, in good reduction and in bad. We have
le� unresolved the question of convergence when the ground ûeld isC, which would
be of interest for the purpose of studying the complex dynamics of correspondences.
Finally, in Section 4 we examine the Galois theory of the correspondence ye = xd ,
and what it tells us about other correspondences.

2 The Formal Series

Let R be a Dedekind ring, with ûeld of fractions K, and let 1 ≤ e < d be two integers
invertible in R (so in particular the characteristic of K does not divide ed). We ûx two
monic polynomials f (x), g(x) ∈ R[x], satisfying deg( f ) = d and deg(g) = e, and
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consider the (polarized) correspondence C ∶ g(y) = f (x). Although the construc-
tion is outlined in [3], we brie�y recall how the scheme PC is constructed, omitting
the subscript when context makes it clear. Our aim is to construct a scheme P , a
ûnite morphism σ ∶P →P , and a morphism π∶P → P1, which make the following
diagram commute:

(2.1) P

π
�� ε

  

σ //P

π
��

P1 Cx
oo

y
// P1 .

Here ε picks out the ûrst edge in a path, the point on C corresponding to the edge
from π(P) to π ○ σ(P).

Let
A = R[x i , j ∶ 0 ≤ i < ∞, 0 ≤ j ≤ 1]

be graded so that x i , j has weight (d/e)i . Note that our hypothesis d > e implies that
A contains only ûnitely many monomials below any given weight, which is essential
to the inversion of power series below. Let I be the (homogeneous) ideal generated
by polynomials of the form

xdeg(g)i+1,0 xdeg( f )i ,0 ( g(x i+1,1/x i+1,0) − f (x i ,1/x i ,0)) .
We then set P = Proj(A/I). _e map π∶P → P1 is the one induced by the natural
inclusion R[x0 , x1] → A via x j ↦ x0, j , while the map σ ∶P → P corresponds to
A→ A by x i , j ↦ x i+1, j . In the special case where g(y) = ye and f (x) = xd , we denote
this scheme by B, with corresponding maps ψ∶B → P1 and τ∶B →B.

WritingOP ,∞ andOB,∞ for the completed local rings of these two schemes at the
unique point above∞ ∈ P1, we set P̂ = Spec(OP ,∞) and B̂ = Spec(OB,∞). Note
that the maps σ and τ induce endomorphisms of P̂ and B̂, respectively, which we
will also denote by σ and τ. Our next result makes precise our formal isomorphism
ofP andB at inûnity.

_eorem 2.1 _ere is an isomorphismΞ∶P̂ → B̂ of K-schemes such thatΞ○σ = τ○Ξ.

Proof To maintain a level of generality that will be useful in Section 3, we suppose
for now that we have sequences g i , f i of monic polynomials with coeõcients in R,
with deg(g i) = e and deg( f i) = d for all i, and we let

Sn = RJw0 , . . . ,wnK(wei+1wdi ( g i+1(w−1
i+1) − f i(w−1

i )) ∶ 0 ≤ i < n) ,
noting that Sn ⊆ Sn+1. Each of these local rings comes equipped with a valuation that
is trivial on R; that is, nonzero elements of R have valuation zero. By abuse of notation
we denote all of these valuations by v, normalized so that v(w0) = 1. For every X > 0
we deûne an ideal

mn ,X = {s ∈ Sn ∶ v(s) > X} ∪ {0}.
For any ideal I, we write x = y + O(I) to indicate that x − y ∈ I.

Now, we
n

n = wd
n

0 + O(mn ,dn), so, since Sn is Henselian, there is an element ξn =
w0 + O(mn ,1) with ξd

n

n = we
n

n .
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Note that if v(x) < 0 and

ye + ⋅ ⋅ ⋅ = g i+1(y) = f i(x) = xd + ⋅ ⋅ ⋅
with coeõcients in R, then

∣ y
e

xd
− 1∣

v
≤ ∣x−1∣v .

Also, note that if z = 1 + O(mn ,0), then ∣1 − z∣v = ∣1 − zn ∣v for any n /= 0 in R (that
is, n not divisible by the characteristic of K). From these we estimate, in the v-adic
absolute value,

∣ 1 − ξn
ξn+1

∣
v
= ∣ 1 − ξd

n+1

n

ξdn+1
n+1

∣
v
= ∣ 1 − wde

n

n

wen+1
n+1

∣
v
= ∣ 1 − wdn

wen+1
∣
v

≤ ∣wn ∣v = ∣w0∣(d/e)
n

v ,

whereupon
∣ξm − ξn ∣v ≤ ∣w0∣(d/e)

min{m ,n}
+1

v .
So the sequence {ξn}n≥0 is Cauchy (given our hypothesis that d > e). If S is the
completion of the direct limit limÐ→ Sn , then the sequence {ξn}n≥0 has a limit ξ ∈ S.

Now restrict attention to the case g i = g and f i = f for all i, in which case S =
OP ,∞. Note that for each n,

(ξn ○ σ)ed
n
= we

n+1

n+1 = ξd
n+1

n+1 ,

and so (ξn○σ)e/ξdn+1 = ζ for some ζd
n = 1. On the other hand, we have v(ξn○σ−w1) >

1 and v(ξdn −w1) > 1, so it must be the case that ζ = 1 (or else we have v(1 − ζ) < 0 for
some ζ /= 1). It follows that (ξn ○ σ)e = ξdn+1 . Taking limits of both sides as n →∞, we
have (ξ ○ σ)e = ξd . In other words, the map

Ξ(P) = ( ξ(P), ξ ○ σ(P), ξ ○ σ 2(P), . . . )

is a morphism of K-schemes, Ξ∶P̂ → B̂. From the deûnition, it is clear that Ξ ○ σ =
τ ○ Ξ.

It remains to show that Ξ is invertible, which we do by a generalization of the
Lagrange inversion formula. Let M denote the set of monomials in the w i , and let N
denote the set of monomials in variables z i subject to zei+1 = zdi . We can write ξ as

ξ = ∑
w∈M

c(w)w ,

where c(w) ∈ R. By the standard abuse of notation, we consider these monomials
both as elements of R and as functions. Note that if v is the normalized valuation on
S induced by the (compatible) valuations v on the Sn , then v(w) ≥ 1 for all w ∈ M,
with equality just in case w = w0. Similarly, there is a natural valuation v′ on the ring
R[z ∶z ∈ N] satisfying v′(z i) = (d/e)i for all i ≥ 0, and v′(r) = 0 for nonzero r ∈ R.

Note that c(w0) = 1, since v(ξ −w0) > 1. Write

γ = ∑
z∈N
b(z)z,

with the b(z) to be chosen later. For any X there exist only ûnitely many z ∈ N with
v′(z) ≤ X, and we let nX be the ideal generated by monomials z ∈ N with v′(z) > X.
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Note that {v′(z)∶z ∈ N} is well-ordered, and so we can deûne the coeõcients b(z)
recursively. We will do so in such a way that

ξ(γ, γ ○ τ, . . . ) = z0 + O(nX)

for all X, i.e., such that ξ(γ, γ ○ τ, . . . ) = z0. To start, we choose b(z0) = 1, which
ensures that ξ(γ, γ ○ τ, . . . ) = z0 + O(n1).

Now, assuming that we have chosen b(z) for all z ∈ N with v′(z) < X, assuming
that there exists a monomial of valuation X, and assuming that for any Y < X, we
have

ξ(γ, γ ○ τ, . . . ) = z0 + O(nY),
we show how to choose b(z) for every monomial z ∈ N satisfying v(z) = X. We have

ξ(γ, γ ○ τ, . . . ) = ∑
w∈M

c(w)w(γ, γ ○ τ, . . . ),

and we consider each summand separately. _e summand corresponding to w = w0
is simply

γ = ∑
z∈N
b(z)z,

and within this the summands of valuation X are simply those of the form b(z)z with
v′(z) = X.

In general, the summand corresponding to the monomial w = we00 we11 ⋅ ⋅ ⋅wekk is

(2.2) c(w)γe0(γ ○ τ)e1 ⋅ ⋅ ⋅ (γ ○ τk)ek = c(w)
k

∑
i=0

∑
n i ,1 , . . . ,n i ,ei ∈N

k

∏
i=0

e i
∏
j=1
b(n i , j)nτ i

i , j ,

where the action of τ on N is deûned by zτ
i = z i+1. Note that

v′(
k

∏
i=0

e i
∏
j=1
b(n i , j)nτ i

i , j) =
k

∑
i=0

e i
∑
j=1

( d
e
)

i
v′(n i , j)

and that v′(n i , j) ≥ 1 for every monomial. So if an individual summand

c(w)
k

∏
i=0

e i
∏
j=1
b(n i , j)nτ i

i , j

in (2.2) has valuation X, then eitherw = w0 (in which case the summand is just b(z)z
for some z) or else each n i , j satisûes v′(n i , j) < X. In other words, for each monomial
z ∈ N with v′(z) = X, the coeõcient of z in ξ(γ, γ ○ τ, . . . ) is b(z)+ β(z), where β(z)
is some R-linear combination of products of coeõcients of the form b(z′), where
v′(z′) < X (i.e., whose values have previously been chosen). We can now simply
choose b(z) = −β(z). _is choice gives us

ξ(γ, γ ○ τ, . . . ) = z0 + O(nX),

and, taking X →∞, we have our series γ.
Now, deûne Ψ∶ B̂ → P̂ by

Ψ(Q) = (γ(Q), γ ○ τ(Q), . . . ) .
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We claim that Ψ and Ξ are inverses. Note that

Ξ ○Ψ(z0 , z1 , . . . ) = ( ξ(γ, γ ○ τ, . . . ), ξ(γ ○ τ, γ ○ τ2 , . . . ))
= ( z0 , ξ(γ(τ(z0 , . . . )) , γ ○ τ( τ(z0 , . . . ), . . . ))) = (z0 , z1 , . . . ),

so Ψ is a right inverse of Ξ. On the other hand, the same argument that constructs Ψ
also constructs a right inverse of Ψ, which then must be Ξ.

3 Convergence Over a Local Ring

In Section 2 we constructed an isomorphism of formal schemes. In this section we
will take K to be a separably closed ûeld in which ed is a unit, complete with respect
to a non-archimedean absolute value. We will show that there is a neighbourhood of
∞ on which this formal series converges to an isomorphism. As in the introduction,
we will take f , g ∈ K[z] monic, with deg(g) < deg( f ).
Before continuing, however, we make a comment on what it means to evaluate ξ

at a point, since it is a power series in inûnitely many (related) variables. As we saw
in Section 2, the monomials w ∈ M ⊆ A are partially ordered by valuation, with the
property that for any X there are only ûnitely many w with v(w) ≤ X. Since each
monomial involves only ûnitely many variables, each partial sum∑v(w)≤X c(w)w(P)
makes sense, ultimately being just a polynomial in ûnitely many of the w i . We can
then reasonably deûne

ξ(P) = lim
X→∞

∑
v(w)≤X

c(w)w(P)

if that limit exists (in whatever topology is natural for the context). Note that in the
context of local ûelds, this limit exists if and only if c(w)w(P) → 0 as v(w) → ∞.

_eorem 3.1 Let P , B, and Ξ be deûned as in Section 2. _en there exist neigh-
bourhoods ∞ ∈ U1 ⊆ P(K) and ∞ ∈ U2 ⊆ B(K) such that Ξ induces an isomor-
phism Ξ∶U1 → U2. Furthermore, if the correspondence has good reduction, we can take
U1 = π−1(D(∞; 1)) and U2 = ψ−1(D(∞; 1)).

Proof _ecase of good reduction is not diõcult. Since everything in Section 2works
over the ring R of integers of K, we see that the coeõcients c(w) of the series ξ are all
integral. So the limit deûning ξ(P) exists precisely in the case where ∣π ○ σ n(P)∣ > 1
for all n. But under the hypothesis of good reduction, we also have

max{ ∣π ○ σ(P)∣, 1} e = max{ ∣π(P)∣, 1} d

for all P, so the condition that ∣π ○ σ n(P)∣ > 1 for all n is equivalent to the same
condition just for n = 0. Ergo ifU1 = π−1(D(∞; 1)), then Ξ converges onU1. Applying
the same logic to Ψ demonstrates the claim in the case of good reduction.

We now address the general case. First, let G = B ∖ {0,∞}, and let

φα(w0 ,w1 , . . . ) = (α0w0 , α1w1 , . . . ),
f i(x) = xd + α iad−1xd−1 + ⋅ ⋅ ⋅ + αdi a0 ,
g i(y) = ye + α ibe−1 ye−1 + ⋅ ⋅ ⋅ + αei b0
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for α = (α0 , α1 , . . . ) ∈ G (K). Note that g i+1(α i+1w i+1) = f i(α iw i) for all i if and only
if g(w i+1) = f (w i).

Let ξα be the series deûned in the proof of _eorem 2.1 relative to the sequences
of polynomials g i and f i . Note that if ξ is the series deûned relative to g and f , then
we have α0ξ = ξα ○ φα(w). Also, note that we can induce the g i and f i to all have
integral coeõcients merely by requiring that ∣α0∣ be small enough. In other words,
there exists an ε > 0 such that ξ converges at (w0 ,w1 , . . . ) with ∣wn ∣ < ε(d/e)

n
. But for

suõciently small ε > 0 the condition ∣w0∣ < ε already ensures this, so ξ (and hence Ξ)
is deûned on π−1(D(∞; ε)). _e same reasoning applies to Ψ.

Remark 3.2 _e construction of the formal morphism Ξ in Section 2 is relatively
indiòerent to the nature of the ground ûeld, and so in particular over C it gives a for-
mal isomorphism between g(y) = f (x) and ydeg(g) = xdeg( f ) at inûnity, generalizing
the Böttcher coordinate. It would be interesting to know whether or not there exists a
neighbourhoodU ⊆ Ĉ of inûnity such that Ξ deûnes a function on π−1(U) ⊆ PC(C).
_e author’s initial investigations have failed to establish convergence in this setting.

4 The Action of Galois

Note that themap Ξ deûned in Section 2 is automatically Galois equivariant wherever
it converges. If K is a complete local ûeld with absolute value ∣ ⋅ ∣, if L/K is a (possibly
inûnite) Galois extension, and if σ ∈ Gal(L/K), then ∣σ(x)∣ = ∣x∣ by the uniqueness
of the extension of ∣ ⋅ ∣ to L. It follows that σ is continuous, and so the fact that σ
commutes with ûnite sums implies it also commutes with (convergent) inûnite sums.

_e next lemmamakes precise the claim that the action of Gal(K/K) on preimages
of P ∈ P(K) under σ ∶P →P relates in a straightforwardway to the action ofGalois
on preimages of π(P) in the original correspondence.

Lemma 4.1 Let P ∈ P(K). _en there is a Gal(K/K)-equivariant isomorphism
between P̌C(π(P)) and P̌(PC ,σ)(P).

Proof It follows from the commutativity of (2.1) that the map

(. . . ,Q2 ,Q1 ,Q0) z→ ( . . . , π(Q2), π(Q1), π(Q0))
is an isomorphism between backward paths from P in P and backward paths from
π(P) in C. Since π∶P → P1 is a morphism of K-schemes, this map is also
Gal(K/K)-equivariant, given the condition that P is K-rational.

So studying preimage graphs in C can now be related to studying the same in P .
On the other hand, our partial isomorphism fromP toB relates this to preimages in
B, which in turn are related to preimages in B. But the Galois-theoretic behaviour of
preimage trees in B ∶ ye = xd is fairly easy to understand using standardmultiplicative
Kummer theory.

In the proof of _eorem 3.1, we made use of G = B ∖ {0,∞}, which we point out
here is an aõne group scheme under coordinatewise multiplication. We will study
the action of Galois on points in this algebraic group, subject to the constraint that
gcd(e , d) = 1, but removing the constraint that e < d. As such, we can freely swap e
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and d, and consider forward orbits instead of backward ones. For convenience, then,
we will occasionally make reference to the exponents in the subscript:

Ge ,d = Spec (K[x±1
0 , x±1

1 , . . . ∶ x ei+1 = xdi for all i ≥ 0]) .
Note that the morphism π∶G → Gm of K-schemes is in fact a group homomorphism,
and so we have a short exact sequence of Galois modules

0Ð→ µe ,d Ð→ Ge ,d
πÐ→ Gm Ð→ 0.

Lemma 4.2 Suppose that gcd(e , d) = 1. _en there is an isomorphism Ge ,d → Ge ,1
of K-schemes.

Proof For i ≥ j ≥ 0, we choose integers a i , j and b i , j as follows. First, take a0,0 = 1
and b0,0 = 0. Now, suppose that a i , j and b i , j have been chosen for all 0 ≤ j ≤ i < I.
We set bI ,0 = 0, and for each 0 ≤ j < I, we choose bI , j+1 and aI , j so that

bI , j+1d + aI , je = aI−1, j + ebI , j ,

which we can always do, since gcd(e , d) = 1. Speciûcally, given a single solution
sd + et = 1, we can deûne

(4.1) bI , j+1 = s(aI−1, j + ebI , j) and aI , j = t(aI−1, j + ebI , j).
Finally, we set aI ,I = bI ,I .
For each i, we set

w i = ∏
0≤ j≤i

xa i , jj

and claim that the map (x0 , x1 , x2 , . . . ) ↦ (w0 ,w1 ,w2 , . . . ) gives the desired isomor-
phism.
First, we will verify that wen+1 = wn for every n. To see this, note that

(4.2)
wen
wn−1

= xan ,n en xan ,n−1 e−an−1,n−1
n−1 ⋅ ⋅ ⋅ xan ,0 e−an−1,0−bn ,0 e

0 ,

where the apparently extraneous bn ,0 fails to falsify the equality, because bn ,0 = 0.
Now, by the deûnition of the a i , j and b i , j , and the relation x ej+1 = xdj , we have for each
0 ≤ j ≤ I,

xan , j+1 e−an−1, j+1
j+1 xan , j e−an−1, j−bn , j e

j = xan , j+1 e−an−1, j+1
j+1 x−bn , j+1d

j

= xan , j+1 e−an−1, j+1−bn , j+1 e
j+1 .

Combining this with (4.2) for j = 0, 1, 2, . . . , i − 1, we are le� with
wen
wn−1

= xan ,n e−bn ,n en = 1,

since an ,n = bn ,n .
So we have conûrmed that the w i describe a morphism of K-schemes φ∶Ge ,d →

Ge ,1. We next show that this morphism is injective. Note that if πe ,d is projection of
Ge ,d onto the ûrst coordinate, then πe ,d = πe ,1○φ (since a0,0 = 1), and so ker(φ) ⊆ µe ,d
= ker(πe ,d). Now suppose that (1, 1, . . . , ζn , . . . ) ∈ ker(φ). By deûnition, we have

φ(1, 1, . . . , ζn , . . . ) = (1, 1, . . . , ζan ,nn , . . . ),
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and so ζan ,nn = 1. Since we also have ζ en = 1d = 1, we can conclude that ζn = 1 as soon as
we know that gcd(an ,n , e) = 1. But by the deûnition (4.1), we have

an ,n = bn ,n ≡ san−1,n−1 ≡ sn mod e ,

for all n ≥ 1, and s is coprime to e. So in fact, the kernel of φ is trivial.
Finally, we will show that φ is surjective, by showing that the truncated map

φn(x0 , . . . , xn) = (w0 , . . . ,wn)

is surjective for each n. For n = 0 this is obvious, since the truncated map is then
the identity on Gm. Suppose that the claim is true for n = k, and consider a se-
quence (w0 , . . . ,wk+1). By the induction hypothesis, we can solve φk(x0 , . . . , xk) =
(w0 , . . . ,wk). But then φk+1 maps the e distinct points of the form (x0 , . . . , xk , y)
injectively to the e distinct points of the form (w0 , . . . ,wk , z), and so this association
must also be surjective. _is conûrms that φ is an isomorphism.

We now assume that all (ed)n-th roots of unity are K-rational. For the proof of
_eorem 1.1, we will also need to extend K so that there exists a P ∈ P(K) such that
α = π(P). _is cannot be done in a ûnite extension, or indeed even in an extension
that leaves the valuation discrete, but luckily it can be done in a way that makes the
value group a subgroup of Z[ 1

e ].

Lemma 4.3 Let L/K be an algebraic extension, suppose the valuation group Γ =
v(L∗) ⊆ Q contains reciprocals of none of the prime divisors of d, and let α ∈ Gm(L)
with ∣π(α)∣ > 1. _en Gal(L/L) acts on PB1,d ,α as a ûnite-index subgroup of a d-adic
group.

Proof Let µ[d] denote the group of d-th roots of unity. As usual, if βd = α ∈ L,
then σ ↦ σ(β)/β gives a map Gal(L(β)/L) → µ[d] whose image is isomorphic to
the subgroup of L∗/(L∗)d generated by α. Suppose that the numerator of v(α) is
prime to d. _en composing with the map L∗/(L∗)d → Γ/dΓ, we see that α has order
d in L∗/(L∗)d . Replacing d with dn and letting n → ∞, we have, in this case, that
the natural map Gal(L/L) → µ[d∞] ≅ Ẑd is surjective, and hence Gal(L/L) acts on
PB1,d ,α as a d-adic subgroup.

In general, suppose that v(α) /= 0. _en for some m, the numerator of v(α)/dm

is prime to d. By the argument above, for any βd
m = α, Gal(L/L(β)) acts on PB1,d ,β

as a d-adic subgroup of Aut(PB1,d ,β). On the other hand, if β′ is another dm-th root
of α, note that β′ = ζβ for some dm-th root of unity ζ ∈ K, and so L(β′) = L(β).
Furthermore, multiplication by any dn-th root of ζ takes the n-th level of the tree
PB1,d ,β to the n-th level of the tree PB1,d ,β′ , and so the action of Gal(L/L(β)) on these
two sub-trees of PB1,d ,α is compatible. So up to labelling, the image of Gal(L/L) in
Aut(PB1,d ,α) contains at least the full subgroup which acts trivially on the ûrst m + 1
levels.

We now turn to the proof of themain theorem. For simplicity, ifG is a group acting
on two sets X and Y , we say that the actions are isomorphic if and only if there is a
bijection φ∶X → Y such that φ(xσ) = φ(x)σ for every σ ∈ G and x ∈ X.
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Proof of_eorem 1.2 Rather than prove the theorem in the case where v(K∗) ≅ Z,
we relax the hypothesis to assume that no prime divisor of d has a reciprocal in v(K∗).
Now note that if L/K is an algebraic extension, then Gal(L/L) ⊆ Gal(K/K), and so
it suõces to prove the theorem a�er an algebraic extension of the base. In particular,
with C and α as in the theorem, we will assume without loss of generality that K
contains all (ed)n-th roots of unity, and that there is exists a P ∈ P(K)with α = π(P).
Note that this is possible a�er an algebraic extension of the base, but certainly not a
ûnite one. Also note that e becomes invertible in the value group of this extension, but
since gcd(e , d) = 1, our property that no prime divisor of d has a reciprocal appearing
in the value group is maintained. We can also pass to a ûnite extension such that the
now-isomorphic correspondence g(γy) = f (γx) has leading coeõcients of f and g
the same, and hence equal to 1 without loss of generality.

With these assumptions in place, note that the action ofGal(K/K) on the preimage
tree of α under C is isomorphic to that on the preimage tree of P under σ ∶P → P
by Lemma 4.1. By _eorem 3.1 there is an isomorphism from this to the action of
Gal(K/K) on the preimage tree of Ξ(P) ∈ Ge ,d(K). Lemma 4.1 now shows that the
action of Gal(K/K) on this is isomorphic to its action on the space of backward orbits
of β = ψ ○ Ξ(P) under the correspondence Be ,d . So it suõces to restrict attention to
the case of correspondences of the form Be ,d ∶ ye = xd . Note that backward orbits in
Be ,d correspond to forward orbits in Bd ,e ; by Lemma 4.2, it suõces to restrict further
to the case e = 1, which is handled by Lemma 4.3.

As noted in the introduction, _eorem 1.1 follows directly from _eorem 1.2.

References

[1] N. Boston and R. Jones, Arboreal Galois representations. Geom. Dedicata. 124(2007), 27–35.
http://dx.doi.org/10.1007/s10711-006-9113-9

[2] P. Ingram, Arboreal Galois representations and uniformization of polynomial dynamics. Bull.
Lond. Math. Soc. 45(2013), no. 2, 301–308. http://dx.doi.org/10.1112/blms/bds088

[3] , Canonical heights for correspondences. Trans. Amer. Math. Soc., to appear.
http://dx.doi.org/10.1090/tran/7288

[4] , Critical dynamics of variable-separated aõne correspondences. J. Lond. Math. Soc. (2)
95(2017), no. 3, 1011–1034. http://dx.doi.org/10.1142/S1793042117501263

[5] R. Jones, Galois representations from pre-image trees: an arboreal survey. In: Actes de la
Conférence “_éorie des Nombres et Applications”, Publ. Math. Besançon _éorie Nr., 2013,
Presses Univ. Franche-Comté, Besançon, 2013, pp. 107–136.

[6] R. Jones and A. Levy, Eventually stable rational functions. Int. J. Number _eory 13(2017),
2299–2318.

[7] J. Milnor, Dynamics in one complex variable. _ird ed., Annals of Mathematics Studies,
Princeton University Press, Princeton, NJ, 2006.

Mathematics Department, Colorado State University, Fort Collins, Colorado, USA
and
Department of Mathematics and Statistics, York University, Toronto, ON
e-mail : pingram@yorku.ca

https://doi.org/10.4153/CMB-2017-082-7 Published online by Cambridge University Press

http://dx.doi.org/10.1007/s10711-006-9113-9
http://dx.doi.org/10.1112/blms/bds088
http://dx.doi.org/10.1090/tran/7288
http://dx.doi.org/10.1142/S1793042117501263
mailto:pingram@yorku.ca
https://doi.org/10.4153/CMB-2017-082-7

