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Abstract

The Euler–Mascheroni constant γ = 0.5772 . . . is the K = Q example of an Euler–Kronecker constant γK

of a number field K. In this note, we consider the size of the γq = γKq for cyclotomic fields Kq := Q(ζq).
Assuming the Elliott–Halberstam Conjecture (EH), we prove uniformly in Q that

1
Q

∑
Q<q≤2Q

|γq − log q| = o(log Q).

In other words, under EH, the γq/log q in these ranges converge to the one point distribution at 1. This
theorem refines and extends a previous result of Ford, Luca and Moree for prime q. The proof of this result
is a straightforward modification of earlier work of Fouvry under the assumption of EH.
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1. Introduction

For a number field K, the Euler–Kronecker constant γK is given by

γK := lim
s→1+

(ζ′K(s)
ζK(s)

+
1

s − 1

)
,

where ζK(s) is the Dedekind zeta-function for K. The Euler–Mascheroni constant
γ = 0.5772 . . .is the K = Q case, where ζQ(s) = ζ(s) is the Riemann zeta-function. We
consider the constants γq = γKq for cyclotomic fields Kq := Q(ζq), where q ∈ Z+ and
ζq is a primitive qth root of unity.

The recent interest in the distribution of the γq is inspired by work of Ihara [4, 5].
He proposed, for every ε > 0, that there is a Q(ε) for which

(c1 − ε) log q ≤ γq ≤ (c2 + ε) log q

for every integer q ≥ Q(ε), where 0 < c1 ≤ c2 < 2 are absolute constants. This
conjecture was disproved by Ford et al. in [2] assuming a strong form of the
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Hardy–Littlewood k-tuple conjecture. However, assuming the Elliott–Halberstam
conjecture (see [1]), these same authors also proved that the conjecture holds for
almost all primes q, with c1 = c2 = 1. We recall the Elliott–Halberstam Conjecture as
formulated in terms of the Von Mangoldt function Λ(n), the Chebyshev function ψ(x)
and Euler’s totient function ϕ(n).

ELLIOTT–HALBERSTAM CONJECTURE (EH). If we let

E(x; m, a) :=
∑

p≡a (mod m)
p≤x prime

Λ(p) − ψ(x)
ϕ(m)

,

then for every ε > 0 and A > 0, we have∑
m≤x1−ε

max
(a,m)=1

|E(x; m, a)| �A,ε
x

(log x)A .

Assuming EH, Ford et al. proved (see [2, Theorem 6(i)]), for every ε > 0, that

1 − ε <
γq

log q
< 1 + ε

for almost all primes q (that is, the number of exceptional q ≤ x is o(π(x)) as x→ ∞).
Here we extend and refine this result to all integers q.

THEOREM 1.1. Under EH, for Q→ +∞, we have

1
Q

∑
Q<q≤2Q

|γq − log q| = o(log Q),

where the sum is over integers q.

REMARK 1.2. Theorem 1.1 shows that EH implies that the distribution of γq/log q in
[Q, 2Q] converges to the one point distribution supported on 1.

To prove Theorem 1.1, we use the work of Fouvry [3] that allowed him to
unconditionally prove that

1
Q

∑
Q<q≤2Q

γq = log Q + O(log log Q).

Our conditional result is a point-wise refinement of Fouvry’s asymptotic formula under
EH.

2. Proof of Theorem 1.1

For brevity, we shall assume that the reader is familiar with Fouvry’s paper [3]. The
key formula is (see (3) of [3]) the following expression for γq in terms of logarithmic
derivatives of Dirichlet L-functions:
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γq = γ +
∑

1<q∗|q

∑
χ∗mod q∗

L′(1, χ∗)
L(1, χ∗)

. (2.1)

Here the inner sum runs over the primitive Dirichlet characters χ∗ modulo q∗.
We follow the strategy and notation in [3], which makes use of the modified

Chebyshev function

ψ(x; q, a) :=
∑
n≤x

n≡a (mod q)

Λ(n),

and the integral

Φχ∗(x) :=
1

x − 1

∫ x

1

(∑
n≤t

Λ(n)
n

χ∗(n)
)

dt.

However, we replace the sums Γi(Q) and Γ1,j(Q) defined in [3] with the pointwise terms
γi(q) and γ1,j(q). Following the approach in [3], which is based on (2.1), we have

γq = γ + A(q) + B(q) − γ2(q) − γ3(q) − (γ1,1(q) + γ1,2(q) + γ1,3(q)),

where

A(q) =
∑
q∗|q

∑
χ∗mod q∗

L′

L
(1, χ∗) + Φχ∗(x),

B(q) =
∑

χ mod q
χ�χ0

Φχ(x) −
∑
q∗|q

∑
χ∗mod q∗

Φχ∗(x),

γ2(q) =
1

x − 1

∫ x

1

ϕ(q)ψ(t; q, 1) − ψ(t)
t

dt,

γ3(q) =
1

x − 1

∫ x

1

∑
n≤t

(n,q)�1

Λ(n)
n

dt,

γ1,1(q) =
1

x − 1

∫ x

1

∫ min(q,t)

1

(
ϕ(q)ψ(u; q, 1) − ψ(u)

u2 du
)

dt,

γ1,2(q) =
1

x − 1

∫ x

1

∫ min(x1,t)

min(q,t)

(
ϕ(q)ψ(u; q, 1) − ψ(u)

u2 du
)

dt,

γ1,3(q) =
1

x − 1

∫ x

1

∫ t

min(x1,t)

(
ϕ(q)ψ(u; q, 1) − ψ(u)

u2 du
)

dt.

To complete the proof, for ε > 0, we let x := q100 and x1 := q1+ε. Apart from γ1,1(q),
which gives the − log q terms in Theorem 1.1, we shall show that these summands are
all small.
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Estimation of A(q): By Proposition 1 and Remark (i) of [3],
2Q∑

q=Q

|A(q)| = O(Q).

Estimation of B(q): For B(q), by (26) and Lemma 3 of [3], we simplify

B(q) = − 1
x − 1

∫ x

1

∑
q∗|q

∑
χ∗ mod q∗

∑
n≤t

(n,q)>1

Λ(n)χ∗(n)
n

dt

= − 1
x − 1

∫ x

1

∑
q∗|q

∑
χ∗ mod q∗

∑
pv≤t
p|q

log p · χ∗(pv)
pv dt

= − 1
x − 1

∫ x

1

∑
q∗|q

∑
pv≤t
p|q

p�q∗

∑
d|(pv−1,q∗)

log p
pv · ϕ(d)μ

(q∗
d

)
dt

= − 1
x − 1

∫ x

1

∑
pv≤t
p|q

∑
d|pv−1

log p
pv · ϕ(d)

∑
q∗|q
d|q∗
p�q∗

μ
(q∗

d

)
dt.

We note that the innermost sum ∑
q∗|q
d|q∗
p�q∗

μ
(q∗

d

)

is always 0 or 1, so we conclude that B(q) ≤ 0 for any q. Proposition 2 of [3] gives
2Q∑

q=Q

B(q) = O(Q),

and so we have
2Q∑

q=Q

|B(q)| = O(Q).

Estimation of γ2(q): By Lemma 8 of [3], uniformly in Q with u ≥ 1, we have
2Q∑

q=Q

ψ(u; q, 1) � u.

Therefore,
2Q∑

q=Q

|ϕ(q)ψ(t; q, 1) − ψ(t)| = O(Qt),
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and so we conclude that
2Q∑

q=Q

|γ2(q)| = O(Q).

Estimation of γ3(q): By definition, γ3 is positive, so by (36) of [3],

2Q∑
q=Q

|γ3(q)| = O(Q).

Estimation of γ1,1(q): Since ψ(u; q, 1) = 0 for u < q, we have

γ1,1(q) = − 1
x − 1

∫ x

1

( ∫ min(q,t)

1

ψ(u)
u2 du

)
dt.

Dividing both sides of (41) of [3] by Q,

γ1,1(q) = − log q + O(1).

Estimation of γ1,2(q): By the same proof as (42) of [3], we have

2Q∑
q=Q

|γ1,2(q)| � εQ log Q.

Summing the above estimates, we conclude unconditionally that

1
Q

2Q∑
q=Q

|γq − log q| = 1
Q

2Q∑
q=Q

|γ1,3(q)| + O(ε log Q).

Estimation of γ1,3(q): If we assume Conjecture EH holds, then we have (as in Lemma
7 of [3]) that

∑
q≤2Q

(q,a)=1

ϕ(q)
∣∣∣∣∣ψ(x; q, a) − ψ(x)

ϕ(q)

∣∣∣∣∣ = OA
(
Qx(log x)−A+2).

Therefore,

1
Q

2Q∑
q=Q

|γ1,3(q)| = Oε,A(log−A Q).

By combining these estimates, we obtain the main result

1
Q

2Q∑
q=Q

|γq − log q| = o(log Q).
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