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1. Introduction

In this paper, we take the approach of functor of points to study equivariant vector
bundles on schemes over semirings and monoids. The functor of points approach
of schemes says that one may view schemes as locally representable sheaves on the
category of commutative rings. In fact, Töen and Vaquié [28] developed scheme the-
ory over a closed symmetric monoidal category C by defining schemes as (suitably
defined) locally representable sheaves on C. The construction is entirely formal and
category-theoretic, and hence one may immediately apply the construction of Töen
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and Vaquié to various closed symmetric monoidal categories C to have scheme the-
ory over C without much effort. For instance, when C is the category of N-algebras
(i.e., semirings), the theory of Töen and Vaquié immediately gives us schemes over
N, as it does for schemes over Z. Likewise, Töen and Vaquié’s theory applied to
the category of (pointed) monoids gives one monoid schemes, which is equivalent
to monoid schemes constructed via prime ideals first introduced by Deitmar [10]
(See [25] for the equivalence between [28] and [10] for monoid schemes).

While the theory proposed by Töen and Vaquié [28] is intriguing, it offers an
opportunity for further enrichment through the incorporation of concrete exam-
ples. In this regard, the exploration of monoids and semirings presents an ideal
place for not only testing but also enhancing the applicability and clarity of this
theory.

We will take this approach in the special case of the category of monoids and
semirings in order to study vector bundles. Scheme theory over monoids is very
closely related to toric varieties. For instance, in [8], Cortiñas, Haesemeyer, Walker,
and Weibel utilized the theory of monoid schemes to study the algebraic K-theory
of blow-up squares of toric varieties and schemes. Semirings naturally appear in
various areas of mathematics; however in this paper, our focus will be on algebraic
geometry over semirings.

To develop scheme theory over semirings, one may consider two types of semirings
based on their relations to rings.

Firstly, there are semirings which are subsets of rings, such as N or R>0. One
potential application of developing scheme theory over these semirings would be
to obtain positive models for schemes over rings. This can be seen as an analogy
to the fact that schemes over Z provide integral models of schemes over Q. For
instance, in [6], Borger and the first author show that the narrow class group of
a number field can be recovered as a reflexive Picard group of its subsemiring of
totally nonnegative algebraic integers (See the introduction of [6] for more detailed
explanation concerning positive models of schemes). Similarly, one can develop a
theory of algebraic groups over semifields to capture positivity, such as in [3] and
[24].

The second type is (additively) idempotent semirings, which can never be embed-
ded in rings. A class of such semirings arises naturally from totally ordered abelian
groups G as follows: let S = G ∪ {−∞}. The multiplication of S is the addition of
G and the addition of S is defined by a+ b = max{a, b} with −∞ the smallest ele-
ment. When G = R, the associated semiring is called the tropical semifield denoted
by T.

Tropical geometry is a version of algebraic geometry over the tropical semifield
(or its variants, described for instance in [23]). Tropical geometry brings a new set
of combinatorial tools to approach classical problems in algebraic geometry.

Although the two types of semirings and semiring geometries described above
may seem intrinsically different, they complement each other. In algebraic geometry,
we often study a scheme X over Z through its base changes to XFq or XC. Similarly
here, one may consider a scheme X over N and its base change to T, which we denote
by XT. In some sense, for a scheme X over N, the ‘complement’ of XT is XZ as a
semiring R is a ring if and only if R⊗N T = {0}. See [4] and [5].
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Equivariant vector bundles on toric schemes over semirings 3

In this paper we focus our attention to schemes over additively idempotent
semifields. We explore several properties of equivariant vector bundles on schemes
over idempotent semifields, especially torus-equivariant vector bundles on the toric
scheme XR associated with a fan, where R is a semiring. Loosely speaking, XR is
a semiring scheme over R obtained from the monoid scheme associated with a fan
via a base change to R. For a rigorous definition and examples we refer the reader
to §2.

Recently, there has been a lot of interest in extending tropical methods to the
study of vector bundles and thus developing the notion of tropical vector bun-
dles. The proposed definitions of tropical vector bundles are on different (mostly
incomparable) kinds of bases.

In [18], we defined tropical vector bundles algebraically on general idempotent
semiring schemes. These schemes are more general than the tropical schemes of
Giansiracusa–Giansiracusa defined in [13]. In this setting, we define vector bundles
as locally free sheaves of finite rank. There we observe that vector bundles globally
split as sum of line bundles.

In [22], Khan and Maclagan and independently in [21], Kaveh and Manon pro-
pose a different definition of a toric vector bundle on a tropical toric variety. This
combinatorial approach is inspired by the observation that tropical linear spaces
correspond to (valuated) matroids (A matroid is a combinatorial abstraction of
linear independence. See [26]. We refer the reader whose background is in algebraic
geometry to [20]). Roughly speaking, a tropical toric vector bundle in the sense of
Khan and Maclagan on a tropical toric variety associated with a fan ∆ is a triple
(M,G, {Eρ(j)}), where M is a (simple) valuated matroid on a ground set G, and
{Eρ(j)} is a collection of flats of the underlying matroid M with some compatibil-
ity condition analogous to compatibility condition of the filtrations in Klyachko’s
classification of toric vector bundles [1, Theorem 2.2.1]. A more general case is
defined by using embedded tropicalization and restriction of tropical toric vector
bundle. The tropical toric vector bundles of Khan and Maclagan (in the case of
trivial valuated matroid structure) are the same as the Kaveh and Manon’s toric
matroid bundles.

The biggest difference with the present work is the information used to glue the
vector bundle out of local data. In this work, the group of transition functions of
our tropical toric vector bundles is the tropical GLn(T), which consists of invertible
n ×n matrices which are isomorphic to Sn n Rn. In [22], the authors use the data
of the flats of a valuated matroid, i.e., tropical subspaces, and a Klyachko-like
filtration and thus obtain non-trivial tropical toric vector bundles.

Another definition of tropical vector bundles is given in [2]; the base for these
bundles are tropical varieties (as polyhedral complexes). They are defined as princi-
pal GLn(T) bundles over a topological space. With this definition all vector bundles
on a simply connected tropical variety are trivial. In [15], the base of the vector
bundle is a tropical curve (as a metric graph). A vector bundle on Γ is a Sn nH
Γ-torsor on Γ, where H is the sheaf of real-valued harmonic functions with integer
slopes on Γ. These two definitions agree when we consider the base as a topological
space.

Note that while metric graphs are a type of ‘tropical curves’, they employ an
analytic approach to tropical geometry. Comparing these vector bundles to the
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algebraic ones in [18] or [22] and [21] requires an analogue of rigid-analytic meth-
ods to tropical scheme theory which is only partially developed. Notably, the
topology on the base space in the cases considered is different leading to different
incomparable notions of vector bundles.

Yet another approach to a notion of vector bundles over semirings focuses on the
impact of the choice of (Grothendieck) topology on the base space. In [6], Borger
and the first author study the module theory over semirings and show that while not
all of the classical definitions of vector bundles agree over semirings, all definitions
of line bundle agree. In particular, for a module M over a semiring R, the following
three are equivalent: (1) M is Zariski-locally free of rank 1, (2) M is fpqc-locally
free of rank 1, and (3) M is invertible.

Our previous results in [18] do not cover the case of equivariant vector bundles.
In particular, while we show that a tropical vector bundle globally splits as sum of
line bundles, we do not know if this happens equivariantly in the case of tropical
toric vector bundles.

In this paper, we define toric vector bundles over a semiring in a purely algebraic
way, and we show they equivariantly split as a sum of line bundles and show that we
have a classification analogous to Klyachko’s classification of toric vector bundles in
[1]. At the end, we briefly discuss how our work is related to the notion of tropical
vector bundles by Khan and Maclagan [22].

1.1. Summary of results

In this paper, we begin by confirming that the natural correspondence between
locally free sheaves and geometric vector bundles still hold in the semiring setting.
One may easily modify the classical proofs for schemes (over rings) to prove the
correspondence in the context of semirings, but we include sketches of some proofs
for the readers who are not familiar with commutative algebra of semirings.

We introduce a notion of the functor of points of a locally free sheaf F of a
scheme over a semiring R as follows (definition 3.14): for an R-algebra A and a
morphism x : SpecA→ X, we define the fibre Fx as

Fx := (x∗F)(SpecA).

In other words, Fx is the global sections of the pullback x∗F of F along x. Then
we define the set:

F(A) :=
⊔

x∈X(A)

Fx,

where X(A) = Hom(SpecA,X), the set of A-rational points of X. The functor
of points of F is the functor sending an R-algebra A to F(A) and an R-algebra
morphism f : A → B to the morphism F(A) → F(B) given by v 7→ f∗(v), where
f∗(v) ∈ Ff∗(x) is the pullback of the global section v along f∗ : SpecB → SpecA
(see remark 3.13). With this definition in mind, we prove our first main result.

Theorem A (corollary 3.16) The functor of points of a geometric vector bundle
on a scheme X over a semiring R is the same as that of the corresponding locally
free sheaf on a scheme X over a semiring R.
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We define equivariant vector bundles on a scheme X over a semiring R by using
the functor of points of a locally free sheaf (definition 4.1). It is well-known that
any vector bundle on an affine toric variety is trivial [16] and that any toric vector
bundle on an affine toric variety is equivariantly trivializable [27, Proposition 2.2].
We prove that a similar result holds for schemes over an idempotent semifield under
irreducibility assumption.

Theorem B (theorem 5.17) Let X be an irreducible scheme over an idempotent
semifield K and G be an irreducible algebraic group over K acting on X. Let E be
a G-equivariant vector bundle on X which is trivial as a vector bundle. Then E is
a direct sum of equivariant line bundles.

The above theorem is a consequence of several results. The first such result is that
the functor of points of a scheme over an idempotent semiring is characterized by its
values at irreducible idempotent semirings (proposition 5.3). Another aspect of the
theory that heavily relies on working over idempotent semifields is irreducibility.
More precisely, if X and Y are irreducible schemes over an idempotent semifield
R, then X ×R Y is irreducible (proposition 5.13). This clearly fails for schemes
over Z. We also make use of the fact that every invertible matrix with entries in a
zero-sum-free semiring is a product of a diagonal matrix and a permutation matrix
(corollary 2.14). As a consequence, we prove that any equivariant vector bundle on
a toric scheme X over an idempotent semifield, which is trivial as a vector bundle,
equivariantly splits as a sum of equivariant line bundles.

In §6, we classify equivariant vector bundles, which will be used later to prove
a version of Klyachko’s classification of toric vector bundles in the setting of an
idempotent semifield. We first show that analogously to the results for schemes
over Z we have a natural isomorphism for schemes over a semiring or a monoid K :

HomSpecK(X,GL1) ' Γ(X,O×
X), (1)

where GL1 = SpecK[t, t−1]. This allows us to go back and forth between morphisms
and global sections.

Let K be a semiring or monoid, X be a scheme over K, and G be a group
scheme over K acting on X. We say a map u : G ×K X → GL1 is principal if for
any K -algebra A and for (g, h, x) ∈ (G×K G×K X)(A), the following holds:

uA(gh, x) = uA(h, x)uA(g, hx).

Then, we prove the following correspondence.

Theorem C (proposition 6.8) With the same notation as above, there is a one-to-
one correspondence between

{G-actions on OX which make OX an equivariant line bundle}

and

{principal morphisms u : G×K X → GL1.}
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Moreover, this correspondence is a group isomorphism, where the first set is viewed
as a group under tensor product, (Proposition 4.3 ensures that the first set is a
group) and the second is a group under point-wise multiplication.

In §7, we explore how we can glue equivariant vector bundles on affine subschemes
to obtain an equivariant vector bundle on a scheme. It turns out that the only
obstruction to gluing is each affine subscheme has to be closed under the G-action
(lemma 7.1 and proposition 7.2). As a consequence, we prove the following, an
equivariant version of our previous result on vector bundles in [18].

Theorem D (theorem 7.4) Let X be a toric scheme over an idempotent semifield
R, and let G be the corresponding torus. Let E be a G-equivariant vector bundle on
X. Then there are unique (up to permutation) equivariant line bundles L1, . . . , Ln
such that E = L1 ⊕ . . .⊕ Ln (as G-equivariant vector bundles).

We prove that the G-action on an equivariant vector bundle is determined by
the action on the torus (proposition 7.8). To introduce our next result, let R be
an idempotent semifield and let X be a toric scheme over R. We denote by G the
corresponding torus and by Λ the dual lattice and ∆ be the fan corresponding to X.
Based on the isomorphism (1), we further prove (proposition 6.15 and lemma 7.11)
that there is a group homomorphism from Λ to PicG(X), the group of isomorphism
classes of G-equivariant line bundles on X and characterize its kernel (proposition
7.13). As a result, we prove the following.

Theorem E (theorem 7.14) With the same notation as above, there is an exact
sequence of abelian groups

0 →
⋂
σ∈∆

(Λ ∩ σ∨)⊥ → Λ → PicG(X) → Pic(X) → 0,

where PicG(X) → Pic(X) is the forgetful map.

We note that if the rays of σ span ΛR then
⋂
σ∈∆(Λ∩ σ∨)⊥ is 0. In this case, we

obtain the semiring analog of the classical result for tropic varieties. More precisely,
we get the first short exact sequence in [12, Proposition 1].

In §8, we prove a version of Klyachko’s classification on toric vector bundles in our
setting. Thanks to theorem D, classifying toric vector bundles on the toric scheme
X over an idempotent semifield associated with a fan ∆ reduces to classifying toric
line bundles on X.

Let Λ be the dual lattice. We first prove that toric line bundles on X are in
one-to-one correspondence with families of elements [uσ] ∈ Λ/(Λ ∩ σ∨)⊥ indexed
by cones satisfying some compatibility condition (proposition 8.4), which we call
Klyachko families (definition 8.8).

To turn this into a version of Klyachko’s classification theorem, we define an n-
dimensional ∆-Klyachko space over an idempotent semifield K as a free K -module
E of rank n with collections of decreasing filtrations {Eρ(i)}i∈Z indexed by the
rays of ∆, satisfying some compatibility condition analogous to Klyachko’s theorem
(definition 8.12). Then, we prove an equivalence between isomorphism classes of n-
dimensional ∆-Klyachko spaces over an idempotent semifield K and Sn-orbits of
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n-tuples of Klyachko families (lemma 8.14). By appealing to these results, we prove
the following.

Theorem F (theorem 8.15) Let K be an idempotent semifield. Let XK be the toric
scheme over K associated with a fan ∆. The set of isomorphism classes of toric
vector bundles on XK is in one-to-one correspondence with the set of isomorphism
classes of ∆-Klyachko spaces over K.

Finally, we note in remark 8.16 that a ∆-Klyachko space is a valuated matroid
satisfying a certain compatibility condition, and that it is a tropical vector bundle
in the sense of Khan and Maclagan in [22] whose underlying matroid is free.

1.2. Organization of the paper

We begin in §2 by reviewing some basic definitions and propositions needed for the
paper.

In §3, we prove that the correspondence between geometric vector bundles and
locally free sheaves is still valid in the setting of semirings. We then introduce the
functor of points of a locally free sheaf and prove theorem A.

In §4, we define equivariant vector bundles via functor of points perspective.
In §5, we study irreducibility and equivariant bundles on irreducible schemes

over an idempotent semifield. We then prove theorem B.
In §6, we classify equivariant bundles and prove theorem C.
In §7, we prove theorems D and E.
In §8, we prove theorem F, a tropical version of Klyachko’s classification theorem.
In Appendix A, we prove some basic results connecting toric varieties, toric

monoid schemes, and toric schemes over T.
In Appendix B, we prove that Sn can be seen as a scheme over N.

2. Preliminaries

2.1. Toric vector bundles

We refer the reader to [12] or [9] for standard notation and background on toric
varieties. We denote by N a lattice and by Λ = HomZ(N,Z) its dual, and by ΛR
and NR the dual vector spaces Λ⊗ZR and N ⊗ZR. We call Λ the character lattice.
Given an isomorphism Λ ∼= Zn, every point u = (u1, . . . , un) in Λ gives rise to a
character (group homomorphism)

χu : Gk(k) ∼= (k×)n → k×, (t1, . . . , tn) 7→ tu1
1 . . . tun

n ,

where Gk is an algebraic torus over a field k. When k is a semifield a point in Λ
similarly gives rise to a homomorphism of groups (k×)n → k×.

We will denote by σ a strongly convex rational polyhedral cone in NR, that is,

σ =
r∑
i=1

R≥0vi, vi ∈ N.
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All the cones we will consider from now on will be strongly convex rational
polyhedral. We denote by σ∨ the dual cone of σ:

σ∨ = {u ∈ ΛR : 〈u, v〉 ≥ 0, ∀v ∈ σ}.

A fan ∆ is a finite collection of cones σ in NR such that each face of σ is also a
cone of ∆ and the intersection of two cones of ∆ is a face of both.

We recall the definition of a toric vector bundle. Let X be a toric variety (with
torus G). We say that E is a toric vector bundle on X if it is a vector bundle,
together with an action of G, compatible with the action on X.

We recall a classification of toric vector bundles.

Theorem 2.1 Klyachko’s classification theorem Let k be a field. The category of
toric vector bundles on X(∆)k is naturally equivalent to the category of finite-
dimensional k-vector spaces E with collections of decreasing filtrations {Eρ(n)}
indexed by the rays of ∆, satisfying the following compatibility condition: For each
cone σ ∈ ∆, there exists a decomposition E =

⊕
[u]∈Λσ

E[u] such that

Eρ(i) =
∑

〈[u],vρ〉≥i

E[u],

for every ρ � σ and i ∈ Z, where Λσ := Λ/(σ⊥ ∩ Λ).

2.2. Monoids and monoid schemes

One may mimic the construction of schemes to define monoid schemes.
Alternatively, one may take a functor of points approach to define the category
of affine monoid schemes as the opposite category of monoids, and monoid schemes
as (Zariski) sheaves on the category of monoids. As in the case of schemes, these
two definitions are equivalent.

In this paper, by a monoid, we mean a commutative (multiplicative) monoid A.
By a pointed monoid, which means that there exists an absorbing element 0A ∈ A,
that is, 0A · a = 0A for all a ∈ A.

By amodule over a monoid A, we mean a setM together with a map φ : A×M →
M , defined by φ(a,m) = am, where 1m = m and (ab)m = a(bm).

The tensor product M⊗AN of two modulesM,N of a monoid A is defined to be
the quotient of M ×N by the equivalence relation generated by (am, n) ∼ (m, an),
for all a ∈ A, m ∈ M and n ∈ N . As usual we denote the equivalence class on
(m,n) by m ⊗ n. If M and N are two pointed modules of A with distinguished
points m0 and n0, respectively, then their tensor product is

(M,m0)⊗A (N,n0) = (M ⊗A N,m0 ⊗ n0).

For properties of the tensor product of (pointed) monoids, we refer the reader to
[11].

Denote by F1 the initial object in the category of (pointed) monoids. We inter-
pret it as a pointed multiplicative monoid with one element which we call 1 and
absorbing element 0. A (pointed) monoid is automatically an F1-module.
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Equivariant vector bundles on toric schemes over semirings 9

By an F1-algebra, we mean a pointed monoid. An F1-algebra A is said to be
irreducible if the product of non-nilpotents is not nilpotent.

For a monoid A, a nonempty subset I ⊆ A is said to be an ideal if AI ⊆ I.
An ideal I is said to be prime if A− I is a multiplicative nonempty subset of A,
and maximal if I is a proper ideal (i.e., I ≠A) which is not contained in any other
proper ideal.

We can define the prime spectrum SpecA of a monoid A as the set of all prime
ideals of A equipped with the Zariski topology. The set {D(f)}f∈A forms an open
basis of SpecA, where D(f) := {p ∈ SpecA | f 6∈ p}.

A monoid scheme (or F1-scheme) is defined to be a topological space equipped
with a structure sheaf of monoids locally isomorphic to affine monoid schemes
(SpecA,OSpecA). We refer the reader to [17, §2] for the precise definitions and
details.

A special class of monoid schemes called toric monoid schemes (or toric F1-
schemes) can be obtained from fans. A toric monoid scheme is locally isomorphic
to SpecA, where A is a toric monoid (By a toric monoid, we mean the monoid
obtained from a cone giving rise to an affine toric variety). The fan tells us how to
glue the affine pieces corresponding to each cone of the fan. For more details, we
refer the reader to [8].

2.3. Semirings, toric schemes over semirings, and vector bundles

Definition 2.2. A semiring is a nonempty set R with two binary operations (+, ·)
satisfying:

• (R,+) is a commutative monoid with identity element 0R
• (R, ·) is a monoid with identity element 1R
• For any a, b, c ∈ R: a(b+ c) = ab+ ac
• 1R 6= 0R and a · 0R = 0R for all a ∈ R

In this paper, all semirings are assumed to be commutative, i.e., (R, ·) is a
commutative monoid.

R is said to be zero-sum free if a+ b = 0 implies a = b = 0 for all a, b ∈ R.
A semifield is a semiring in which all non-zero elements have a multiplicative

inverse.

We will denote by B the semifield with two elements {1, 0}, where 1 is the mul-
tiplicative identity, 0 is the additive identity and 1 + 1 = 1. The tropical semifield,
denoted T, is the set R∪ {−∞} with the + operation to be the maximum and the
· operation to be the usual addition, with −∞ = 0T.

Definition 2.3. An affine semiring scheme is the prime spectrum X = SpecR of
some semiring R, equipped with a structure sheaf OX . A locally semiringed space
is a topological space with a sheaf of semirings such that the stalk at each point has
a unique maximal ideal. A semiring scheme is a locally semiringed space that is
locally isomorphic to an affine semiring scheme (As we noted in the introduction,
this is equivalent to the functor of points approach).
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Remark 2.4. In [13] J. Giansiracusa and N. Giansiracusa propose a special case of
the semiring schemes called tropical schemes in such a way that the tropicalization
of an algebraic variety can be understood as a set of T-rational points of a tropical
scheme.

Definition 2.5. By a toric scheme X over a ring (resp. semiring) R, we mean a
scheme containing an algebraic torus (R×)n as an open dense subset, such that the
action of the torus on itself extends to the whole scheme.

Toric schemes over idempotent semirings are intimately related to monoid
schemes, in fact they arise from monoid schemes via base change. We make this
relation precise.

Definition 2.6. For any ring (resp. semiring) R we define M ⊗F1
R to be the

monoid ring (resp. semiring) R[M ], where we identify 0M and 0R. This defines a
functor from the category of monoids to the category of R-algebras, sending M to
R[M ]. There is also a natural functor (forgetful functor) F from the category of
rings (resp. semirings) to the category of monoids sending a ring (resp. semiring)
A to (A,×), the underlying multiplicative monoid with 0A. There is an adjunction:

HomMonoids(M,F(A)) ' HomR-algebras(M ⊗F1
R,A).

This gives rise to a functor − ⊗F1
R from the category of monoid schemes to the

category of schemes (resp. semiring schemes) sending X to XR := X ⊗F1
R. One

can find the details of that construction in [13, Section 2.3].

From Appendix A, one can see that a toric scheme X (whether over a ring or a
semiring) is purely determined by the combinatorial data of a fan.

Remark 2.7. An affine toric scheme X(σ) over a ring (resp. semiring) R is deter-
mined by the combinatorial data of a cone σ in a lattice N ∼= Zn. Denote by
M the dual lattice of N. Now, X(σ) is the affine toric scheme (resp. semiring
scheme) SpecR[σ∨ ∩M ]. In particular, an affine toric scheme is isomorphic to the
base change of the toric monoid scheme Spec(σ∨ ∩M). A toric scheme X over a
ring (resp. semiring) R is determined by the combinatorial data of a fan Σ and is
isomorphic to the base change of the toric monoid scheme determined by that fan.

Example 2.8. Let R = T[x, y]. Then SpecR is a toric scheme over T, which is the
tropical analogue of the affine 2-space. In this case, R = T[M ], whereM = N2∪{0}.

Definition 2.9. Let R be a semiring and M be an R-module.

(1) A subset {x1, . . . , xn} ⊆M is linearly independent if

n∑
i=1

aixi =
n∑
i=1

bixi

implies that ai = bi for all i = 1, . . . , n.
(2) M is free of rank n if there exists a set {x1, . . . , xn} of linearly independent

generators of M over R.
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Equivariant vector bundles on toric schemes over semirings 11

One can easily see that if M is a free R-module of rank n, then M ' Rn (as an
R-module).

We recall some results from [18] which will be used in this paper. We first recall
the definition of idempotent pairs.

Definition 2.10. [18] Definition 3.6 Let R be a semiring. By an idempotent pair
of R, we mean a pair ( e, f) such that e + f = 1 and ef= 0. An idempotent pair
( e, f) is said to be trivial if {e, f} = {0, 1}.

Proposition 2.11. [18] Proposition 3.10 Let R be a semiring, SpecR is connected
if and only if any idempotent pair of R is trivial.

Lemma 2.12. [18] Lemma 3.14 Let R be a zero-sum-free semiring with only trivial
idempotent pairs, and M be a free module over R with basis S ⊆ M . Suppose
M = P ⊕ Q. Then there exists a subset S′ ⊆ S such that P is free with basis Sʹ

and Q is free with basis S \ S′.

Proposition 2.13. [18] Proposition 3.18 Let R be a zero-sum-free semiring. If
R has only trivial idempotent pairs, then one has the following split short exact
sequence of groups which is natural in R:

where f is the diagonal map and g sends a matrix A to the unique permutation σ
such that Aσ(i)i 6= 0 for all i.

Proposition 2.14. [18] Corollary 3.19 Let R be a zero-sum free semiring. If R
has only trivial idempotent pairs, then one has the following isomorphism of groups:

(R×)n o Sn ' GLn(R),

where Sn acts on (R×)n by permuting factors.

Proposition 2.15. [18] Theorem 4.7 Let X be an irreducible semiring scheme
that is locally isomorphic to SpecR, where R is a zero-sum free semiring. Then
any vector bundle of rank n on X is a direct sum of n copies of line bundles on X.
Moreover, this decomposition is unique up to permuting summands.

Remark 2.16. In [18], Proposition 2.15 assumes that R has only trivial idempotent
pairs, however, this follows from the irreducibility of X.

Let X be an irreducible monoid scheme. Suppose that X has an open affine cover
U = {Uα} such that any finite intersection of the sets Uα is isomorphic to the
prime spectrum of a cancellative monoid (This condition is always satisfied with
toric monoid schemes as in this case monoids are subsets of dual lattices. Also, all
of our monoids are finitely generated by Gordan’s lemma).

For instance, when X is a toric scheme over T, then the above condition holds.
We now define vector bundles on monoid and semiring schemes and give some

relations between them.
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12 J. Jun, K. Mincheva and J.Tolliver

Definition 2.18. Let X be a monoid scheme or a semiring scheme.

(1) A vector bundle on X is an OX-module F such that for each x ∈ X, there
exists an open neighborhood U of x and a finite set I such that

F|U '
⊕
i∈I

OX |U

as an OX |U -module. A vector bundle F on X is said to be rank n if |I| = n
for each open subset U.

(2) We let Vect(X) be the category of vector bundles on X, and Vectn(X) be
the full subcategory consisting of vector bundles of rank n on X.

(3) We denote by Pic(X), the group of isomorphism classes of rank 1 vector
bundles, i.e., line bundles on X.

Proposition 2.19. [18] Corollary 4.8 Let M be a cancellative monoid and K be
an idempotent semifield. Then any vector bundle on X = SpecK[M ] is trivial.

Proposition 2.20. [18] Theorem 4.11 Let X be an irreducible monoid scheme
satisfying condition 2.17, and K be an idempotent semifield. Then, there exists a
natural bijection between V ectn(X) and V ectn(XK).

3. Equivalence between locally free sheaves and geometric vector
bundles

In this section, we show that the one-to-one correspondence between isomorphism
classes of geometric vector bundles and locally free sheaves is still valid for semir-
ings. The proofs are almost identical to the case of rings, but we include them
here for completeness. We then provide a definition of the functor of points of a
locally free sheaf, which is equivalent to the functor of points of the corresponding
geometric vector bundle.

In what follows, instead of saying a semiring scheme, we will simply say a scheme
over N. Equivalently, one can think of a semiring scheme as a scheme X with a
structure map X → SpecN.

Let X be a scheme over N. By AnX , we mean the scheme X ×N AnN, where AnN =
SpecN[x1, . . . , xn].

Definition 3.1. Let Y be a scheme over N. A geometric vector bundle of rank n
over Y is a scheme X over Y and a morphism f : X → Y , together with an open
covering {Ui} of Y, and isomorphisms:

ψi : f
−1(Ui) = X ×Y Ui → AnUi

, (3)

such that for any i, j and for any open affine subset V = SpecA ⊆ Ui ∩ Uj,
the automorphism ψ = ψj ◦ ψ−1

i of AnV = SpecA[x1, . . . , xn] is given by a linear
automorphism θ of A[x1, . . . , xn].
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Equivariant vector bundles on toric schemes over semirings 13

Let (X, f, {Ui}, {ψi}) and (X ′, f ′, {U ′
j}, {ψj}) be geometric vector bundles on a

scheme Y over N. An isomorphism is an isomorphism g : X → X ′ of underlying
schemes X and X ʹ such that

f ′ ◦ g = f, (4)

and X and f : X → Y together with the covering of Y consisting of {Ui} ∪ {U ′
j}

and the isomorphisms ψi, ψ
′
j ◦ g also gives a geometric vector bundle structure on

X.

Lemma 3.2. Let Y be a scheme over N and f : X → Y be a geometric vector
bundle of rank n. Then the following defines a locally free sheaf of rank n on Y:
for each open U ⊆ Y

X (U) := {morphisms s : U → X | f ◦ s = idU}.

Proof. The proof follows mutatis mutandis as the one for schemes over rings. �

Tensor algebras and symmetric algebras can be also constructed for semirings in
the same way of those for rings. More precisely, let R be a semiring. Then tensor
product M ⊗RN of R-modules M, N are defined as for rings. For more details, see
[4] or [14]. Now, we let T0(M) = R and we inductively define

Td(M) = Td−1(M)⊗RM.

Define the tensor algebra of M to be T(M) =
⊕

d≥0 T
d(M), where multiplication

is determined by the following natural isomorphism (concatenation):

Tn(M)⊗R Tm(M) → Tn+m(M).

We proceed to define the symmetric algebra S(M) as the quotient of T(M) by the
equivalence relation generated by mi⊗mj ∼ mj⊗mi, for all mi, mj ∈M . As in the

case of rings, we have that Symd(M) is the quotient of Td(M) by the equivalence
relation generated by the elements m1⊗· · ·⊗md ∼ mσ(1)⊗· · ·⊗mσ(d), for all mi ∈
M and σ a permutation on d elements. Thus we have Sym(M) =

⊕
d≥0 Sym

d(M).
Likewise, for anOY -module F of a scheme Y over N, the tensor algebra T(F) and

symmetric algebra Sym(F) can be defined similarly for rings, as the sheafification
of the obvious presheaves.

Next, let F be a quasi-coherent sheaf of algebras on a scheme Y over N. We let
SpecF be the scheme over N defined as follows: for each open subset U ⊆ Y , we
have an affine scheme SpecF(U). The scheme SpecF is obtained by gluing these
affine pieces. Note that there is a natural projection map

f : X → Y such that f−1(U) ' SpecF(U). (5)

If F denotes a quasicoherent sheaf of modules, by V(F), we will mean
Spec(Sym(F)).

Remark 3.3. Let F be a locally free sheaf of rank n on a scheme Y over N. Then
the symmetric algebra Sym(F) is also a locally free sheaf on Y. In fact, the question
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14 J. Jun, K. Mincheva and J.Tolliver

is local. Hence it is enough to show it when M = Rn for some semiring R. But, in
this case, clearly the symmetric algebra Sym(M) is a free R-module.

In what follows by a scheme, we always mean a scheme over N (equivalently
semiring schemes) unless otherwise stated.

Let F be a locally free sheaf of rank n on a scheme Y. Let X = V(F), with
projection morphism f : X → Y as in (5). For each open affine subset U ⊆ Y for
which F|U is free, choose a basis of F , and let

ψU : f−1(U) → AnU (6)

be the isomorphism resulting from the identification of Sym(F(U)) with
OY (U)[x1, . . . , xn].

Let R be a semiring, T be a multiplicative subset of R, and M be an R-module.
As in the case for rings, one has the following isomorphism:

T−1Sym(M) ' Sym(T−1M). (7)

Now, the following lemma 3.4 and proposition 3.5 boil down to (7).

Lemma 3.4. Let (X, f, {Ui}, {ψi}) be geometric vector bundles on a scheme Y over
N. Let {U ′

j} be another covering of Y. Let Uij := Ui ∩U ′
j and ψij be the restriction

of ψi to f
−1(Uij). Then, (X, f, {Uij}, {ψij}} is a geometric vector bundle that is

isomorphic to (X, f, {Ui}, {ψi}).

Proof. To show that (X, f, {Uij}, {ψij}} is a geometric vector bundle, it suffices
to prove that ψij : f−1(Uij) → AnUij

is an isomorphism. In fact, we may further

assume that Ui = SpecRi and Uij = Spec(Ri)fj for some fj ∈ Ri. Then, it reduces
to show that for a free Ri-module Mi,

(Sym(Mi))fj ' Sym((Mi)fj ), (8)

which is true for modules over semirings.
Finally, it is clear that (X, f, {Uij}, {ψij}} is isomorphic to (X, f, {Ui}, {ψi}). �

Proposition 3.5. Let F be a locally free sheaf of rank n on a scheme Y over N
and X = Spec(Sym(F)). With f and Ui as in (5), (X, f, {Ui}, {ψi}) is a geometric
vector bundle of rank n over Y, which (up to isomorphism) does not depend on the
basis of F|Ui chosen.

Proof. The proof follows mutatis mutandis as the one for schemes over rings. �

Lemma 3.6. (Universal property of symmetric algebras) Let Y be a scheme and
F be an OY -module. Let i : F → Sym(F) be a natural map. For each sheaf G
of OY -algebras and map f : F → G of OY -modules, there exists a unique map
g : Sym(F) → G of OY -algebras such that g = f ◦ i.

Proof. The proof follows mutatis mutandis as the one for schemes over rings. �
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Let Y be a scheme. For OY -modules F and G, we let HomOY
(F ,G) be the sheaf:

for each open U ⊆ Y

HomOY
(F ,G)(U) := HomOY (U)(F(U),G(U)).

Note that as in the case for rings, HomOY
(F ,G) is indeed a sheaf. We let

HomOY
(F ,G) be the monoid of maps of OY -modules.

We will later need an explicit description of the functor of points of a tensor
product of locally free sheaves. For this we will need the Hom-tensor adjunction.

Lemma 3.7. Let (X,OX) be a semiringed space. Let E ,F ,G be OX-modules. Then
there is an isomorphism

HomOX
(E ⊗OX

F ,G) ∼= HomOX
(E ,HomOX

(F ,G)),

which is natural in all arguments, where Hom is the sheaf-valued Hom.

Proof. The proof follows mutatis mutandis as the one for schemes over rings. �

As in the case for rings, one also has the following.

Lemma 3.8. Let f : X → Y be a morphism of schemes over N. Let F (resp. G) be
an OX-module (resp. OY -module). Then one has the following pullback-pushforward
adjunction:

HomOX
(f∗G,F) ' HomOY

(G, f∗F).

Proof. The proof follows mutatis mutandis as the one for schemes over rings. �

Proposition 3.9. Let Y be a scheme and F be a locally free OY -module of finite
rank. The dual F∨ is defined to be the sheaf HomOY

(F ,OY ). Let X = V(F) be the
geometric vector bundle over Y associated with F with f : X → Y . Let E be the
locally free sheaf of sections of X. Then E is isomorphic to F∨.

Proof. The proof follows mutatis mutandis as the one for schemes over rings. �

From lemma 3.2 and propositions 3.5 and 3.9, one obtains the following.

Proposition 3.10. Let Y be a scheme over N. Then there is a one-to-one cor-
respondence between isomorphism classes of geometric vector bundles on Y and
isomorphism classes of locally free sheaves on Y.

From the above proposition, over semirings, we may identify geometric vector
bundles and locally free sheaves. In the following, we provide a description of a
locally free sheaf as a functor of points. This perspective will be used in later
sections. We start with the following lemma.

Lemma 3.11. Let f : X → Y be a morphism of schemes over N. Let π : E → Y
be a geometric vector bundle. Then the pullback p : E ×Y X → X of E along f is
a geometric vector bundle.

Proof. The proof follows mutatis mutandis as the one for schemes over rings. �
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Let Y be a scheme over a semiring R and π : E → Y be a geometric vec-
tor bundle. Let A be an R-algebra and Y (A) = HomR(SpecA, Y ) and E(A) =
HomR(SpecA,E). For each y : SpecA→ Y of Y (A), we let Ey be the pullback of
the following diagram (taken in the category of sets):

where π̃(x) = π ◦ x.
For an R-algebra morphism φ : A → B and the induced map φ∗ : SpecB →

SpecA, we have

φ∗ : E(A) → E(B), x 7→ x ◦ φ∗.

Proposition 3.12. With the same notation as above, the functor of points E(A)
has the following properties:

(1) The pullback Ey is in canonical bijection with the set of global sections of
the pullback bundle p : E ×Y SpecA→ SpecA, where SpecA is viewed as a
scheme over Y via y.

(2) For an R-algebra morphism φ : A → B and y ∈ Y (A), the restriction of
φ∗ : E(A) → E(B) to Ey is the map

φ∗ : Ey → Ex, where x = y ◦ φ∗,

given by sending a section s ∈ Ey (which may be viewed as a map SpecA→
E ×Y SpecA) to the pullback map SpecB → E ×Y SpecB viewed as an
element of the fibre Ex.

Proof. Let y ∈ Y (A). Elements of Ey are morphisms v : SpecA → E such that
π ◦ v = y. These are equivalent to pairs of morphisms v : SpecA → E and u :
SpecA → SpecA such that u is the identity map and π ◦ v = y ◦ id. Without the
condition that u is the identity, such pairs correspond to morphisms η : SpecA →
E ×Y SpecA, so with this condition included, such pairs correspond to morphisms
η : SpecA→ E×Y SpecA whose composition with the projection p : E×Y SpecA→
SpecA is the identity. These are the same as global sections of the sheaf associated
with the pullback bundle p : E ×Y SpecA → SpecA. This establishes the first
claim.

Let v ∈ Ey. We identify v with the map s : SpecA→ E ×Y SpecA obtained by
applying the universal property of the pullback to v and id. By applying −×SpecA

SpecB we obtain a map t : SpecB → E ×Y SpecB. So, we have the following
diagram:

Since all squares are pullback squares, one can easily see that t is the global
section corresponding to the element φ∗(v) = v ◦ φ∗. �

Proposition 3.12 motivates our definition of the functor of points of a locally free
sheaf, which will be given shortly. But first we need to define the pullback of a
global section of a sheaf.
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Remark 3.13. Let f : Y → X be a morphism of schemes over N and F be
an OX -module. Then any global section s ∈ Γ(X,F) induces a global section of
f∗F by functoriality of pullbacks: Specifying the global section s is equivalent
to specifying a morphism OX → F , which may be pulled back to a morphism
OY = f∗OX → f∗F .

Let F be a locally free sheaf on a scheme X over a semiring R. For an R-algebra
A and a morphism x : SpecA → X, the fibre Fx is defined as the global sections
of the pullback sheaf x∗F , i.e.,

Fx := (x∗F)(SpecA)

The set F(A) of A-valued points is defined as the union of Fx over all x ∈ X(A).
Given an R-algebra morphism f : A→ B and an element v ∈ Fx of some fibre, let

f∗(v) ∈ Ff∗(x) as the pullback of the global section v along f∗ : SpecB → SpecA
as explained in remark 3.13. Now, the functor of points of F is defined as follows.

Definition 3.14. Let F be a locally free sheaf on a scheme X over a semiring
R. The functor of points of F is the functor sending an R-algebra A to F(A)
and an R-algebra morphism f : A → B to the morphism F(A) → F(B) given by
v 7→ f∗(v).

We show that the functor of points of a locally free sheaf is equal to the functor
of points of the corresponding geometric vector bundle. The only difficulty is that
the definition of the functor of points of a locally free sheaf involves the pullback
sheaf rather than the sheaf corresponding to the pullback of the geometric vector
bundle.

Lemma 3.15. Let π : E → X be a geometric vector bundle, and let f : Y → X be
a morphism of schemes. Let F be the sheaf of sections of E. Then the sheaf G of
sections of E ×X Y → Y is canonically isomorphic to f∗F .

Proof. Let U ⊆ X be an open subset. A section of E over U may be pulled back to
a section of E×X Y over f−1(U). Since f∗G sends U to the sections of E×X Y over
f−1(U), we have obtained a homomorphism F → f∗G. By adjunction we obtain a
homomorphism f∗F → G.

To check this is an isomorphism, we may work locally (or even on stalks), and
so we may assume E is the trivial bundle. Choose a basis v1, . . . , vn of sections of
E, and equip E ×X Y with the pulled back basis w1, . . . , wn. We may now identify
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18 J. Jun, K. Mincheva and J.Tolliver

F with On
X and G with On

Y . The map F → f∗G we constructed above is the map
On
X → f∗On

Y sending one basis to the other (i.e., the direct sum of many copies of
the canonical map OX → f∗OY . The map f∗F → G is then the map f∗On

X → On
Y

obtained as the direct sum of copies of the canonical isomorphism f∗OX → OY . �

Note that proposition 3.12 looks almost identical to the definition of the functor
of points of a locally free sheaf in definition 3.14; the only major difference is that
it involves pullbacks of schemes instead of pullbacks of sheaves, which is shown to
be equivalent by lemma 3.15. To be precise, we have following.

Corollary 3.16. The functor of points of a geometric vector bundle is the same
as that of the corresponding locally free sheaf.

Proof. First, we consider what the functor of points looks like on objects via the
first statement of proposition 3.12.

Let R be a semiring and A be an R-algebra. For any geometric vector bundle E
on a scheme Y over R, the set E (A) is the disjoint union of Ey over all y ∈ Y (A).
Also, for each y ∈ Y (A), proposition 3.12 says that Ey is the set of global sections
of the pullback of E along y.

Moreover, from lemma 3.15, we know that the sections of this pullback bundle
are just global sections of the pullback sheaf. It follows that Ey is the set of global
sections of y∗F where F is the sheaf of sections of E. By the definition of the
functor of points of a locally free sheaf, we can write this as Ey = Fy. Then taking
the union over all y ∈ Y (A) gives

E(A) = F(A).

The case of morphisms is followed by a similar argument. �

Because the functor of points is defined in terms of the pullback sheaf, it will
be useful to understand the pullback of a tensor product. For this, the following
lemma will be helpful.

Lemma 3.17. Let f : X → Y be a morphism of schemes over N. Let U ⊆ Y be an
open subset.

(1) Let F be an OY -module and G be a module over OY |U . Define H on Y by
H(V ) = G(U ∩ V ). Then HomOY |U (F |U ,G) ∼= HomOY

(F ,H).
(2) Let F be an OX-module. Let j : f−1(U) → X be the inclusion. Then

f∗j∗(F |f−1(U)) sends an open subset V ⊆ X to (f∗F)(U ∩ V ).
(3) Let F be an OY -module and G be an OX-module. There is a natural

isomorphism

HomOY
(F , f∗G) ∼= f∗HomOX

(f∗F ,G). (9)

Proof. The proof follows mutatis mutandis as the one for schemes over rings. �

Lemma 3.18. Let f : X → Y be a morphism of schemes over N. Let F ,G be
locally free sheaves on Y. Then there is a natural isomorphism f∗(F)⊗OX

f∗(G) →
f∗(F ⊗OY

G).
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Proof. LetH be a sheaf on X. Then by the hom-tensor adjunction and the pullback-
pushforward adjunction, we obtain

HomOX
(f∗F ⊗OX

f∗G,H) ∼= HomOX
(f∗F ,HomOX

(f∗G,H)) ∼= (10)

HomOY
(F , f∗HomOX

(f∗G,H)) (11)

and

HomOX
(f∗(F⊗OY

G),H) ∼= HomOY
(F⊗OY

G, f∗H) ∼= HomOY
(F ,HomOY

(G, f∗H)).
(12)

The result follows by using (9) (with G,H in place of F ,G) to compare the right
sides of the two equations above. �

Proposition 3.19. Let X be a scheme over a semiring R and F ,G be locally free
sheaves on X. The functor of points of F⊗OX

G is given by A 7→
⊔
x∈X(A) Fx⊗AGx.

Proof. This is just a restatement of lemma 3.18. Let A be an R-algebra and let
x ∈ X(A). Then by definition, the fibre of (F ⊗OX

G)(A) → X(A) over x is the
A-module corresponding to x∗(F ⊗OX

G), which is isomorphic to x∗(F)⊗A x∗(G).
This is the tensor product of the fibres of F and G. �

Proposition 3.20. Let E be a locally free sheaf on a scheme X over a semiring
R. Consider the map + : E×X E → E which is simply vector addition on the level
of functors of points. Then, + is a morphism of schemes when E is viewed as a
geometric vector bundle. Similarly, there is a morphism of schemes A1

X ×X E → E
whose functor of points is the scalar multiplication map (A×X(A))×X(A)E(A) ∼=
A× E(A) → E(A).

Proof. Since the fibres are A-modules, we have an addition operation

+ : E(A)×X(A) E(A) → E(A),

which is natural in A because pulling back sections yields an additive map E(A) →
E(B) for any f : A → B. The universal property of pullback yields a natural
isomorphism

(E ×X E)(A) ∼= E(A)×X(A) E(A).

Composing gives a natural addition operation (E×XE)(A) → E(A). By naturality,
this must be the functor of points of a morphism of schemes.

The proof for scalar multiplication is similar; the only substantial difference is
that we need to check thatA×E(A) → E(A) is natural. If x ∈ X(A) and f : A→ B,
this amounts to showing that the composition of A × Ex → Ex with the map
Ex → Ef(x) ∼= Ex ⊗A B (given by v 7→ v ⊗ 1) is equal to the composition of the
map A × Ex → B × Ef(x) (given by a, v 7→ f(a), v ⊗ 1) with B × Ef(x) → Ef(x),
which is clear. �
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4. Equivariant vector bundles

From now on, by a vector bundle, we mean a locally free sheaf.
Let E be a vector bundle on a scheme X over a semiring R. Let A be an R-algebra.

Consider any element of X (A):

x : SpecA→ X.

As we noted in remark 3.13, any global section s of E determines a global section
of the pullback bundle x∗E. Since Ex := x∗(E)(SpecA), the element s determines
an element s(x ) of Ex. Hence, s also determines a section of the projection πA :
E(A) → X(A).

Let R be a semiring. By a group scheme over R, we mean a group object in
the category of schemes over R. In particular, for any R-algebra A, the set G(A)
of A-points of G is a group. Also, recall that for any vector bundle E on X and
x ∈ X(A), since Ex := x∗E(SpecA), the set Ex is indeed an A-module.

Definition 4.1. Let X be a scheme over a semiring R and G be a group scheme
over R acting on X. We define an equivariant vector bundle to be a vector bundle
E on X together with an action of G(A) on E(A) for each R-algebra A satisfying
the following:

(1) the action is natural in A,
(2) the action makes πA equivariant, and
(3) the action makes the induced map Ex → Egx A-linear.

The first condition means the following: for R-algebras A and B with a map
f∗ : SpecB → SpecA induced by an R-algebra map f : A → B, the following
diagram commutes:

where ϕ(α) = α ◦ f∗ and ψ(β) = f∗(β) (as in definition 3.14) and ρA (resp. ρB) is
an action of G(A) (resp. G(B)) on E (A) (resp. E (B)).

The second condition means that the following diagram commutes:

where the top row is the action of G(A) on E (A) and the bottom row is the action
of G(A) on X (A).

The third condition is clear: each g ∈ X(A) induces an automorphism of E (A)
and it has to be A-linear for each fibre.
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Example 4.2. Let X be a scheme over a semiring R with a G-action, where G is
a group scheme over R. Consider a free sheaf F = On

X . Let v1, . . . , vn be a basis for
F . Let x ∈ X(A) for some R-algebra A. Then Fx is free with basis (v1)x, . . . , (vn)x
where (vi)x ∈ Fx corresponds to x∗vi ∈ Γ(SpecA, x∗F).

Define an action ρA : G(A)×F(A) → F(A) by the condition that for g ∈ G(A),
x ∈ X(A) and v ∈ Fx,

ρA((g, v)) =
∑
i

ai(vi)gx,

where v =
∑
i ai(vi)x is the basis expansion of v. On

X with this action is called
the trivial G-equivariant vector bundle. It is clear that ρA is compatible with the
projection since it maps the fibre over x to the fibre over gx. It is also clear that ρA
is an action and that it induces linear isomorphisms between fibres. To show the
trivial G-equivariant vector bundle is in fact an equivariant vector bundle, we only
need to check naturality.

Let f∗ : SpecB → SpecA be a map induced by a map f : A→ B of R-algebras.
We want the following diagram to commute:

For (g, v) ∈ G(A)×F(A), we have

ψ ◦ ρA((g, v)) = ψ(
∑
i

ai(vi)gx) =
∑
i

f(ai)ψ((vi)gx) =
∑
i

f(ai)(f
∗vi)f∗(gx).

On the other hand, with v =
∑
i ai(vi)x, we have

ψ(v) = ψ(
∑
i

ai(vi)x) =
∑
i

f(ai)ψ((vi)x) =
∑
i

f(ai)f
∗((vi)x).

Hence, we have

ρB ◦ (ϕ× ψ)(g, v) = ρB(f
∗(g),

∑
i

f(ai)(f
∗vi)f∗x)) =

∑
i

f(ai)(f
∗vi)f∗(g)f∗x

=
∑
i

f(ai)(f
∗vi)f∗(gx),

showing that ψ ◦ ρA = ρB ◦ (ϕ× ψ).

Obviously, a direct sum of equivariant vector bundles is an equivariant vector
bundle. We now show that the same is true for tensor products.

Lemma 4.2. Let f : Y → X be a morphism of schemes over a semiring R
and let F be a locally free sheaf on X. Then there is a canonical isomorphism
f∗HomOX

(F ,OX) ' HomOY
(f∗F ,OY ).
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Proof. The proof follows mutatis mutandis as the one for schemes over rings. �

Let X be a scheme over a semiring R with an action of a group scheme G over
R. Let E ,F be equivariant vector bundles on X. Let A be an R-algebra. We apply
proposition 3.19 to identify (E ⊗ F)x with Ex ⊗A Fx for each x ∈ X(A).

Proposition 4.3. With the same notation as above, E⊗F is an equivariant vector
bundle via the action obtained by linearly extending the following:

g(v ⊗ w) = gv ⊗ gw, where g ∈ G(A), x ∈ X(A), v ∈ Ex, w ∈ Fx.

Moreover, the set of isomorphism classes of equivariant line bundles is a group
under tensor product.

Proof. If v⊗w is in the fibre over x, then it is clear that gv⊗gw is in the fibre over
gx, which establishes compatibility with the projections, showing (2) of definition
4.1.

The linearity of the actions on Ex and Fx implies gv⊗ gw depends bilinearly on
v and w. By the universal property of the tensor product, there is a unique linear
map Ex⊗Fx → Egx⊗Fgx sending v⊗w to gv⊗ gw. This establishes that the map
of interest is well-defined and linear on fibres. This shows (3) of definition 4.1.

One can easily observe that (1) of definition 4.1 follows immediately from the
naturality of the actions on E and F plus naturality of the multiplication map
G(A)×G(A) → G(A). Thus the tensor product is an equivariant vector bundle.

Now let OX be the trivial equivariant line bundle (with the basis element
denoted 1). We have an isomorphism of vector bundles

OX ⊗F → F ,

which on the level of functors of points is given by 1x ⊗ v 7→ v. To check if it is
an isomorphism of G-equivariant vector bundles (so that OX is the tensor product
identity), we need to check that g(1x⊗ v) maps to gv. But this follows immediately
from g(1x ⊗ v) = g1x ⊗ gv = 1gx ⊗ gv.

It remains to show that equivariant line bundles are invertible under tensor
product. Let L be an equivariant line bundle. There is a canonical morphism
HomOX

(L,OX)⊗L→ OX . This is clearly an isomorphism for L = OX , and so for
any line bundle it induces isomorphisms on stalks, and hence is an isomorphism.

By lemma 4.2, the functor of points of HomOX
(L,OX) has fibre over a point x ∈

X(A) given by HomA(Lx, A). We may then define the action by saying g ∈ G(A)
acts on ` ∈ HomA(Lx, A) by

(g`)(v) = g(`(g−1v))for v ∈ Lgx.

Let L∨ = HomOX
(L,OX). We claim that L∨ is an equivariant line bundle. In

fact, from the definition, one can easily check that g` is in the fibre over gx and
(L∨)x → (L∨)gx is A-linear. The only nontrivial part is the naturality. In other
words, for f : A→ B, we have to show that the following diagram commutes
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First, for ` ∈ HomA(Lx, A), we have

Lf∗x = Lx ⊗A Band ψ(`) = f∗` = `⊗ id : Lx ⊗A B → B.

Hence, we have

ψ ◦ ρA(g, `) = f∗(g`) = (g`)⊗ id.

So, for w =
∑
vi ⊗ bi ∈ Lf∗x from the linearity, we have

ψ ◦ ρA(g, `)(w) =
∑
i

g(`(g−1vi))⊗ bi.

On the other hand, we have

f∗g(w) = f∗g(
∑
i

vi ⊗ bi) =
∑
i

gvi ⊗ bi.

Hence, we have

ρB◦(ϕ×ψ)(g, `)(w) = (f∗gf∗`)(w) = f∗g(f∗`(f∗g−1w)) = f∗g(f∗`(
∑
i

g−1vi⊗bi))

= f∗g(
∑
i

`(g−1vi)⊗ bi) =
∑
i

g(`(g−1vi))⊗ bi.

This shows that ψ ◦ ρA = ρB ◦ (ϕ× ψ).
The canonical isomorphism

L∨ ⊗ L→ OX

sends (`, v) to `(v). Since (g`)(gv) = g(`(v)), this isomorphism is equivariant, so
the line bundle L∨ is the inverse under tensor product. �

Later, we will consider toric vector bundles in the affine setting and then glue
them to obtain toric vector bundles in the general setting. An arbitrary vector
bundle is trivial over an affine toric variety [16]. For toric vector bundles, one has
the following statement.

Proposition. [27, Proposition 2.2] Every toric vector bundle on an affine toric
variety splits equivariantly as a sum of toric line bundles whose underlying line
bundles are trivial.

The statement also holds in the semiring case, however, one cannot use a similar
argument as in the classical proof. In fact, we prove an analogous theorem (theorem
5.17) in §5 saying that under the irreducibility assumption, any equivariant vector
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bundle which is trivial as a vector bundle splits equivariantly over an idempotent
semifield.

Note that we can understand Sn in our exact sequence in proposition 2.14 as a
scheme over N. See Appendix B. This fact be used in the next section.

5. Splitting of G-equivariant vector bundles on irreducible schemes

In this section, we study properties of G-equivariant vector bundles on irreducible
schemes over an idempotent semifield K, where G is an irreducible algebraic group
over K. In [18], we proved that any vector bundle on a scheme over an idempotent
semifield, satisfying a certain local condition splits. In this section, we prove that for
an irreducible algebraic group G over an idempotent semifield K, any G-equivariant
vector bundle, which is trivial as a vector bundle, on an irreducible scheme X over
K equivariantly splits. Along with other results, this result will be used to study
toric vector bundles on toric schemes in later sections.

In what follows, by a scheme we mean a scheme over N, i.e., semiring scheme,
unless otherwise stated.

Definition 5.1. We say a semiring A is irreducible if the following condition
holds: for any x, y ∈ A if xy is nilpotent, then x or y is nilpotent.

The usual argument for rings can be modified to prove the following.

Lemma 5.2. A semiring A is irreducible if and only if SpecA is irreducible.

Because we prefer to work with irreducible schemes, we will need the following
variant of Yoneda’s lemma. To any scheme X, we associate a functor of points
X(A) = Hom(SpecA,X) mapping the category of irreducible idempotent semirings
to the category of sets.

Proposition 5.3. Let X,Y be schemes over B (i.e., over some an idempotent
semiring). Suppose that X irreducible. There is a bijective correspondence between
morphisms f : X → Y and natural transformations fA : X(A) → Y (A) of functors
of points on the category of irreducible idempotent semirings.

Proof. Suppose f, g : X → Y are such that fA = gA for all irreducible idempotent
semirings A. Take an open affine cover {Ui = SpecAi}i∈I of X, where Ai are
idempotent semirings. Observe that Ai is irreducible, because X is irreducible. The
inclusion ιi : Ui → X is an element ιi ∈ X(Ai). Then

f |Ui = fAi(ιi) = gAi(ιi) = g|Ui

Since this holds for all i, we have f = g.
Now suppose we are given functions fA : X(A) → Y (A) for all irreducible

idempotent semirings A, and that this is natural in A. Let Ui, Ai, and ιi be as
before. For each i, j, let {Vijk} be a cover of Ui ∩ Uj by affine open sets and
write Vijk = Spec(Bijk). Let κijk ∈ X(Bijk) be the inclusion Vijk → X. Let
φijk : Vijk → Ui be the inclusion. Note that ιi ◦ φijk = κijk.
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We obtain maps

ai := fAi
(ιi) : Ui → Y, bijk := fBijk

(κijk) : Vijk → Y.

Naturality implies that

ai|Vijk
= ai ◦ φijk = fBijk

(ιi ◦ φijk) = bijk.

Similarly, the restriction of aj to Vijk is bijk. So ai and aj agree on Vijk for all
k, which implies they agree on Ui ∩ Uj . Since we have a collection of morphisms
ai : Ui → Y that agree on overlaps, we obtain a morphism g : X → Y such that
g|Ui

= ai. In particular, we have

gAi
= fAi

.

It remains to show that gA = fA for all irreducible A. We fix a morphism x :
SpecA→ X and show that

fA(x) = gA(x).

Consider first the case where x factors through some Ui, i.e., x = ιi ◦ y for some
y ∈ Ui(A). By naturality, we have

fA(x) = fA(ιi ◦ y) = fAi
(ιi) ◦ y,

and similarly for g. Since gAi
= fAi

by construction, fA(x) = gA(x) for such x.
We now consider the general case. Cover each x−1(Ui) by open affines, to get a

cover {Wij = SpecCij} of SpecA such that x(Wij) ⊆ Ui. Let µij : Wij → SpecA
be the inclusion. Let xij :Wij → X be given by

xij = x ◦ µij , i.e., xij = x|Wij
.

We have that xij factors through Ui, and hence

fCij
(xij) = gCij

(xij).

By rewriting in terms of x and µij and by using naturality, we have

fA(x) ◦ µij = fCij
(x ◦ µij) = gCij

(x ◦ µij) = gA(x) ◦ µij .

It follows that the maps fA(x), gA(x) : SpecA → Y agree on each Wij, and thus
are equal. �

Our next task is to construct some examples of irreducible schemes over any
additively idempotent semiring. We will start with some affine examples. For this,
we will need the following lemma.

Lemma 5.4. Let A be an idempotent semiring and I be the nilradical of A, i.e.,

I = {x ∈ A | xn = 0}.

Then I is a subtractive ideal, i.e., if a + b ∈ I, then a ∈ I. Moreover, if A is
irreducible then I is prime.
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Proof. I is an ideal by the same proof as the classical case.
Since a+ b ∈ I, there exists n ∈ N such that (a+ b)n = 0. Since A is idempotent,

we have

(a+ b)n =
∑

akbn−k = 0,

which implies that akbn−k = 0 for all k, as any idempotent semiring is zero-sum-free.
In particular an = 0, showing that a ∈ I. Thus I is subtractive.

The claim about primality follows immediately from the definition of an
irreducible semiring. �

Remark 5.5. For many of our results on irreducible idempotent semirings, the
only place we need idempotence is to establish that if I is the nilradical then A/I
is zero-sum-free and x+ y ∈ I implies x ∈ I. These facts are trivially true for zero-
sum-free semirings with no nontrivial nilpotents. Thus many of the below results
apply in this setting as well. In particular if A is zero-sum-free (e.g., A = N), then
any monoid algebra A[M ] has no nontrivial zero-divisors.

The only tool for establishing a semiring is irreducible that will be needed for our
focus on the toric case is proposition 5.6. However, we will prove other irreducibility
results for the sake of making the theory more general.

Recall that for an F1-algebra M and a semiring A, by the base change A⊗F1
M

we mean the monoid semiring A[M ]/ ∼, where ∼ identifies 0 ∈ M and 0 ∈ A. See
§2.3.

Proposition 5.6. Let A be an irreducible idempotent semiring, and let M be
an irreducible F1-algebra. Then the semiring A ⊗F1

M is irreducible. Moreover,
if neither A nor M have nontrivial zero-divisors, then neither does A ⊗F1

M . In
particular for any monoid M, A[M ] is irreducible, and if A has no nontrivial
zero-divisors, A[M ] does not either.

Proof. In the monoid case, we can adjoin a zero element to get to the case of an
F1-algebra with no non-trivial zero-divisors.

Let x, y ∈ A⊗F1
M be such that xy is nilpotent. We wish to show either x or y

is nilpotent. Write

x =
∑
m∈M

xm[m],

where xm ∈ A, and we have a similar expansion for y. Then∑
m,n∈M

xmyn[mn]

is nilpotent. Thus, from lemma 5.4, xmyn[mn] is nilpotent for all m,n ∈M . Then
there is some k such that (xmyn)

k[(mn)k] = 0. Since non-zero elements of M form
a basis for A⊗F1 M , either [(mn)k] = 0 or (xmyn)

k = 0.
If for all n ∈M either yn is nilpotent or [n] is nilpotent, then y =

∑
yn[n] lies in

the nilradical, and we are done. Otherwise choose n ∈M such that neither yn nor
[n] is nilpotent and choose m ∈ M arbitrarily. In the case that xmyn is nilpotent,
since yn is not, irreducibility of A tells us xm is nilpotent. In the other case where
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[mn] is nilpotent, irreducibility of M tells us [m] is nilpotent. Thus for all m ∈M ,
xm[m] is nilpotent and thus x =

∑
xm[m] is nilpotent. This shows irreducibility of

A⊗F1
M .

For the second assertion, if neither A nor M have non-trivial zero-divisors (in
particular all nilpotents are trivial), suppose xy =0 (in particular xy is nilpotent).
We may follow the argument above, and in the first case of the previous paragraph,
we obtain that for all n ∈ M , either yn is nilpotent (so yn = 0) or [n] is nilpotent
(so [n] = 0). Either way y =

∑
yn[n] = 0. In the remaining case, as in the previous

paragraph, we get that for each m, xm or [m] is nilpotent, and as in the previous
case, we get x =

∑
xm[m] = 0. �

Note that the above result is false over rings, as seen in the case A = C and
M = Z/2Z. Also note that while we generally assume commutativity, the above
result holds for noncommutative F1-algebras as well.

The following lemma will be useful for studying irreducibility of quotient
semirings.

Lemma 5.7. Let A be an irreducible idempotent semiring. Let ∼ be a congruence
generated by a collection of pairs (xi, yi) with the property that for each i in the
index set, either both xi and yi are nilpotent or both are non-nilpotent. Then if
x ∼ y, either both x and y are nilpotent or both are non-nilpotent. Moreover, the
quotient A/ ∼ is irreducible. If A has no nontrivial zero-divisors, then neither does
A/ ∼.

Proof. Let P be the nilradical, which is a subtractive prime ideal by lemma 5.4.
Then A/P is a zero-sum-free semiring with no nontrivial zero-divisors. This implies
the map φ : A/P → B given by φ(0) = 0 and φ(x) = 1 for x ≠ 0 is a homomorphism.
We consider instead the epimorphism ψ : A → B obtained by composing with the
quotient map; explicitly ψ(x) is 0 or 1 according to whether x is nilpotent.

Write x ≡ y if x and y are both nilpotent or both non-nilpotent. Since this
is equivalent to ψ(x) = ψ(y), ≡ is a congruence. By assumption it contains all
generators of the congruence ∼. Thus, if x ∼ y, then x ≡ y, which is the first part
of the result.

For the second part of the result, suppose x̄ȳ ∈ A/ ∼ is nilpotent. Pick lifts
x, y ∈ A, and observe that for some k, (xy)k ∼ 0. Thus (xy)k is nilpotent, which
implies xy is nilpotent. By irreducibility, either x or y is nilpotent, which implies
the same for x̄ or ȳ.

If A has no nontrivial zero-divisors, suppose x̄ȳ = 0. It is nilpotent, so we may
follow the previous paragraph to obtain that x or y is nilpotent. But A has no
nontrivial nilpotents, so x =0 or y =0 and hence x̄ = 0 or ȳ = 0. �

One application of the above result is to the tropicalization of a variety not
contained in the union of the coordinate hyperplanes. Note that a monoid does not
have an absorbing element 0, and hence it is always irreducible as it cannot have
nilpotent elements.

Proposition 5.8. Let K be a valued field, M be a monoid, and I ⊆ K[M ] be an
ideal. Let R = K[M ]/I, where I does not contain any element of M. Let A be the
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tropicalization of R, i.e., the quotient of T[M ] by bend relations corresponding to
elements of I. Then A has no nontrivial zero-divisors, in particular A is irreducible.

Proof. Observe that T[M ] has no nontrivial zero-divisors by proposition 5.6. Let ∼
be the congruence of T[M ] generated by bend relations. Let vK be the valuation
on K.

Let f ∈ I ⊆ K[M ]. Write f =
∑
ai[mi] with the ai all non-zero. If f has no terms

(i.e., f =0), then the set of bend relations for f is empty and the bend congruence
is just the diagonal congruence. If there is only one term then [m1] = f/a1 ∈ I ∩M
contradicting the hypothesis. Thus we may assume there are at least two non-zero
terms.

For each i, consider the corresponding bend relation∑
j

vK(aj)[mj ] ∼
∑
j 6=i

vK(aj)[mj ].

Since f contains more than one term, both sums are nonempty. Moreover each term
is non-zero. So the bend relation identifies a non-zero element with another non-
zero element. Since T[M ] is reduced, the bend relation identifies two non-nilpotents.
Thus the result follows from lemma 5.7. �

Remark 5.9. Note that one may also prove proposition 5.8 by using [18, Corollary
6.11].

Next we show that a tensor product of irreducible idempotent semirings is
irreducible. We do so by viewing the tensor product as a quotient of a monoid
algebra.

Proposition 5.10. Let R be an idempotent semiring, and let A,B be irreducible
R-algebras. Assume that the maps R → A and R → B have trivial kernels (which
is automatic if R is a semifield) (Here, a kernel does not mean an equalizer, but it
means simply the inverse image of 0). Then A⊗R B is irreducible.

Proof. If we forget the addition structure on B, we can view it as an irreducible
F1-algebra. We can then construct the A-algebra A ⊗F1

B. This is irreducible by
proposition 5.6. By abuse of notation, we denote it A[B], since this makes the
asymmetry in how we treat A and B more clear.

Define a congruence ∼ on A[B] generated by [b1] + [b2] ∼ [b1 + b2] for b1, b2 ∈ B
and r ∼ [r] for r ∈ R (i.e., ∼ identifies the copy of R for B with the one for A).
Because the structure maps have trivial kernel, rk = 0 if and only if [r]k = 0, so r is
nilpotent if and only if [r] is nilpotent. If [b1 + b2] is nilpotent, there is some k such
that [(b1 + b2)

k] = 0 and hence (b1 + b2)
k = 0, i.e., b1 + b2 is nilpotent. By lemma

5.4, this implies b1 and b2 are nilpotents in B so [b1], [b2] ∈ A[B] are nilpotent, and
hence [b1]+ [b2] is nilpotent. Conversely if [b1]+ [b2] is nilpotent, lemma 5.4 implies
each term is nilpotent, so b1, b2 are nilpotent, and hence [b1+b2] is nilpotent. So no
generator of ∼ identifies a nilpotent element with a non-nilpotent. Thus A[B]/ ∼
is irreducible by lemma 5.7.
A[B] has the universal property that a homomorphism A[B] → S corresponds to

a pair of a semiring homomorphism A→ S and an F1-algebra homomorphism B →
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S (viewed S as a multiplicative monoid with 0). A homomorphism (A[B]/ ∼) → S
corresponds to a homomorphism φ : A[B] → S such that φ(r) = φ([r]) for all r ∈ R
and φ([b1]) + φ([b2]) = φ([b1 + b2]) for all b1, b2 ∈ B. This in turn corresponds
to a pair of a homomorphism φA : A → S and an F1 algebra homomorphism
φB : B → S such that φA and φB agree on R and such that φB preserves addition
(i.e., φB is in fact a semiring homomorphism).

The universal property of tensor products of semirings says that a homomorphism
A ⊗R B → S corresponds to a pair of homomorphisms A → S and B → S which
agree on R. Thus, A⊗R B ∼= A[B]/ ∼. Since A[B]/ ∼ is irreducible, so is A⊗R B.
�

Remark 5.11. The above result fails for classical schemes, e.g., C⊗RC is not even
connected.

The following lemma is useful in order to prove similar irreducibility results for
non-affine schemes.

Lemma 5.12. Let X be a sober space with an open cover {Ui} such that each Ui is
irreducible. Construct a graph whose vertices correspond to sets of the open cover.
Two vertices i and j are connected by an edge if Ui∩Uj 6= ∅. This graph is connected
if and only if X is irreducible.

Proof. If X is irreducible, clearly the graph is connected. Conversely, suppose that
the graph is connected. If Ui and Uj are nondisjoint, then Ui∩Uj is an open subset
of the irreducible space Ui and therefore contains the generic point of Ui. Similarly,
it contains the generic point of Uj. But Ui∩Uj is irreducible (as it is an open subset
of an irreducible space), so it contains a unique generic point. Thus, if i and j are
connected by an edge, Ui and Uj share the same generic point. Since the graph is
connected, all of the Ui share the same generic point η.

Let U be an open set. There is some i such that U ∩ Ui 6= ∅. Since U ∩ Ui is an
open set in the irreducible space Ui, it contains the generic point η. Since all open
sets contain η, no two open sets can be disjoint. �

As an application of this result we show that the product of irreducible schemes
is irreducible.

Proposition 5.13. Let X and Y be irreducible schemes over an idempotent
semifield K. Then X ×K Y is irreducible.

Proof. First, we note that the construction of the fibred product in the semiring set-
ting is the same as in the classical case of rings. One can check the same arguments
go through mutatis mutandis.

Now, from the construction of the fibred product X ×K Y , if U is an open
subset of X, then the preimage of U under π1 : X ×K Y → X is isomorphic to
U×K Y . Moreover, the product of affine schemes corresponds to the tensor product
of semirings.

Let Ui = SpecAi be an open affine cover of X and Vj = SpecBj be an open
affine cover of Y. X ×K Y has an open cover by open subschemes of the form
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π−1
1 (Ui) = Ui ×K Y , and these in turn may be covered by open subschemes of the

form Ui×K Vj = SpecAi⊗K Bj . By proposition 5.10, each Ui×K Vj is irreducible.
Next, we consider the graph associated with this open cover (with an edge linking

open subsets if they are not disjoint). This graph has vertices of the form (i, j ),
where i and j belong to the index sets of the covers {Ui} and {Vj}, respectively.

If Ui and Uk are not disjoint, then π
−1
1 (Ui∩Uk) ∼= (Ui∩Uj)×K Y , so the left side

is nonempty. In particular, Ui×K Y and Uj×K Y are not disjoint open subschemes.
We may apply this with Vj in place of Y to obtain that Ui ×K Vj and Uk ×K Vj
are not disjoint open subschemes of X ×K Vj ⊆ X ×K Y . So for each j we get an
edge linking (i, j ) to (k, j ). Similarly if Vj and Vl are not disjoint then for each i,
Ui ×K Vj intersects Ui ×K Vl. So we get edges linking (i, j ) to (i, l).

Thus the product graph of the graphs associated with the covers {Ui} and {Vj}
is a spanning subgraph of the graph associated with the product cover. Since the
product of connected graphs is connected, the result follows from lemma 5.12. �

Next we will establish irreducibility of toric schemes over an idempotent semiring.
Let ∆ be a fan. Construct a graph G∆ whose vertices correspond to cones in ∆

in which two vertices σ, τ ∈ ∆ are linked by an edge if σ is a face of τ . Then, G∆

is connected since {0} is a face of any cone in ∆.

Proposition 5.14. Let X be the toric scheme associated with a fan ∆ over an
irreducible idempotent semiring R. Then X is irreducible.

Proof. X has an open cover {Uσ} (by nonempty sets) indexed by the cones in ∆
in which Uσ ⊆ Uτ whenever σ is a face of τ . Now, the result directly follows from
lemma 5.12 applied to G∆. �

Lemma 5.15. Let X be a connected scheme over N. Let R and S be semirings.
Then any morphism X → Spec(R⊕ S) factors through SpecR or SpecS.

Proof. We begin with the affine case in whichX = SpecA, where we are looking at a
homomorphism φ : R⊕S → A. Let e = φ(1, 0) and f = φ(0, 1). Since (1, 0)+(0, 1) =
(1, 1) and (1, 0)(0, 1) = (0, 0), it follows that (e, f ) forms an idempotent pair. By
connectedness either e =0 or f =0. Without loss of generality consider the latter
case. Then φ(r, s) = re+ sf = re so φ factors through the projection R⊕ S → R.
Note that unless X is the empty scheme, φ cannot factor through both projections
because then we would have φ(1, 1) = φ(0, 0) contradicting that homomorphisms
are unital.

Now consider the non-affine case. Construct a cover by affine open subsets {Ui}.
Let φ : X → Spec(R⊕ S). Then, the restriction φ|Ui factors through either SpecR
or SpecS. Suppose that for two indices i and j, φ|Ui factors through SpecR, φ|Uj

factors through SpecS, and Ui∩Uj 6= ∅. Then, we obtain a contradiction by letting
W be an affine open subset of Ui∩Uj and observing that φ|W factors through both
SpecR and SpecS.

Let U be the union of all Ui such that φ|Ui factors through SpecR and V be
the union of all Ui such that φ|Ui factors through SpecS. We just showed U and
V are disjoint, and clearly they cover X. So one of them is empty; without loss of
generality it is V, and so all φ|Ui factor through R. Hence so does φ. �
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With these preliminaries on irreducible sets out of the way, we turn to studying
the obstruction to an equivariant vector bundle being a sum of one-dimensional
bundles equivariantly. We will start by considering a sort of a ‘vector bundle over
a set’ rather than a scheme and will later use the functor of points viewpoint to
reduce the scheme-theoretic case to this one.

Let A be an irreducible idempotent semiring, G a group, and X a G-set, and let
n ∈ N. Let E = X × An, and for each x ∈ X, let Ex = {x} × An, which is an A-
module in the obvious way. Let ei ∈ An be the standard basis and ei(x) = (x, ei) be
the corresponding basis of Ex. Fix a G-action on E such that the projection E → X
is equivariant and for each g ∈ G and x ∈ X, the induced maps g : Ex → Egx on
fibres are A-linear.

Lemma 5.16. With the same notation as above, there is a unique map φ : G×X →
Sn such that gei(x) is a scalar multiple of eφ(g,x)(i)(gx) for all (g, x) ∈ G×X.

Proof. Fix g ∈ G and x ∈ X. We consider two bases of Egx: we have the basis
{ei(gx)} and the basis {gei(x)}. Because A is an irreducible (hence connected) zero-
sum-free semiring and Egx is a free A-module, the basis is unique up to reordering
and scalar multiplication (see remark A.5). Thus, there is some permutation σ and
some units ai ∈ A× such that gei(x) = aieσ(i)(gx). The desired map φ is the map
that sends (g, x ) to this σ ∈ Sn. Note that φ is unique because a basis vector cannot
be a multiple of another element of the basis. �

To understand the significance of lemma 5.16, note that if the map φ in the lemma
sends every element to 1 ∈ Sn, then gei(x) is a scalar multiple of ei(gx). Thinking
of E as essentially an equivariant vector bundle this would mean that X× span(ei)
is an equivariant line subbundle, and E would decompose into equivariant line
bundles. Of course this is all taking place over sets rather than schemes, so our
definition of equivariant vector bundle does not quite apply.

Morally we expect that in the scheme-theoretic case, we should have a similar
map G×X → Sn acting as the obstruction to decomposing an equivariant vector
bundle which is trivial as a vector bundle into line bundles. We will do this only
in the case where X and G are irreducible. Note that furthermore, under these
irreducibility assumptions, we should intuitively expect the map to be trivial for
connectedness reasons.

Now, fix an irreducible scheme X over an idempotent semifield K and a vector
bundle E on X. For any irreducible idempotent semiring A and x : Y = SpecA→
X, we let Ex = x∗E(SpecA) as before. Let’s recall some more notations. We have

E(A) =
⊔

x∈X(A)

Ex.

Also, there is a canonical projection

πA : E(A) → X(A),

where πA(y) = x if and only if y ∈ Ex.

https://doi.org/10.1017/prm.2025.10045 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10045


32 J. Jun, K. Mincheva and J.Tolliver

Theorem 5.17 5.17 Let X be an irreducible scheme over an idempotent semifield
K and G be an irreducible algebraic group over K acting on X. Let E be a G-
equivariant vector bundle on X which is trivial as a vector bundle. Then E is a
direct sum of equivariant line bundles.

Proof. For any irreducible idempotent K -algebra A, we consider the group G(A)
of A-valued points of G and its action on the sets X (A) and E (A). Pick a basis ei
for E and observe that this induces a basis x∗(ei) of Ex for each x ∈ X(A). Note
that this is essentially due to the fact that x∗ and x∗ are adjoint functors as in the
case for rings (lemma 3.8), implying that if E = On

X , then x∗E = On
SpecA since a

left adjoint functor preserves colimits. It follows that Ex = An, and hence we can
identify E (A) with X(A)×An.

Now, equivariance of the bundle E means that G(A) acts on E (A) in a manner
that is linear on fibres (definition 4.1 (3)) and that it makes the projection πA :
E(A) → X(A) equivariant (definition 4.1 (2)). Apply lemma 5.16 to the G(A)-
action on E(A) → X(A). We obtain for each A, a map φA : G(A) ×X(A) → Sn
such that gei(x) is a scalar multiple of eφA(g,x)(i)(gx) for all (g, x) ∈ G(A)×X(A).

First, we want to show this map is natural. Fix a morphism f : SpecB → SpecA.
The induced map f∗ : X(A) → X(B) sends a point x : SpecA → X to x ◦ f , and
the induced map f∗ : G(A) → G(B) is described similarly.

Let α : G×K X → X be a G-action on X. Then for each K -algebra A, one has

αA : G(A)×X(A) → X(A).

Since the action α is a morphism of schemes, it induces a natural transformation
of functors of points, i.e., for g ∈ G(A) and x ∈ X(A), one has

f∗(gx) = f∗(αA(g, x)) = αB(f
∗(g, x)) = αB(f

∗(g), f∗(x)) = f∗(g)f∗(x). (13)

The induced map f∗ : E(A) → E(B) sends ei(x) to

f∗(ei(x)) = f∗x∗(ei) = ei(x ◦ f) = ei(f
∗(x)). (14)

By (1) of definition 4.1, similar to (13), for any e ∈ E(A) and g ∈ G(A), we have

f∗(g)f∗(e) = f∗(ge).

Observe that

f∗(g)f∗(ei(x)) = f∗(gei(x)) (15)

is a scalar multiple of

f∗(eφA(g,x)(i)(gx)) = eφA(g,x)(i)(f
∗(gx)) = eφA(g,x)(i)(f

∗(g)f∗(x)) (16)

because gei(x) is a multiple of eφA(g,x)(i)(gx). We claim the following:

φB(f
∗(g), f∗(x)) = φA(g, x), (17)
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which is precisely the naturality result we want to prove. Note that f∗ does not
occur on the right side because Sn is a constant functor, so f∗ is the identity here.

To see (17), define for g′ ∈ G(B) and x′ ∈ X(B),

ψ(g′, x′) =

φB(g′, x′) if (g′, x′) 6= (f∗(g), f∗(x)),

φA(g, x) if (g′, x′) = (f∗(g), f∗(x)).
(18)

Then for any g′ ∈ G(B) and x′ ∈ X(B), we see that g′ei(x
′) is a multiple of

eψ(g′,x′)(i)(g
′x′); when (g′, x′) = (f∗(g), f∗(x)) this is because (15) is a multiple

of (16), and otherwise this holds because it is true for φB. Now the uniqueness
in the defining property of φB (in lemma 5.16) implies φB = ψ, so in particular
φB(f

∗(g), f∗(x)) = φA(g, x), as claimed.
We thus have constructed a natural map (G×KX)(A) → Sn = Sn(A). Moreover,

it follows from proposition 5.13 that G×KX is irreducible. Therefore, from lemma
5.3, this natural transformation comes from a morphism of schemes φ : G ×K
X → Sn. Since G ×K X is connected, and Sn is the spectrum of a direct sum
of n! copies of K, φ is constant, i.e., there is some σ ∈ Sn such that φ factors
through the inclusion SpecK → Sn corresponding to the point σ. The same must
be true of the corresponding maps on functors of points. Thus, φA(g, x) = σ for
all (g, x) ∈ G(A)×X(A). So we obtain that for any (g, x) ∈ G(A)×X(A), gei(x)
is a scalar multiple of eσ(i)(gx). By applying this to g =1, we must have σ=1, so
gei(x) is a scalar multiple of ei(gx).

Let Li be the line bundle contained in E given as a sheaf by Li(U) = span(ei|U ).
Its functor of points is such that Li(A) is the set of pairs (x, e) such that x ∈ X(A),
and e ∈ span(ei(x)) ⊆ Ex. We saw gei(x) is a scalar multiple of ei(gx) so belongs to
Li(A), and the same is true for ge where e ∈ Li(A) since any such e is a multiple of
ei(x) for some x. Since ge ∈ Li(A) for g ∈ G(A) and e ∈ Li(A), it follows that the
G(A) action on E (A) descends to an action on Li(A), making Li(A) equivariant.
Even without equivariance, we of course have E =

⊕
Li, and since Li is equivariant,

this implies the result. �

Corollary 5.18. Let X be a toric scheme over an idempotent semifield K and G
be the algebraic torus over K. Let E be an equivariant vector bundle which is trivial
as a vector bundle. Then E is a direct sum of equivariant line bundles.

Remark 5.19. In the non-affine case, there are non-trivial (toric) line bundles
both in the classical case [29] and the tropical case [17].

6. Classification of equivariant vector bundles

Throughout this section, unless stated otherwise, we let K denote either a semiring
or a monoid (with an absorbing element). As in the case for rings and semirings,
by a monoid scheme over K, when K is a monoid, we mean a monoid scheme X
with a map to SpecK. Most of the results below hold for both semiring schemes
and monoid schemes, with the same proof for both cases. And we will need both
cases in order to compare equivariant line bundles on toric schemes over idempotent
semirings with those on the underlying monoid schemes.
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The following result justifies thinking of morphisms X → GL1 as units of X.

Lemma 6.1. Let X be a scheme (resp. monoid scheme) over a semiring
(resp. monoid) K. Let GL1 = SpecK[t, t−1]. Then there is a natural isomorphism
HomSpecK(X,GL1) ' Γ(X,O×

X).

Proof. We prove the case for semirings. The case for monoids is similar.
Note that we have a canonical global section t ∈ Γ(GL1,O×

GL1
), so f : X → GL1

induces a global section f∗t ∈ Γ(X,O×
X). It is natural, because given g : Y → GL1,

the induced map on HomSpecK(−,GL1) sends f to f ◦ g, while the induced map
on Γ(−,O×

−) sends f
∗t to g∗f∗t = (f ◦ g)∗t.

To show it is an isomorphism, we begin with the affine case, where X = SpecA
for some semiring A and so Γ(X,O×

X) = A×. The universal property of K[t, t−1]
asserts that morphisms

f : K[t, t−1] → A

are in bijection with units of A, and that the corresponding element of A× is
f(t) = f∗t. So this bijection is the natural map from before.

Now consider the general case. Fix an open affine cover {Ui} and let ιi : Ui → X
be the inclusion. For each i, j, fix an open affine cover {Vijk} of Ui ∩ Uj with
Vijk = Vjik, and let φijk : Vijk → Ui be the inclusion. Given u ∈ Γ(X,O×

X), we
obtain elements ui = u |Ui

∈ Γ(Ui,O×
Ui
) which satisfy the following condition:

φ∗ikjui = φ∗jikuj .

We let fi be the morphism corresponding to ui; note that the restrictions of fi and
fj to each Vijk agree. Our goal is to show there is a unique f : X → GL1 satisfying
u = f∗t.

Given a morphism f : X → GL1, we have

(f∗t) |Ui
= ι∗i f

∗t = (f |Ui
)∗t.

Thus f∗t = u if and only if (f |Ui
)∗t = ui. By the affine case of this result, this

holds if and only if f |Ui
is the morphism corresponding to ui, i.e., if and only if

f |Ui
= fi. But since the fi agree on overlaps they glue together to give a unique

morphism satisfying this property. �

Let K be a semiring or a monoid. Let X and Y be schemes over K. For each
K -algebra A, there is an one-to-one correspondence between the points t ∈ (X ×K
Y )(A) and the pairs (x, y) ∈ X(A)× Y (A) satisfying the following condition

gX ◦ x = gY ◦ y, (19)

where gX : X → SpecK and gY : Y → SpecK are the structure maps. From
now on, we replace each t ∈ (X ×K Y )(A), with a pair (x, y) ∈ X(A) × Y (A)
satisfying (19).

The following result shows how any equivariant structure on the trivial line
bundle OX gives rise to a unit on G ×K X. This will be the key to classifying
equivariant structures on OX . Note that this unit could potentially depend on the
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choice of basis vector. We can just choose the basis vector to be 1 ∈ OX , but since
that 1 is not preserved by line bundle automorphisms, the resulting unit is not
completely canonical.

To proceed, we need a notion of equivariant vector bundles on a monoid
scheme X.

Definition 6.2. Let K be a monoid, X be a scheme over K, and G be a group
scheme over K acting on X. By an equivariant vector bundle E on X, we mean a
vector bundle E (locally free sheaf) on X together with an action of G(A) for each
K-algebra A satisfying the same conditions as in definition 4.1.

Remark 6.3. One can observe that all statements in §3 except proposition 3.20
are valid for locally free sheaves on monoid schemes as proofs do not use something
specific to semirings. In fact, the proofs for rings can be modified to proof the
semiring case and the monoid case.

Lemma 6.4. Let K be a semiring or monoid. Let X be a scheme over K and G be a
group scheme over K acting on X. Let L be an equivariant line bundle on X which
is trivial as a line bundle and let v be a basis vector for the global sections of L.
Then there is a unique morphism u : G×K X → GL1 such that for each K-algebra
A, each (g, x) ∈ (G×KX)(A), the morphism uA : (G×KX)(A) → GL1(A) satisfies
uA(g, x)vgx = gvx.

Proof. We prove the case for semirings. The case for monoids is similar.
We will construct u via its functor of points. Let v be a basis vector for global

sections for L. Since vx is a basis vector for the free module Lx, gvx is a basis vector
for Lgx. But vgx is also a basis vector, so there is a unique a ∈ GL1(A) such that
avgx = gvx. We let uA(g, x) = a.

We have thus constructed a unique map uA such that uA(g, x)vgx = gvx holds. To
obtain the map u, we must show uA is natural in A. Fix a morphism f : SpecB →
SpecA. As in the proof of theorem 5.17, we let the induced maps be f∗ : X(A) →
X(B), f∗ : G(A) → G(B), and f∗ : L(A) → L(B). Since f∗(gx) = f∗(g)f∗(x), we
have

uB(f
∗g, f∗x)vf∗(gx) = (f∗g)vf∗x.

Recall that vf∗x is the result of pulling v back along f∗x : SpecB → X, while
vx is the pullback along x : SpecA → X. Thus vf∗x is the pullback of vx along
f : SpecB → SpecA. In other words, vf∗x = f∗vx, where the latter f∗ denotes the
induced map f∗ : L(A) → L(B).

Thus we have

uB(f
∗g, f∗x)f∗vgx = (f∗g)f∗vx.

But applying f∗ to both sides of

uA(g, x)vgx = gvx

gives

uA(g, x)f
∗vgx = (f∗g)f∗vx.

Thus uB(f
∗g, f∗x) = uA(g, x), which is the desired naturality. �
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The next step is to determine which units of G×K X arise this way.

Lemma 6.5. With the notation and assumptions of lemma 6.4, for (g, h, x) ∈
(G×K G×K X)(A), we have uA(gh, x) = uA(h, x)uA(g, hx) and uA(1, x) = 1.

Proof. To show the first part of the statement, observe that

uA(gh, x)vghx = ghvx = uA(h, x)gvhx = uA(h, x)uA(g, hx)vghx.

Since vghx is a basis vector, the first part of the statement follows. Similarly, the
second half of the statement follows from uA(1, x)vx = 1vx = vx. �

Definition 6.6. With the same notation as above, a map u : G ×K X → GL1 is
said to be principal if for any K-algebra A and for (g, h, x) ∈ (G×K G×K X)(A),
one has

uA(gh, x) = uA(h, x)uA(g, hx). (20)

Note that Eq. (20) implies that uA(1, x) = 1.

Lemma 6.7. Let K be either a semiring or a monoid. Let X be a scheme over K
and G be a group scheme over K acting on X. Let u : G×KX → GL1 be a principal
morphism. Then there is an equivariant line bundle and a basis vector v such that
u arises from the construction of lemma 6.4. In other words,

uA(g, x)vgx = gvx.

Proof. We choose any trivial line bundle L and basis vector v. To construct the
equivariant structure, we define the action ρA : G(A)× L(A) → L(A) by

g(avx) = auA(g, x)vgx.

By construction this action is linear and satisfies uA(g, x)vgx = gvx. We must check
that it is actually a group action, that it is compatible with the action on X, and
that it is natural in A.

To see that it is a group action, observe that

g(h(avx)) = g(auA(h, x)vhx) = auA(g, hx)uA(h, x)vghx = auA(gh, x)vghx = (gh)(avx),

which is the desired homomorphism property. Also 1 acts via 1(avx) =
uA(1, x)avx = avx. The action is compatible with the action on X because
g(avx) = auA(g, x)vgx lies over gx.

To show that the action is natural in A, let f : SpecB → SpecA, and f∗ be as
in the proof of lemma 6.4. We need to show that the following diagram commutes:
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Now for (g, avx) ∈ G(A)× L(A), we have

f∗ρA(g, avx) = f∗(auA(g, x)vgx) = auA(g, x)f
∗(vgx)

= auA(g, x)vf∗(gx) = auA(g, x)vf∗gf∗x.

On the other hand,

ρB(f
∗g, f∗(avx)) = ρB(f

∗g, af∗(vx)) = ρB(f
∗g, avf∗x) = auB(f

∗g, f∗x)vf∗gf∗x.

From the functoriallity of u, we have

uB(f
∗g, f∗x) = uA(g, x),

implying that

f∗ρA(g, avx) = ρB(f
∗g, f∗(avx)) = ρBf

∗(g, avx).

�

We can now classify actions on the trivial bundle OX which make it into an
equivariant line bundle.

Proposition 6.8. Let K be a semiring or a monoid. Let X be a scheme over K
and G be a group scheme over K acting on X. Then there is a one-to-one corre-
spondence between G-actions on OX which make OX an equivariant line bundle
and principal morphisms u : G ×K X → GL1. Moreover, this correspondence is a
group isomorphism, where the first set is viewed as a group under tensor product,
and the second is a group under pointwise multiplication.

Remark 6.9. Proposition 4.3 shows that the tensor product of equivariant line
bundles is an equivariant line bundle, that OX with the trivial action is the tensor
product identity and that the dual line bundle is the inverse. Since OX ⊗ OX =
OX = Hom(OX ,OX), the set of equivariant line bundles whose underlying line
bundle is OX is closed under tensor products and duals and hence forms a group.

Proof of proposition 6.8. We have already proved that equivariant structures on
OX uniquely give rise to principal morphisms u (lemmas 6.4 and 6.5), and that
every such u arises in this way (lemma 6.7).

Next we prove the uniqueness. Consider two actions α, β : G ×K OX → OX

which give rise to the same morphism u. Any element of L(A) can be written a1x
for some a ∈ A and x ∈ X(A). Under both actions, linearity and the definition of
u give

g(a1x) = ag(1x) = auA(g, x)1x,

and hence so both actions are the same. In other words, such u arises from a unique
equivariant structure on OX .

Finally, we show this bijective correspondence is a homomorphism. Let L,L′ be
equivariant line bundles with basis sections v and w, respectively. Let u, u′, φ :
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G×K X → GL1 correspond to equivariant structures of L,L′, L⊗L′, respectively.
Then by definition of φ and of the action on the tensor product,

φA(g, x)(vgx ⊗ wgx) = g(vx ⊗ wx) = gvx ⊗ gwx. (21)

On the other hand, by definition of u and u
′
,

uA(g, x)u
′
A(g, x)(vgx ⊗ wgx) = gvx ⊗ gwx. (22)

So φ = uu′, which implies the correspondence in question is a group homomorphism.
�

The relationship in lemma 6.1, between units of the global sections of G ×K X
and morphisms G×K X → GL1, lets us phrase proposition 6.8 entirely in terms of
units.

Let K be a semiring or a monoid and X be a scheme over K and G be a group
scheme over K acting on X. Let m, a, p : G×K G×K X → X be the maps induced
by the multiplication on G, the action of G on X, and the projection which drops
the first factor, respectively, and let i : X → G ×K X be the map which inserts
the identity element in the first component. Let µ : GL1 ×K GL1 → GL1 denote
multiplication.

Corollary 6.10. With the same notation as above, there is a group isomorphism
between the group of equivariant line bundle structures on OX and the group of
units u ∈ Γ(G×K X,O×

G×KX
) satisfying i∗u = 1 and µ ◦ (a∗u, p∗u) = m∗(u).

In the case of toric varieties, we can use the above result to relate the tropical
setting to the F1-setting as follows. We will interchangeably use the terms F1-
schemes and monoid schemes. By a group scheme over F1 we mean a group object
in the category of F1-schemes. In the following, for monoid schemes X,Y we simply
write X ×Y instead of X ×F1

Y . Likewise, for semiring schemes XR and YR over a
semiring R, we write XR × YR for XR ×R YR.

Lemma 6.11. Let X be a toric F1-scheme and G be a group scheme over F1. Let
K be an idempotent semifield. Then, we have

Γ(GK ×XK ,O×
GK×XK

) = Γ(G×X,K×)× Γ(G×X,O×
G×X). (23)

Proof. We first consider the case when X and G are affine. Let X = SpecM and
G = SpecN . Then,

G×X = Spec(N ⊗F1 M), GK = SpecK[N ], XK = SpecK[M ],

and since tensor products preserve colimits

GK ×XK = (G×X)K .

Hence, we have

Γ(GK ×XK ,O×
GK×XK

) = (K[N ⊗F1 M ])×.
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It follows from [17, Proposition 3.4] that

(K[N ⊗F1
M ])× = K× × (N ⊗F1

M)×.

On the other hand, one can easily check that

Γ(G×X,K×) = K×, Γ(G×X,O×
G×X) = (N ⊗F1

M)×,

showing the claimed identity for affine G and X.
For general G and X, we cover GK × XK by affine open cover UK obtained

by affine open subsets of U = {Ui × Vj}, where Ui (resp. Vj) are affine open
subsets of G (resp. X ). Note that this is possible by [17, Lemma 3.1]. Then, as in
[17, Theorem 3.8], by using the affine case, one can obtain isomorphisms of Čech
cochains

Ck(UK ,O×
GK×XK

) = Ck(U ,K× ×O×
G×X),

showing the desired identity (23). �

Proposition 6.12. Let X be a toric F1-scheme and G be a group scheme over F1.
Let K be an idempotent semifield. Suppose G×X is connected. Then there is an
isomorphism between the group of G-equivariant line bundle structures on OX and
the group of GK-equivariant line bundle structures on OXK

.

Proof. Let u ∈ Γ(GK × XK ,O×
GK×XK

). We write u = (u1, u2) under the isomor-
phism in lemma 6.11. Under a connectedness assumption, u1 is constant, and hence
the identity

u(gh, x) = u(g, hx)u(h, x)

together with the fact that K× is a group (so that x2 = x implies x =1) implies
that u1 is 1. It follows that u actually lies in Γ(G ×X,O×

G×X). Now, the desired
group isomorphism follows from corollary 6.10. �

In the classical setting, a result of Rosenlicht states if X and Y are irreducible
varieties, then every morphism X × Y → GL1 is the product of a morphism X →
GL1 and a morphism Y → GL1 as shown in [7, Proposition 4.1.3] (Rosenlicht only
proved a corollary (which is pretty different from what we are referencing)). The
expository text [7] explains how this is used to study equivariant line bundles in
the classical setting. We will prove an analogue for F1-schemes.

Lemma 6.13. Let X,Y be F1-schemes that are either affine or irreducible. Let
u ∈ Γ(X × Y,O×

X×Y ). Then there exists unique α ∈ Γ(X,O×
X) and β ∈ Γ(Y,O×

Y )
such that u = αβ.

Proof. We consider first the case where X = SpecA and Y = SpecB are affine.
As a monoid, A ⊗F1 B is obtained from the (unpointed) monoid A×B by identi-
fying (0, b) and (a, 0) with (0, 0) for all a ∈ A and b ∈ B; this is an F1-algebra
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with zero element (0, 0). The quotient map π : A × B → (A ⊗F1
B) gives rise

to a map

θ : A× ×B× = (A×B)× → (A⊗F1
B)×.

We claim that θ is bijective. In fact, θ is injective because the only fibre of the
quotient map π containing more than one element is A × {0} ∪ {0} × B, and this
fibre contains no units. Surjectivity is similar: if x ∈ (A ⊗F1

B)× then we can let
y be the unique element of π−1(x) and z be the unique element of π−1(x−1) and
observe that π(yz) = 1. Since the fibre over 1 contains a single element, yz =1 so
x = π(y) for some unit y and x ∈ imθ. Thus, θ is bijective. Since we can view
π : A× B → (A⊗F1

B) as the multiplication map, θ is the multiplication map on
units, which establishes the result in the affine case.

Next, suppose Y is such that the result holds for any pair (Z,Y ) with Z affine.
Suppose X is irreducible. Let U ⊆ X be open affine. Then by the affine case, for u ∈
Γ(X × Y,O×

X×Y ), there exists unique elements αU ∈ Γ(U,O×
X) and βU ∈ Γ(Y,O×

Y )
such that

u |U×Y= αUβU .

Let U1, U2 be open affine subsets of X ; they are nondisjoint by irreducibility. Let
V ⊆ U1 ∩ U2 be a nonempty open affine subset. Then restricting the factorization
of u |U1×Y to V ×Y gives

u |V×Y= αU1
|V βU1

.

By applying the argument to U 2 and using uniqueness of αV , βV , we obtain

αU1
|V= αV = αU2

|V and βU1
= βV = βU2

.

Since βU does depend on U, we denote it β. Fix the open cover {Ui} of X containing
all open affine sets. We have seen that the sections αUi

∈ Γ(Ui,O×
X) agree on

overlaps, so give rise to α ∈ Γ(X,O×
X).

We now must show α and β are the unique elements of Γ(X,O×
X) and Γ(Y,O×

Y )
such that u = αβ. For any open affine U ⊆ X, we have

u |U×Y= αUβU = α |U β = (αβ) |U×Y

. Since the sets U ×Y where U ranges over open affine sets forms a cover of X ×Y,
u = αβ. If u = α′β′ then restricting to U ×Y gives α′ |U β′ = u |U×Y= α |U β. By
the uniqueness of αU , βU , we obtain β′ = β and α′ |U= α |U . Since α and α′ agree
on all open affine subsets, they are equal.

This establishes the result when X is irreducible and Y is such that the result
holds for all pairs (Z,Y ) with Z affine. Since we have proven the affine case, any
affine F1-scheme Y satisfies this hypothesis; hence the result holds when X is
irreducible and Y is affine or by symmetry when X is affine and Y is irreducible.
This implies any irreducible scheme Y satisfies the above hypothesis, so the result
holds when X and Y are irreducible. �

In the F1-setting, the above can be used to relate equivariant line bundles to char-
acters of G. We remark that using proposition 6.12, we can also apply proposition
6.15 to the semiring case. We will need the following lemma.
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Lemma 6.14. Let X be a scheme over F1 and f : X → GL1 be a morphism of
F1-schemes. If fA(x) does not depend on x ∈ X(A) for any A, then fA(x) = 1 for
all x ∈ X(A).

Proof. The constancy of fA implies it factors through the terminal map (as a set
map)

tA : X(A) → (SpecF1)(A),

yielding a map f̂A : (SpecF1)(A) → GL1(A).

We claim that f̂ is natural in A. In fact, let ψ : SpecB → SpecA, and ψ∗
i be the

induced maps on X, SpecF1, and GL1. Consider the following diagram:

The whole square and the left square commute by the definition of t and f, i.e.,

ψ∗
3 f̂AtA = f̂BtBψ

∗
1and ψ

∗
2tA = tBψ

∗
1 .

Hence we have

ψ∗
3 f̂AtA = f̂Bψ

∗
2tA.

But, since tA is surjective, we have

ψ∗
3 f̂A = f̂Bψ

∗
2 ,

which is precisely the naturality for f̂ . Hence, we obtain a morphism f̂ : SpecF1 →
GL1. But F×

1 has only the single element 1, so f̂A is the constant map 1, and hence
so is f. �

Proposition 6.15. Let G be a group scheme over F1 and X be an F1-scheme.
Suppose G and X are either affine or irreducible. Then there is a group isomorphism
between

{G-actions on the trivial line bundle OX which make it an equivariant line bundle}

and

{homomorphisms χ : G→ GL1.}

This correspondence is characterized by the property that G acts on the element 1x
of the fibre over X(A) via g1x = χA(g)1gx.

Proof. By proposition 6.8, it suffices to construct a group isomorphism between
homomorphisms G → GL1 and principal maps u : G×X → GL1 (as in definition
6.6). In other words,

uA(gh, x) = uA(g, hx)uA(h, x),

for all F1-algebra A and all (g, h, x) ∈ G(A)×G(A)×X(A).
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First, let u be a principal map. By lemmas 6.1 and 6.13, there exist unique
α : G → GL1 and β : X → GL1 such that uA(g, x) = αA(g)βA(x) for all (g, x) ∈
G(A)×X(A). Then, we have

αA(gh)βA(x) = uA(gh, x) = uA(g, hx)uA(h, x) = αA(g)βA(hx)αA(h)βA(x). (24)

Since βA(x) ∈ GL1(A) is invertible, we cancel it from both sides of (24) to obtain

αA(gh) = αA(g)αA(h)βA(hx). (25)

Since the image of αA consists of units, this equation gives

βA(hx) =
αA(gh)

αA(g)αA(h)
. (26)

By taking h =1 in the above, we obtain βA(x) = αA(1)
−1, so βA is constant. By

lemma 6.14, βA(x) = 1 for all x. Then, from (25), we have

αA(gh) = αA(g)αA(h)β = αA(g)αA(h),

showing that α is a homomorphism.
Thus we have constructed a map from principal maps u to the set of homomor-

phisms α : G → GL1. Moreover, the equation uA(g, x) = αA(g)βA(x) = αA(g)
implies u is determined by α, i.e., the map is injective.

For surjectivity, fix a homomorphism α : G → GL1 and define u by uA(g, x) =
αA(g), i.e., u is the composition α ◦ π : G×X → G→ GL1. Then, we have

uA(gh, x) = αA(gh) = αA(g)αA(h) = uA(g, hx)uA(h, x),

which establishes surjectivity.
Because the correspondence we are considering is given by uA(g, x) = αA(g), we

show it is a homomorphism as follows. Let α, α′ correspond to u, u′. Then, we have

(uu′)A(g, x) = uA(g, x)u
′
A(g, x) = αA(g)α

′
A(g),

and hence uu ʹ corresponds to αα′.
Finally, by proposition 6.8, the equivariant line bundle is characterized by the

property that G acts on 1x via g1x = uA(g, x)1gx = α(g)1gx. �

Note that two different equivariant structures on the line bundle OX may be
isomorphic under an automorphism of the line bundle. Our next goal is to determine
which equivariant structures are isomorphic.

A first step towards this goal is the following easy lemma.

Lemma 6.16. Let K be either a semiring or a monoid. Let X be a scheme over
K and G be a group scheme over K acting on X. Fix a morphism f : X → GL1.
Let u be the ratio of the two morphisms G × X → GL1 obtained by composing f
with either the action or the projection G×X → X. In other words, the functor of
points of u is given by

uA(g, x) = fA(gx)/fA(x).

Then u is principal, i.e., u satisfies uA(gh, x) = uA(h, x)uA(g, hx).
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In what follows, let K be either a semiring or a monoid, X be a scheme over K
and G be a group scheme over K acting on X unless otherwise stated.

Lemma 6.17. Let L and Lʹ be two equivariant line bundles whose underlying line
bundle is OX and let u, u′ : G ×X → GL1 be the associated principal maps from
the construction of lemma 6.8. Then L ' L′ as equivariant line bundles if and only
if there is some f : X → GL1 such that

uA(g, x)fA(gx) = u′A(g, x)fA(x) (27)

for all K-algebra A and all (g, x) ∈ G(A)×X(A).

Proof. Let v be a basis element of L and w be a basis element of Lʹ (for concreteness,
we take both to be 1 ∈ Γ(X,O×

X), but giving them individual names makes the
argument more clear). Given an isomorphism φ : L→ L′, we obtain a basis element
φ(v) of Lʹ. Such a basis element must have the form φ(v) = αw for some α ∈
Γ(X,O×

X). Let f : X → GL1 corresponds to α under lemma 6.1. For x ∈ X(A),
the naturality part of lemma 6.1 tells us that fA(x) = f ◦x corresponds to x∗(α) ∈
GL1(A). So, we identify x∗(α) with fA(x).

G(A) acts on the fibre L′
x via g(wx) = u′A(g, x)wgx. So, we have

g(φ(vx)) = g(fA(x)wx) = fA(x)g(wx) = fA(x)u
′
A(g, x)wgx.

On the other hand, since φ is an isomorphism of equivariant bundles,

g(φ(vx)) = φ(gvx) = φ(uA(g, x)vgx) = uA(g, x)fA(gx)wgx.

Combining the two equations yields Eq. (27) as desired.
Conversely, suppose we are given f : X → GL1 satisfying (27). f corresponds to

a unit f ∈ Γ(X,O×
X), and we obtain a basis vector η ∈ Γ(X,L′) by multiplying w

with f. For each K -algebra A and each x ∈ X(A), define φx : Lx → L′
x via

φx(avx) = aηx = afA(x)wx

for all a ∈ A. Combining the maps on different fibres gives rise to maps

φA : L(A) → L′(A)

compatible with the projections of each bundle onto X (A). It remains to show φ
is an isomorphism of equivariant line bundles. We have seen compatibility with
projections, and the fact that φx is a linear isomorphism for each point x is clear.

Next we check that φ is equivariant. By the same calculations as the
other direction of this proof, g(φA(vx)) = fA(x)u

′
A(g, x)wgx and φA(gvx) =

uA(g, x)fA(gx)wgx. Combining with (27), we see that g ◦ φx and φgx ◦ g agree
on a basis vector, and hence are equal, which implies g ◦ φA = φA ◦ g.

Finally, we show that φ is natural in A. To show that the action is natural in A,
let h : SpecB → SpecA, and h∗ be the induced maps. We need to show that the
following diagram commutes:
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Let avx ∈ Lx ⊆ L(A). Then we have

h∗φA(avx) = h∗(afA(x)wx) = h∗(afA(x))h
∗(wx) = h∗(a)h∗(fA(x))wh∗x

and

φBh
∗(avx) = φB(h

∗(a)h∗(vx)) = φB(h
∗(a)(vh∗x)) = h∗(a)fB(h

∗x)wh∗x.

From the naturality of f, we have h∗fA = fBh
∗, it follows that we have

h∗φA(avx) = φBh
∗(avx),

showing that φ is natural in A. �

Proposition 6.18. Let X be a toric F1-scheme and G be a group scheme over F1.
Let K be an idempotent semifield. Suppose G×X is connected. Then there is a one-
to-one correspondence between isomorphism classes of GK-equivariant line bundles
on XK which are trivial as line bundles and isomorphism classes of G-equivariant
line bundles on X which are trivial as line bundles.

Proof. From proposition 6.12, we have a one-to-one correspondence between G-
equivariant line bundle structures on OX and GK-equivariant line bundle structures
on OXK

. Now, with the same notation as in lemma 6.17, two equivariant structures
for the trivial line bundle on X are isomorphic over XT if and only if the ratio of
the corresponding units has the form f(gx)/f(x). But a constant factor in front
of f does not affect this expression, so we may assume that f has no component
in K×, so it also yields an isomorphism of equivariant line bundles over X from
proposition 6.12. �

7. Gluing equivariant vector bundles

It would be useful to be able to restrict equivariant vector bundles on X to open
sets U ⊆ X. This is not always possible: if U is not closed under the G-action, it
should not inherit a G-action, so the notion of an equivariant vector bundle on U
does not even make sense. The next lemma shows that this is the only obstruction.

Let R be a semiring or monoid. Let G be a group scheme over R. Let X be a
scheme over R equipped with a G-action. Let E be a G-equivariant vector bundle
on X. Let U ⊆ X be an open set with the property that the action G×R X → X
restricts to an action G ×R U → U and let i : U → X be the inclusion. Let EU

be the vector bundle obtained by restricting E to U. As in the previous section,
for schemes X and Y over R, we will simply write X ×Y instead of X ×R Y when
there is no possible confusion.

Lemma 7.1. With the same notation as above, the following hold.
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(1) For any R-algebra A and any u ∈ U(A), the fibre of EU over u is equal to
the fibre of E over i(u).

(2) There is a unique equivariant vector bundle structure on EU such that for
each (g, u) ∈ G(A)×U(A), the induced map on fibres g : (EU )u → (EU )gu is
the same as the map g : Ei(u) → Egi(u) induced by the equivariant structure
on E.

Proof. (1) EU is the pullback of E along i. The fibre (EU )u is the module of global
sections of the pullback u∗EU = u∗i∗E. Since i(u) = i◦u, (EU )u equals the module
of global sections of i(u)∗E, and this module is Ei(u).

(2) The action map ρUA : G(A) × EU (A) → EU (A) is determined by how G(A)
acts on each fibre, and this is specified in the statement of the lemma. To show this
is an action, we must show that for any v ∈ (EU )u and g, h ∈ G(A), (gh)v = g(hv).
But this is true because by construction G acts on the fibre in the same way if we
view it as Ei(u), and the map ρA : G(A)× E(A) → E(A) really is a group action.
The action map induces linear isomorphisms on fibres, since fibrewise it looks the
same as the action on E.

It remains to check naturality. Let f : SpecB → SpecA, and f∗ be the induced
maps. We need to show that the following diagram commutes:

But, under the inclusion i, we may view EU (A) as a subset of E (A) and ρUA =
ρA |U . In particular, the naturality directly follows from that of ρ. �

The following proposition shows that under suitable conditions, we may obtain
equivariant vector bundles from gluing equivariant vector bundles on an open cover.

Let R be a semiring or monoid. Let G be a group scheme over R. Let G be a
group scheme over R, let X be a scheme over R equipped with a G-action, and
let E be a vector bundle over X. Let {Ui} be an open cover of X and suppose
each open set Ui is G-invariant in the sense that the action on X restricts to maps
G× Ui → Ui.

Proposition 7.2. With the same notation as above, there is a one-to-one cor-
respondence between equivariant structures on E and collections of equivariant
structures on each EUi with the property that restricting the action from EUi or
EUj to EUij yield the same morphism G×EUij → EUij , where EUij := EUi ∩EUj .

Proof. We first prove the semiring case. We will use the geometric vector bundle
perspective to view E as a scheme equipped with a map π : E → X. From the
definition, one can easily see that EU is an open subscheme of E for a G-invariant
open subset U.

If E is an equivariant vector bundle, we can give a geometric description of the
action on the bundle EU from lemma 7.1. It is clear that the functor of points for the
action on EU is exactly the same as the functor of points from the mapG×EU → EU
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whose composition with the open immersion EU → E is the restriction G×EU → E
of the action because both are given by g, v 7→ β(g, v), where β is the action on E,
and where we identify U (A) with a subset of X (A). In other words, the equivariant
vector bundle structure on EU is the same one that is obtained by restriction of
the action viewed as a morphism of schemes.

Suppose we are given actions βi : G × EUi
→ EUi

which agree on overlaps and
which make each EUi

into an equivariant vector bundle. Then we may glue them
to obtain a map β : G × E → E. Since each βi is compatible with the action
αUi

: G×Ui → Ui, β must be compatible with α : G×X → X. Consider the maps

η, θ : G×G× E → E

given on functors of points by

η(g, h, v) = β(gh, v)and θ(g, h, v) = β(g, β(h, v)).

Consider maps ηi, θi defined similarly using the actions on EUi . Since βi is an action,
we obtain ηi = θi. Clearly if v ∈ EUi

(A) and g, h ∈ G(A) then η(g, h, v) = ηi(g, h, v)
and similarly for θ, and hence η = θ, showing that β is a group action.

Consider the map + : E × E → E which is simply vector addition on the level
of functors of points. From proposition 3.20, + is a morphism of schemes when we
view E as a geometric vector bundle. To show that β is additive on fibres we need
to show for g ∈ G(A), x ∈ X(A) and v, w ∈ Ex that β(g, v+w) = β(g, v)+β(g, w).
We may rephrase this as

β ◦ (idG ×+) = + ◦ (β × β) ◦ ϕ ◦ (∆× idE×E),

where ∆ : G→ G×G is the diagonal and ϕ : G×G×E×E → G×E×G×E switches
the second and the third coordinates. In view of the assumptions on the open cover,
it suffices to check that the additivity holds on each EUi

and by retracing our steps,
this is equivalent to βi being additive on fibres. Since EUi

is an equivariant vector
bundle, β is additive on fibres. We may now show linearity on fibres by using the
scalar multiplication map · : A1

X × E → E, which is also a morphism of schemes
when we view E as a geometric vector bundle from proposition 3.20.

Finally, βA : G(A) × X(A) → X(A) is natural because it is a morphism of
schemes. Thus E is an equivariant vector bundle.

Conversely, suppose E is an equivariant vector bundle. Then we have seen that
restricting the actionG×E → E to EUi gives an equivariant vector bundle structure
on EUi . Because these maps βi : G × EUi → EUi are all given by restricting a
morphism of schemes, they must agree on overlaps.

Now, one can easily see that this gives one-to-one correspondence.
For the monoid case, one may modify proposition 3.20 just for the scalar mul-

tiplication map since in this case one does not have an additive map. With this
modification, the same proof goes through in this case. �

We now show that in the toric case, all equivariant vector bundles are the sum
of equivariant line bundles. This reduces the problem of classifying toric vector
bundles to the line bundle case.
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Definition 7.3. Let X be a scheme over a semiring R and G be a group scheme
over R acting on X. Let E1 and E2 be G-equivariant line bundles. The direct sum
E = E1 ⊕ E2 is a G-equivariant vector bundle whose underlying vector bundle is
E1 ⊕ E2 (viewed E1 and E2 as vector bundles) and the action is given as follows:

β : G× E → E, (g, v1 + v2) = β1(g, v1) + β2(g, v2),

where βi : G× Ei → Ei is the action of Ei for i = 1, 2. In other words, the action
of E is componentwise.

Theorem 7.4 7.4 Let X be a toric scheme over an idempotent semifield R, and let
G be the corresponding torus. Let E be a G-equivariant vector bundle on X. Then
there are unique (up to permutation) equivariant line bundles L1, . . . , Ln such that
E = L1 ⊕ . . .⊕ Ln (as G-equivariant vector bundles).

Proof. First we prove uniqueness; the toric assumption is not needed here. By
proposition 2.15, any direct sum decomposition of a vector bundle into line bundles
is unique. So, we just need to show the action βi on each Li is determined by the
action β on E. But by definition of a direct sum of equivariant line bundles, the
action on E = L1 ⊕ . . .⊕ Ln is given by

β(g, v1 + . . .+ vn) = β1(g, v1) + . . .+ βn(g, vn), vi ∈ Li ∀i = 1, . . . , n.

In particular, for vi ∈ Li, βi is given by βi(g, vi) = β(g, v).
As a vector bundle, again by proposition 2.15, E is a sum of line bundles. Call

these line bundles L1, . . . , Ln. We need to specify the group action on the Li.
For any cone σ, we let Eσ denote the restriction to Uσ and similarly for (Li)σ.

Observe that

Eσ = (L1)σ ⊕ . . .⊕ (Ln)σ

is the unique decomposition into line bundles (by proposition 2.15). Note Eσ is
trivial by proposition 2.19. Furthermore, corollary 5.18 implies that Eσ is a sum
of equivariant line bundles. By uniqueness of the decomposition into line bundles,
these equivariant line bundles must equal (L1)σ, . . . , (Ln)σ. In other words, we
have obtained equivariant line bundle structures on each (Li)σ such that Eσ =
(L1)σ ⊕ . . .⊕ (Ln)σ as equivariant vector bundles.

Given two cones σ1, σ2, we let Eσ1,σ2
= EUσ1

∩Uσ2
and similarly for the Li.

We obtain two equivariant vector bundle structures on each (Li)σ1,σ2 such that
Eσ1,σ2 = (L1)σ1,σ2 ⊕ . . . ⊕ (Ln)σ1,σ2 : we can either restrict the action on (Li)σ1

or restrict the action on (Li)σ2 . By the uniqueness part of the theorem (which
does not really require Uσ1 ∩ Uσ2 to be toric), these must give the same action on
(Li)σ1,σ2 . Thus the actions on the (Li)σ for different values of σ agree on overlaps.
By proposition 7.2, these glue together to give an action on Li.

There are now two actions on E which make E into an equivariant vector bundle.
The first is the action that comes from the assumption that E is a G-equivariant
vector bundle. The other, we can obtain from the actions on the Li, which allow
us to put an equivariant vector bundle structure on E = L1 ⊕ . . . ⊕ Ln. We had
Eσ = (L1)σ ⊕ . . .⊕ (Ln)σ as equivariant vector bundles. Hence the two actions on
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E agree when restricted to any Uσ. By proposition 7.2, this means the two actions
are equal. The result now follows. �

Next we relate equivariant vector bundles on toric varieties to equivariant vector
bundles on the torus. Conceptually this should use the density of the torus. But we
need something stronger because it is not clear that regular functions that agree
on a dense set should agree everywhere. In the classical case {x : f(x) = g(x)} is
closed as it is the set of prime ideals containing 〈f − g〉, but in the tropical case we
cannot use subtraction.

Let X be a toric scheme over a semiring R. As in the case over Z, one has
X =

⋃
Uσi

, with each cone σi in a fan, and U{0} ⊆ X is the torus.

Lemma 7.5. Let X be a toric scheme over a semiring R. Let f, g ∈ Γ(X,OX).
Suppose f= g on U{0}. Then f= g.

Proof. As a preliminary, observe that an injection of sets S → T induces an injec-
tion RS → RT of free modules. In particular, an injection of monoids M1 → M2

induces a monomorphism R[M1] → R[M2].
First consider the case where X is an affine scheme, corresponding to a cone σ,

i.e., X = SpecR[Λ∩σ∨] for some lattice Λ and some cone σ. The torus is SpecR[Λ].
Because the inclusion Λ ∩ σ∨ into Λ is injective, the map φ : R[Λ ∩ σ∨] → R[Λ]
is a monomorphism. Consider two regular functions f, g on X which agree on the
torus. Algebraically, this means φ(f) = φ(g), and injectivity gives f = g as desired.

Now we consider the general case. Assume f = g on the torus. For each cone σ in
the fan corresponding to X, we may apply this result to Uσ to obtain f |Uσ

= g |Uσ
.

Since the Uσ form an open cover, the result follows. �

We may view regular functions as sections of the trivial line bundle. In fact, the
above result can be generalized to any vector bundle.

Lemma 7.6. Let X be a toric scheme over an idempotent semifield R. Let E be a
vector bundle on X. Suppose s, t ∈ Γ(X,E) are such that s |U{0}= t |U{0} . Then
s= t.

Proof. We have already proven in lemma 7.5 the statement when E = OX .
Next we consider the case where E is a line bundle. For any cone σ, EUσ

is trivial
by proposition 2.19. Since s |Uσ

and t |Uσ
agree on the torus, they are equal by the

case of the trivial line bundle. Since this holds for all σ and since E is a sheaf, we
have s = t.

Finally, we use proposition 2.15 to write E = L1 ⊕ . . .⊕Ln. We may decompose
s, t into sections si, ti ∈ Γ(X,Li) for each i. Since s and t agree on the torus, the
same is true for si and ti. By the line bundle case si = ti for all i, and hence s = t.
�

Lemma 7.7. Let X be a scheme over a semiring R and let E be a vector bundle.
Let sA : X(A) → E(A) be a natural transformation such that sA(x) ∈ Ex for all
x, where A are R-algebras. Then there exists a unique element š ∈ Γ(X,E) which
induces sA.
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Proof. Let π : E → X be a projection map, where we view E as a geometric vector
bundle. Let s : X → E be a morphism of schemes corresponding to the given
natural transformation. Since sA(x) ∈ Ex, we have that π ◦ s = idX , and hence s
is a section of π. The claim follows from the fact that the sections of π bijectively
correspond to the elements of Γ(X,E). �

We may use the above results to show that the G-action on an equivariant vector
bundle is determined by the action on the part of the vector bundle lying over the
torus.

Proposition 7.8. Let X be a toric scheme over an idempotent semifield R Let
G = U{0} ⊆ X be the torus. Let E be a vector bundle on X. Let β1, β2 : G×E → E
be actions which make E into an equivariant vector bundle. If β1 and β2 induce
the same action on EU{0} , then β1 = β2.

Proof. Suppose first that E is a trivial vector bundle. Fix a global section v of E.
We consider the pullback α∗E along the action α : G×X → X.

Let A be an R-algebra. Because fibres are constructed via pullback along a point
(g, x) ∈ G(A)×X(A), the fibres of α∗E are given by

(α∗E)g,x = Egx. (28)

Note that (β1)A(g, vx), (β2)A(g, vx) ∈ Egx. Define

(si)A(g, x) := (βi)A(g, vx), (29)

where we use the identification (28). Hence, we have (si)A : G(A) × X(A) →
α∗E(A). Apply lemma 7.7 to obtain global sections š1, š2 ∈ Γ(G × X,α∗E). By
assumption, when x is a point of the torus, we have

(β1)A(g, vx) = (β2)A(g, vx).

Hence the functors of points of š1, š2 agree on the torus G ×G. By lemma 7.6,
š1 = š2, and hence they induce the same element of each fibre, i.e., (β1)A(g, vx) =
(β2)A(g, vx) for all x. In particular, letting v range over a basis v1, . . . , vn of global
sections of the trivial bundle E, for any x ∈ X(A) there is a basis (v1)x, . . . , (vn)x ∈
Ex such that (β1)A(g, (vi)x) = (β2)A(g, (vi)x). By linearity, this implies (β1)A =
(β2)A, and hence β1 = β2.

Now consider the general case. For any cone σ, EUσ is trivial by proposition 2.19.
The actions on EUσ induced by β1 and β2 agree on the torus, so are equal. Since
this is true for all σ, the result follows from proposition 7.2. �

Another technique for relating equivariant line bundles over toric schemes to line
bundles over the torus is the following result.

Lemma 7.9. Let XR be an affine toric scheme over an idempotent semifield R and
let GR = U{0} be the torus. Let L be a line bundle on XR. Then restriction of the
action yields a one-to-one correspondence between G-actions on L which make it
an equivariant line bundle and G-actions on LU{0} which make it an equivariant
line bundle.
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Proof. By proposition 2.19, L is trivial. By proposition 6.12, it suffices to prove
this in the F1-case (i.e., monoid schemes). Let G be the torus over F1 and X be
the affine F1-scheme associated with XR, i.e., XR = X ⊗F1

R. Since G and X are
affine, we may apply proposition 6.15 to see that G-actions which make L into
an equivariant line bundle are in bijective correspondence with homomorphisms
χ : G→ GL1 and this correspondence is such that

g1x = χA(g)1gx for (g, x) ∈ G(A)×X(A).

Applying these propositions again, such homomorphisms are in bijective corre-
spondence with G-actions on LU{0} which make it into a line bundle, and this
correspondence is such that

g1x = χA(g)1gx, for (g, x) ∈ G(A)× U{0}(A).

Composing the above bijections gives the desired bijective correspondence. It
remains to show that the bijection we obtained is given by restricting the equiv-
ariant line bundle structure on L to one on LU{0} . Let (g, x) ∈ G(A) × U{0}(A) ⊆
G(A) ×X(A). Then in L, g acts on 1x via g1x = χ(g)1gx, where χ : G → GL1 is
the homomorphism corresponding to the action on L. Thus the same is true for the
restriction of this action to LU{0} . But the bijection above is given by the property
that the action on LU{0} satisfies g1x = χ(g)1gx, so it agrees with the restriction
map. �

Proposition 7.10. Let XR be a toric scheme over an idempotent semifield R and
let GR be the torus. Let L be a line bundle over XR. Then there is some action that
makes L into an equivariant line bundle.

Proof. This is true if L is trivial by example 4.2 and in particular we may make LU{0}

into an equivariant line bundle. For each cone σ, we obtain an equivariant vector
bundle structure on LUσ

via lemma 7.9. We must check agreement on overlaps. By
[12, Section 1.4], the intersection of two such open sets is given by Uσ ∩Uτ = Uσ∩τ .

We obtain two equivariant line bundle structures on LUσ∩τ
by restricting the

actions on LUσ
and LUτ

, respectively. By construction, both agree when restricted
further to the torus U{0}. Thus we may apply lemma 7.9 to Uσ∩τ to see that both
actions on LUσ∩τ

are equal. This implies agreement on overlaps, so the result follows
from proposition 7.2 �

We next turn to the problem of classifying equivariant line bundles which are
trivial as line bundles. By proposition 6.15, all such equivariant line bundles may
be constructed from homomorphisms G→ GL1, where G is the torus over F1. The
following lemma classifies such homomorphisms.

Lemma 7.11. Let Λ ⊆ Rn be a lattice (viewed as a group and written multiplica-
tively). Define the F1-scheme G as G = Spec(Λ ∪ {0}). The functor of points of
any morphism χ : G→ GL1 satisfies χA(xy) = χA(x)χA(y). Moreover, there is an
isomorphism between the group of such morphisms and Λ.

Proof. The fact there is an isomorphism between Λ and the group of morphisms
G→ GL1 follows from lemma 6.1.
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Let χ : G → GL1 be a morphism, and let u ∈ Λ be the corresponding unit.
On the level of F1-algebras χ corresponds to the map Z ∪ {0} → Λ ∪ {0} sending
the generator of Z to u. Let µ, π1, π2 : G × G → G be the multiplication and the
two projections respectively. The corresponding maps of F1-algebras Λ ∪ {0} →
(Λ ∪ {0}) ⊗F1

(Λ ∪ {0}) are given respectively by µ∗(x) = x ⊗ x, π∗
1(x) = x ⊗ 1,

and π∗
2(x) = 1⊗x. Hence the same formulas are true for the induced maps on unit

groups of F1-algebras. Thus we have

µ∗(u) = u⊗ u = (u⊗ 1)(1⊗ u) = π∗
1(u)π

∗
2(u).

Reinterpreting this in terms of maps G×G→ GL1 via lemma 6.1, we see that χ◦µ
is given as the product of χ ◦ π1 and χ ◦ π2. Rewriting this in terms of functors of
points yields χA(xy) = χA(x)χA(y). �

While each element of Λ yields an action on the trivial line bundle on a toric
scheme over F1, two such actions might result in isomorphic equivariant line
bundles.

Lemma 7.12. Let X = Uσ be a toric F1-scheme corresponding to a cone σ. Let Λ
be the dual lattice and G be the corresponding torus. Let x ∈ Λ and let χ : G →
GL1 be the corresponding map under lemma 7.11. Then there is some morphism
f : X → GL1 whose functor of points satisfies

χA(g) = fA(gx)/fA(x) (30)

if and only if x ∈ (Λ ∩ σ∨)⊥.

Proof. Let α : G×X → X be the action and let πi : G×X → X be the projections.
The condition

fA(x)χA(g) = fA(gx)

can be rewritten as follows:

(f ◦ π2)(χ ◦ π1) = f ◦ α. (31)

Letting x ∈ Λ and u ∈ Γ(Uσ,O×
Uσ

) = (Λ∩σ∨)⊥ correspond to χ and f, respectively,
under lemma 6.1, the condition (31) may be rewritten as

π∗
2uπ

∗
1x = α∗u. (32)

The map of F1-algebras

(Λ ∪ {0})⊗F1 (Λ ∩ σ∨ ∪ {0}) → (Λ ∩ σ∨ ∪ {0})

corresponding to the action G×X → X is given by u 7→ u⊗u, while the projections
correspond to algebra homomorphisms given by tensoring with 1. Thus the same
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is true for the induced maps on unit groups (with tensor replaced by Cartesian
product), so the above equation may be rewritten as

(1, u)(x, 1) = (u, u)

or simply x = u. So the existence of f : X → GL1 satisfying (30) is equivalent to
the existence of u ∈ (Λ ∩ σ∨)⊥ satisfying x = u. �

Let X be a toric F1-scheme with fan ∆. Let Λ be the dual lattice and G be the
corresponding torus. Let x ∈ Λ and let χ : G → GL1 be the corresponding map
under lemma 7.11. Let PicG(X) be the set of isomorphism classes of equivariant
line bundles on X. From proposition 4.3, PicG(X) is a group. Moreover, lemma
7.11 shows that there is a group homomorphism ψ : Λ → PicG(X). The following
proposition characterizes the kernel of ψ.

Proposition 7.13. With the same notation as above, the equivariant line bundle
corresponding to χ under proposition 6.15 is isomorphic to the one corresponding
to the trivial homomorphism if and only if x ∈

⋂
σ∈∆

(Λ ∩ σ∨)⊥.

Proof. By lemma 6.17, the equivariant line bundle corresponding to χ is isomorphic
to the one corresponding to the trivial character if and only if there is some f :
X → GL1 whose functor of points satisfies (30) for all (g, x) ∈ G(A) ×X(A). By
gluing morphisms of schemes, this is equivalent to the existence of a collection of
morphisms fσ : Uσ → GL1 which satisfy (30) and agree on overlaps.

First we claim that the condition of agreement on overlaps in the above corre-
spondence is true. In fact, since Uσ ∩ Uτ = Uσ∩τ is itself toric, in order to check
agreement on overlaps, it will suffice by lemma 7.5 and lemma 6.1 to check that
all the maps fσ have the same restriction to the torus. Letting 1 be the identity
element of the torus, (30) gives

χA(g) = (fσ)A(g)/(fσ)A(1). (33)

The only natural transformation (which is an inclusion) i : SpecF1 → GL1 is the
constant map 1 (this follows from lemma 6.1). For any F1-algebra A, iA is a map
from the one point set Spec(F1)(A) = {p} to the group GL1(A). One can easily
observe that the image of the only point p is the identity element 1 of GL1(A). We
can write

(fσ)A(1) = (fσ ◦ i)A(p),

and fσ ◦ i is a morphism from SpecF1 to GL1. Hence (fσ)A(1) = 1 and χA(g) =
(fσ)A(g) for all g ∈ G(A) ⊆ Uσ(A), which establishes the claim.

It remains to classify χ such that there exists a collection of morphisms fσ : Uσ →
GL1 satisfying (30). Since we may construct each fσ independently, it follows from
lemma 7.12 that such χ correspond to x ∈

⋂
σ∈∆

(Λ ∩ σ∨)⊥. �
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Theorem 7.14 7.14 Let R be an idempotent semifield. Let X be a toric scheme
over R. Let G be the corresponding torus, Λ be the dual lattice and ∆ be the fan
corresponding to X. Then there is an exact sequence of abelian groups

0 →
⋂
σ∈∆

(Λ ∩ σ∨)⊥ → Λ → PicG(X) → Pic(X) → 0.

Proof. Proposition 7.10 tells us that the forgetful morphism φ : PicG(X) → Pic(X)
is surjective. The combination of proposition 6.15 and lemma 7.11 gives us a group
homomorphism ψ : Λ → PicG(X) whose image is ker(φ). The kernel of ψ is
characterized by proposition 7.13. �

8. Klyachko theorem for toric schemes over an idempotent semifield

In this section, we prove a version of Klyachko theorem classifying toric vector
bundles on a toric scheme over an idempotent semifield K. By a toric line bundle,
we mean a torus-equivariant line bundle.

We begin with a gluing construction, which constructs a toric line bundle by
gluing together toric line bundles on open subsets corresponding to cones.

Let X be a toric scheme over F1 corresponding to a fan ∆ with dual lattice Λ.
Let S be a set of families uσ ∈ Λ indexed by cones σ ∈ ∆ such that for each such
inclusion τ ⊆ σ of cones, the following holds

u−1
σ uτ ∈ (Λ ∩ τ∨)⊥.

For cones τ ⊆ σ, we will let φστ = u−1
σ uτ ∈ (Λ ∩ τ∨)⊥.

Observe that (Λ ∩ τ∨)⊥ = Γ(Uτ ,O×
Uτ

), so φστ can be thought of as a morphism

φστ : Uτ → GL1 by lemma 6.1. Similarly, we will identify uσ ∈ Λ = Γ(G,O×
G) with

a morphism uσ : G → GL1, where G = Spec(Λ ∪ {0}) denotes the torus. Lemma
7.11 ensures this morphism is a homomorphism.

Lemma 8.1. With the same notation as above, for any F1-algebra A, g ∈ G(A),
x ∈ Uτ (A), one has the following

(φστ )A(gx) = (φστ )A(g)(φστ )A(x), (34)

where we view φστ : Uτ → GL1.

Proof. For the notational convenience, we let γ := φστ . Let T = 〈t〉 so that GL1 =
SpecT , and M = Γ(Uτ ,O×

Uτ
).

In the affine case, lemma 6.1 states that any γ ∈ M× corresponds to the map
γ : T →M sending t to γ. With g : Λ → A and x :M → A, we have

γA(g) = g ◦ γ : T → A, γA(x) = x ◦ γ : T → A,

where for γA(g) we use the fact thatM = (Λ∩τ∨)⊥ ⊆ Λ. Since the group structure
on GL1 is given by ∆ : T → T ⊗ T , which sends t to t⊗ t, we have
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(γA(g)γA(x))(t) = µ ◦ ((g ◦ γ)⊗ (x ◦ γ)) ◦∆(t) = µ ◦ ((g ◦ γ)(t)⊗ (x ◦ γ)(t))
= g(γ)x(γ),

where µ : A⊗A→ A is multiplication of A and we identified γ(t) with the element
γ ∈M .

Next, let α : G ⊗ Uτ → Uτ be the action of torus. We let α∗ : M → Λ ⊗M be
the corresponding map sending m to m⊗m. Then, we have

(γA(gx))(t) = µ ◦ (g ⊗ x) ◦ α∗ ◦ γ(t) = µ ◦ (g ⊗ x) ◦ α∗ ◦ γ(t)
= µ(g ⊗ x)(γ ⊗ γ) = g(γ)x(γ).

This proves the desired equality (34). �

Lemma 8.2. With the same notation as above, there is a surjection from S to the
set of isomorphism classes of toric line bundles on X.

The image of {uσ} under this map is the unique toric line bundle L which has a
family of sections sσ ∈ Γ(Uσ, L) such that

sσ = uσu
−1
τ sτ ∀σ, τ

and

g(sσ)x = uσ(g)(sσ)gx ∀g ∈ G(A), x ∈ X(A),

and such that sσ is a basis over Uσ.

Proof. For each cone σ with our fixed uσ ∈ S, applying proposition 6.15 gives rise
to an equivariant line bundle Lσ (whose underlying line bundle is trivial) on Uσ
together with a basis sσ of sections for the equivariant line bundle.

We construct a line bundle L on X by gluing the Lσ together by identifying
sσ |Uτ

with φστsτ for each inclusion of cones τ ⊆ σ. Lσ is then the restriction of
L to Uσ. To be precise, for each Uσi

and Uσj
and δ = σi ∩ σj , we consider the

isomorphism

ψij : Lσi
|δ→ Lσj

|δ

given by

(sσi) |Uδ
7→ u−1

σi
uσj (sσj ) |Uδ

.

We have to check the cocycle condition ψik = ψjk◦ψij . But, on Uτ = Uσi∩Uσj∩Uσk
,

ψik sends (sσi) |Uτ to u−1
σi
uσk

(sσk
) |Uτ , whereas we have

ψjk(ψij((sσi) |Uτ ) = ψjk(u
−1
σi
uσj (sσj ) |Uτ ) = u−1

σi
uσju

−1
σj
uσk

(sσk
) |Uτ ,

showing the cocycle condition.
Now, we show that L is a G-equivariant line bundle. Let A be an F1-algebra. We

view uσ as a morphism G→ GL1. For the notational convenience, we simply write
uσ instead of the following: uσ(A) : G(A) → GL1(A). Let g ∈ G(A) and x ∈ Uτ (A).
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By proposition 6.15, we know that the G-action on Lσ satisfies the following

g(sσ)x = uσ(g)(sσ)gx. (35)

On the other hand, the G-action on Lτ satisfies

g(φστ (x)(sτ )x) = φστ (x)uτ (g)(sτ )gx

= (φστ (x)uτ (g)φστ (gx)
−1)(φστ (gx)(sτ )gx). (36)

We claim

uσ(g) = φστ (x)uτ (g)φστ (gx)
−1. (37)

In fact, from lemma 8.1, we have φστ (gx) = φστ (g)φστ (x). Hence, (37) becomes
the following

uσ(g) = φστ (x)uτ (g)φστ (g)
−1φστ (x)

−1 ⇐⇒ φστ (g)uσ(g) = uτ (g),

which is clear from the definition of φστ .
Thus the G-action on Lτ satisfies

g(sσ |Uτ
)x = g(φστ (x)(sτ )x) = (φστ (x)uτ (g)φστ (gx)

−1)(sσ |Uτ
)gx

= uσ(g)(sσ |Uτ
)gx (38)

and clearly the action on (Lσ)Uτ
satisfies g(sσ |Uτ

)x = uσ(g)(sσ |Uτ
)gx as well.

Thus the actions agree.
By proposition 7.2, the actions on Lσ glue together to make L into an equivariant

vector bundle. For surjectivity, we observe that any equivariant vector bundle L can
be obtained by gluing together the vector bundles LUσ

and the actions on them.
The remaining claims are clear from examining the above construction. �

We are now in a position to give a classification of toric line bundles, which does
not require knowledge of Pic(X).

Remark 8.3. One can easily observe that (Λ ∩ σ∨)⊥ = Λ ∩ σ⊥. In particular,
proposition 8.4 and corollary 8.7 are precisely the same as toric line bundles on
affine toric varieties over a field.

Proposition 8.4. Let X be a toric scheme over F1 with fan ∆ and dual lattice
Λ. Then isomorphism classes of toric line bundles on X are in one-to-one corre-
spondence with families of elements [uσ] ∈ Λ/(Λ ∩ σ∨)⊥ indexed by cones, which
satisfy the compatibility condition that for τ ⊆ σ, [uτ ] is the image of [uσ] under
the quotient map πστ : Λ/(Λ ∩ σ∨)⊥ → Λ/(Λ ∩ τ∨)⊥.

Proof. Given a family of [uσ] as above, we pick representatives and observe they
satisfy the compatibility condition of lemma 8.2. So there is a unique toric line
bundle L which locally possesses a basis consisting of a section sσ ∈ Γ(Uσ, L) with
the action given by

g(sσ)x = uσ(g)(sσ)gx

under the functor of points and with sσ = u−1
σ uτsτ . The desired bijective

correspondence f will send {[uσ]}σ∈∆} to L.
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First we check this is well-defined. Choose representatives uσ of [uσ] and let L
and sσ be as above. Let vσ ∈ [uσ0

] be another representative. Then, we have

uσv
−1
σ ∈ (Λ ∩ σ∨)⊥ = Γ(Uσ,O×

X).

Thus it makes sense to define sections tσ = (uσv
−1
σ )sσ. We claim that for each σ,

one has the following:

g(tσ)x = vσ(g)(tσ)gx. (39)

In fact, with ϕσ = uσv
−1
σ , we have

(tσ)x = ϕσ(x)(sσ)x.

Hence, we have

g(tσ)x = g(ϕσ(x)(sσ)x) = ϕσ(x)uσ(g)(sσ)gx = ϕσ(g
−1)ϕσ(gx)uσ(g)(sσ)gx

= uσ(g
−1)v−1

σ (g−1)uσ(g)ϕσ(gx)(sσ)gx = vσ(g)ϕσ(gx)(sσ)gx = vσ(g)(tσ)gx.

In addition,

tσ = (uσv
−1
σ )sσ = (uσv

−1
σ )u−1

σ uτsτ = v−1
σ uτsτ = v−1

σ vτ tτ . (40)

Thus L with the sections tσ satisfies the defining property of the line bundle L
that is the image of the family of [vσ] under f. Since the families of [uσ] and [vσ]
map the same place under f, f is well-defined.

Surjectivity follows from the surjectivity in lemma 8.2.
Let L,L′ correspond to {[uσ]} and {[vσ]} respectively. To prove injectivity of f,

we suppose L ∼= L′. Then LUσ
∼= L′

Uσ
for all cones σ. Any line bundle on Uσ is

trivial, and LUσ
has a basis sσ satisfying g(sσ)x = uσ(g)(sσ)gx. Thus it corresponds

under proposition 6.15 and lemma 7.11 to uσ ∈ Λ. The same holds for L′
Uσ

and

vσ. By proposition 7.13, uσ ∼= v−1
σ mod (Λ ∩ σ∨)⊥. So [uσ] = [vσ], establishing

injectivity. �

Lemma 8.5. Let ∆ be a fan and Λ be the dual lattice. For each cone σ ∈ ∆, let
uσ ∈ Λ. The following are equivalent:

(1) For each inclusion of cones τ ⊆ σ, uσ is congruent to uτ modulo (Λ∩ τ∨)⊥.
(2) For each inclusion of cones τ ⊆ σ and each x ∈ τ , 〈uσ, x〉 = 〈uτ , x〉.
(3) For each cone σ ∈ ∆ and each ray ρ ∈ ∆ with ρ ⊆ σ, 〈uσ, x〉 = 〈uρ, x〉 for

all x ∈ ρ.

Proof. For the proof, we will use the additive notation for Λ.
Suppose uσ is congruent to uτ modulo (Λ∩τ∨)⊥. Then uσ−uτ ∈ τ∨ as is uτ−uσ.

So for any x ∈ τ , we have both 〈uσ − uτ , x〉 ≥ 0 and the reverse inequality. Thus
〈uσ, x〉 = 〈uτ , x〉.

Conversely suppose 〈uσ, x〉 = 〈uτ , x〉 for all x ∈ τ . Then 〈uσ − uτ , x〉 = 0, so
(uσ − uτ ), (uτ − uσ) ∈ τ∨. Since both also belong to Λ, uσ − uτ ∈ (Λ ∩ τ∨)⊥.

The second condition trivially implies the third, by taking τ to be a ray and x to
be the spanning vector of the ray. Conversely suppose that for each cone σ and each
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ray ρ ⊆ σ, we have 〈uσ, x〉 = 〈uρ, x〉 for all x ∈ ρ. Let τ ∈ ∆ be such that τ ⊆ σ.
For any ray ρ contained in τ and x ∈ ρ, we have 〈uσ, x〉 = 〈uρ, x〉 = 〈uτ , x〉. Thus
uσ and uτ have the same inner product with any vector in the span of such rays.
But each cone in ∆ is the span of the rays contained within it, so 〈uσ, x〉 = 〈uτ , x〉
for all x ∈ τ . �

We can recast the classification of line bundles in a form that looks more like
Klyachko’s classification.

Corollary 8.6. Let X be a toric scheme over F1 with fan ∆ and dual lattice Λ.
Then isomorphism classes of toric line bundles on X are in one-to-one correspon-
dence with families of elements [uσ] ∈ Λ/(Λ∩σ∨)⊥ indexed by cones, which satisfy
the compatibility condition that for every ray ρ ∈ ∆ that is a face of σ, 〈uσ, x〉
depends only on ρ and not on σ for all x ∈ ρ.

Corollary 8.7. Let XR be a toric scheme over an idempotent semifield R with
fan ∆ and dual lattice Λ. Then isomorphism classes of toric line bundles on XR are
in one-to-one correspondence with families of elements [uσ] ∈ Λ/(Λ∩σ∨)⊥ indexed
by cones, which satisfy the compatibility condition that for every ray ρ ∈ ∆ that is
a face of σ, 〈uσ, x〉 depends only on ρ and not on σ for all x ∈ ρ.

Proof. One may check that lemma 8.2 and proposition 8.4 are still valid with XR =
X ⊗R, where X is the toric scheme over F1 associated with ∆. �

Definition 8.8. A Klyachko family is a family of elements [uσ] ∈ Λ/(Λ ∩ σ∨)⊥

indexed by cones, which satisfy the compatibility condition that for every ray ρ ∈ ∆
that is a face of σ, 〈uσ, x〉 for x ∈ ρ depends only on ρ and not on σ.

Remark 8.9. A Kylachko family carries the same data as torus-invariant Cartier
divisors in toric varieties.

Since equivariant vector bundles decompose uniquely as direct sums of equivari-
ant line bundles, we obtain a classification of equivariant vector bundles.

Corollary 8.10. There is a one-to-one correspondence between isomorphism
classes of equivariant vector bundles and Sn-orbits of n-tuples of Klyachko families.

It remains to recast this in a way that looks more like Klyachko’s theorem.

Definition 8.11. A filtration Ei ⊆M on a module M over a semiring R indexed
by Z is called exhaustive if ⋂

i∈Z
Ei = 0and

⋃
i∈Z

Ei =M.

Definition 8.12. Fix fan ∆ and dual lattice Λ. An n-dimensional ∆-Klyachko
space over an idempotent semifield K is a free K-module E of rank n with col-
lections of decreasing exhaustive filtrations {Eρ(n)} indexed by the rays of ∆,
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satisfying the following compatibility condition: for each cone σ ∈ ∆, there exists a
decomposition E =

⊕
[u]∈Λ/(Λ∩σ∨)⊥

E[u] such that

Eρ(i) =
∑

〈[u],vρ〉≥i

E[u],

for every ρ � σ and i ∈ Z, where vρ is the primitive generator of ρ.

Let E and F be ∆-Klyachko spaces over an idempotent semifield K. By a mor-
phism from E to F, we mean a K -linear map φ : E → F such that φ(Eρ(i)) ⊆ F ρ(i)
for every ray ρ ∈ ∆ and i ∈ Z.

Lemma 8.13. Let E and F be ∆-Klyachko spaces over an idempotent semifield K.
Let φ : E → F be an isomorphism of ∆-Klyachko spaces. Let [u] ∈ Λ/(Λ ∩ σ∨)⊥

for some cone σ. Then φ(E[u]) = F[u].

Proof. Since F =
⊕

[v]∈Λ/(Λ∩σ∨)⊥
F[v], and since direct summands of free modules

over K are free, there is a basis of F such that every element lies in F[v] for some
v (the basis is a disjoint union of the bases of the summands). Since the basis is
unique up to rescaling and permutation, this is in fact true for any basis.

Fix [u] ∈ Λ/(Λ∩ σ∨)⊥. Similar to the above observation E[u] is free with a basis
that is a subset of some basis of E. Let e ∈ E[u] be an element of such a basis.
Then φ(e) belongs to some basis of F so φ(e) ∈ F[v] for some v. It remains to show
[v] = [u].

For any ray ρ that is a face of σ, the minimum i such that e ∈ Eρ(i) is 〈u, vρ〉,
where vρ is the primitive generator of ρ. Because φ is an isomorphism, this must
be identical to the minimum i such that φ(e) ∈ F ρ(i), which is 〈v, vρ〉. Thus we
have 〈u, vρ〉 = 〈v, vρ〉, i.e 〈u − v, vρ〉 = 0. For any w ∈ σ, w lies in the subspace
spanned by such rays, so 〈u − v, w〉 = 0. In particular, because u − v and v − u
have nonnegative inner product with any w ∈ σ, and since they are elements of Λ,
u − v ∈ (Λ ∩ σ∨)⊥. So [u] = [v] and hence φ(E[u]) ⊆ F[u]. The reverse inclusion
follows by applying this result to φ−1. �

Lemma 8.14. There is a one-to-one correspondence between isomorphism classes
of n-dimensional ∆-Klyachko spaces over an idempotent semifield K and Sn-orbits
of n-tuples of Klyachko families.

Proof. Suppose we are given an n-tuple of Klyachko families, the k -th of which is
denoted [uσ,k] ∈ Λ/(Λ ∩ σ∨)⊥. For each ray ρ, we let

iρ,k = 〈[uσ,k], vρ〉,

where σ is some cone containing ρ as a face and vρ is the primitive generator of
ρ. By the compatibility condition in the definition of Klyachko families, the choice
of σ is irrelevant. Now let E = Kn. Let Eρ(i) be spanned by the standard basis
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vectors ek such that i ≥ iρ,k. One can easily see that this is an exhaustive filtration.
For a cone σ, and an element [u] ∈ Λ/(Λ ∩ σ∨)⊥, let

E[u] = span{ek | [u] = [uσ,k]}.

Clearly for each k, this latter condition is true for exactly one [u], so the E[u] yield
a partition of the standard basis and hence

E =
⊕

[u]∈Λ/(Λ∩σ∨)⊥

E[u]. (41)

For the compatibility condition, recall that

Eρ(i) = span{ek | i ≥ 〈[uσ,k], vρ〉}. (42)

This basis is the disjoint union over [u] ∈ Λ/(Λ ∩ σ∨)⊥ satisfying i ≥ 〈[u], vρ〉 of
the set of ek such that [uσ,k] = [u] or equivalently such that ek is an element of the
basis of E[u]. Since the basis of E

ρ(i) is the disjoint union of the bases of such E[u],
Eρ(i) is the direct sum of such modules, i.e.,

Eρ(i) =
∑

〈[u],vρ〉≥i

E[u]. (43)

If we started with a different n-tuple of Klyachko families that belongs to this Sn-
orbit, they are related by some permutation p ∈ Sn, and it is clear that ek 7→ ep(k)
defines an isomorphism between the resulting ∆-Klyachko spaces. So we have a
well-defined map from Sn-orbits of n-tuples of Klyachko families to isomorphism
classes of ∆-Klyachko spaces.

For surjectivity, let E be an n-dimensional ∆-Klyachko space. Write E as a direct
sum of 1-dimensional-free modules E = L1 ⊕ . . . ⊕ Ln. Each Li is spanned by a
single basis vector of E, and by lemma 2.12, any direct summand of E is spanned
by a subset of the basis. So in the direct sum decomposition E =

⊕
[u]∈Λ/(Λ∩σ∨)⊥

E[u]

corresponding to a cone σ, exactly one E[u] contains Lk. Call this [uσ,k].
We claim that {[uσ,k]}σ∈∆, k=1,...,n is an n-tuple of Klyachko family which

maps to E under the above construction. In fact, one can easily see that
{[uσ,k]}σ∈∆, k=1,...,n corresponds to E from the above construction, and hence we
only have to check that 〈[uσ,k], vρ〉 for a ray ρ � σ only depends on ρ (not σ). To
see this, observe that since Eρ(i) is a direct sum of isotypical components as in
(43), we have the following:

Lk ⊆ Eρ(i) ⇐⇒ E[uσ,k] ⊆ Eρ(i) ⇐⇒ 〈[uσ,k], vρ〉 ≥ i. (44)

Since the condition Lk ⊆ Eρ(i) does not depend on a choice of σ, the condition
〈[uσ,k], vρ〉 ≥ i does not depend on a choice of σ either. It follows that the minimum
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i for which (44) holds, which is 〈[uσ,k], vρ〉, does not depend on σ. In particular, we
have

〈[uσ,k], vρ〉 = 〈[uρ,k], vρ〉.

This shows the compatibility condition, and hence {[uσ,k]}σ∈∆, k=1,...,n is an n-
tuple of Klyachko family which maps to E under the above construction.

Now, we prove injectivity. Suppose that we have two n-tuples of Klyachko families
{[uσ]} and {[vσ]} which give rise to isomorphic ∆-Klyachko spaces E and F. In other
words, we have an isomorphism ϕ : E = Kn → F = Kn of free K -modules such
that

ϕ(Eρ(i)) = F ρ(i) (45)

for every ray ρ ∈ ∆ and i ∈ Z. From proposition 2.13, ϕ is obtained by permutation
of standard basis vectors and their rescaling. Since permuting the standard basis
vectors results in another representative in an Sn-orbit of n-tuple of Klyachko
families, we may assume that ϕ is obtained by rescaling the standard basis vectors.

Fix a cone σ ∈ ∆. Let {[uσ,k]}k=1,...,n and {[vσ,k]}k=1,...,n be the elements in the
Klyachko families indexed by the cone σ. Now, observe that [uσ,k] is [u] in (41) if
E[u] contains ek, which is true if and only if F[u] contains akek for some ak ∈ K∗.
This in turn holds if and only if ek ∈ F [u], which is equivalent to [u] = [vσ,k]. This
proves injectivity. �

We thus have proved the following version of tropical Klyachko theorem from
corollary 8.6 and lemma 8.14.

Theorem 8.15 Let K be an idempotent semifield. Let XK be the toric scheme
over K associated with a fain ∆. The set of isomorphism classes of toric vector
bundles on XK is in one-to-one correspondence with the set of isomorphism classes
of ∆-Klyachko spaces over K.

Remark 8.16. A ∆-Klyachko space over T naturally determines a tropical toric
reflexive sheaf as in [22, Definition 1.1 (Definition 5.1)] as follows: Let E = Tn be
a ∆-Klyachko space of rank n, for some fan ∆. E gives rise to a simple valuated
matroid M with ground set {1, 2, . . . , n}. For each ray ρ ∈ ∆, we have the collec-
tion {Eρ(i)}i∈Z. Now, from (42), we can confirm that each Eρ(i) is a flat of the
underlying matroid M; note that M is the free matroid of rank n on {1, . . . , n}.
The conditions that

(1) Eρ(j) ≤ Eρ(i) if j > i ;
(2) Eρ(i) = ∅ for i� 0;
(3) Eρ(i) = {1, . . . , n} for i� 0;

are clear from the definition (with the order reversed). Now the definition of
tropical toric vector bundle [22, Definition 5.4] is a tropical toric reflexive sheaf
together with a compatibility condition which is precisely (42).
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Appendix A. Toric varieties, toric monoid schemes, and toric schemes
over T

We recall how toric varieties, toric monoid schemes and toric schemes over T spaces
are related and what the ‘torus action’ is in the latter cases. We proceed to define
toric vector bundles in each case. This section is largely expository.
We start with the connection between toric monoid schemes and toric varieties.

This correspondence has been observed in [19], [11], and [8]. The following theorem
is well known (For instance, see [8, Example 5.8]).
We note that each toric monoid scheme has a unique generic point [8, Lemma

2.3 and Theorem 4.4].

Theorem A.1 A.1 Let X be a toric monoid scheme and k a field. Then Xk is a
toric variety.

Remark A.2. Theorem A.1 also holds when Xk is reducible. Then the group G ∼=
Zr × F for a finite Abelian group F. We denote by G = SpecG the torus. It is
easy to see that G = SpecG is dense in X and note that G(k) ∼= (k×)r × F . Since
the torus Gk is dense in Xk, it meets every irreducible component of Xk, and F
permutes the irreducible components.

In order to understand the torus action G on X, it is enough to do so in the
case when X is affine, i.e., X = SpecA for a toric monoid A. Let k be a field
and let Xk = Spec k[A] and Gk = Spec k[G]. Here Xk is a toric variety with torus
Gk. By definition, the action of the (dense) torus on itself extends to an action on
Xk. The following proposition explains the relation between the points of the toric
variety Xk and the monoid scheme X and the actions of the corresponding tori on
them.

Proposition A.3. There is an injection from the points of the toric monoid
scheme X = SpecA to the points of the affine toric variety Xk = Spec k[A]. The
coaction of the torus on k[A] gives rise to a coaction on A, which is constant on the
points of X. In particular, there is a one-to-one correspondence between the points
of X and the orbits of the torus action.

Proof. Consider the map φ : A → k[A] sending a monomial g ∈ A to g ∈ k[A].
Let p ⊂ A be a prime ideal, then let q be the monomial ideal generated by φ(p).
The ideal q is prime. To see this argue by contradiction, assume g, h 6∈ q but
gh ∈ q. Write g and h as sums of monomials g =

∑k
i=1mi and h =

∑s
i=1 ni, then

gh =
∑
i,jminj . Since q is a monomial ideal, if f ∈ q is a polynomial, then each

monomial of f are in q. Thus every monomial minj of gh is in q. Since p is prime,
it follows that either mi or nj are in p and q for every pair i, j. Thus we conclude
that q is prime.
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Thus the map φ is injective and sends prime ideals in A to monomial prime
ideals in k[A] which are in turn in one-to-one correspondence with orbits of the
torus action on the toric variety. The second part follows for the well-known lemma
below. �

This lemma is a summary of the construction from [9, Section 5].

Lemma A.4. Let k be a field, then the ideal a ⊆ k[A] corresponds to a torus
invariant irreducible subvariety if and only if a is a monomial ideal.

Now we look closer at toric schemes as defined in definition 2.5. Toric schemes
arise from toric monoid schemes which in turn correspond to fans as shown in [8].
In particular, if ∆ is a fan, then a toric scheme over a semiring R is covered by
open sets isomorphic to SpecR[Sσ], where σ are the cones of ∆ and Sσ := σ∨ ∩Λ.

Theorem A.5 A.5 Let X be a toric monoid scheme. Via base change to an idem-
potent semifield K we obtain a toric scheme XK over K with dense torus GK whose
action on itself extends to an action on XK.

Proof. Let X be toric monoid scheme, and let U = SpecM be an affine open subset
of X, where M is a cancellative monoid. Each affine open set of X has a unique
generic point η. Let G be Frac(M) = OSpecM,η. Since G is also the stalk OX,η,
G does not depend on the choice of U. Since M is cancellative, the quotient map
ϕ :M → G is injective and induces the maps ϕK : K[M ] → K[G] and

K[M ] → K[G]⊗K[M ], a 7→ ϕK(a)⊗ a. (A.1)

The last map induces an action of the algebraic group GK = Spec K[G] on
Spec K[M ] which extends to an action of GK on XK (as this is compatible with
the restriction maps of the structure sheaf). To see that that GK is dense in UK,
and hence it is dense in XK we refer to the next lemma. �

Lemma A.6. Let K be an idempotent semifield. Let X be a toric monoid scheme
with a dense torus G. Then GK is dense in XK.

Proof. We may assume that X is affine. Since X is a toric monoid scheme, X is
irreducible. In particular, XK is irreducible (See the proof of proposition 2.20 in
[18]). On the other hand, since G is dense in X, G contains a generic point of X. It
follows that GK contains a generic point of XK, and hence is dense in XK. �

When toric schemes are defined over the tropical semifield T, the relationship
between toric monoid schemes and toric schemes over T in the affine case is depicted
in the following diagrams in a view of tropicalization.
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The vertical map on the right is the scheme-theoretic tropicalization of [13].
Whether we are working over a field k or the tropical semifield T, the torus action
of Gk or GT arises from the monoid scheme as explained in [8, Construction 4.2 and
Example 5.8] and the proof of theorem A.5. Therefore, the action of the torus com-
mutes with tropicalization on affine open sets. But since localization also commutes
with tropicalization (we are localizing at a monomial) the affine pictures glue over
the fan. In particular, we have the following commutative diagram.

Appendix B. Sn as a functor

In this section, we prove that Sn can be seen as a group scheme defined over N.
Let n be a positive integer and Sn be the symmetric group on n letters. We define

the following semiring Rn:

Rn =
N[eσ]σ∈Sn〈

{eσ · eτ = 0}σ 6=τ ,
∑
σ∈Sn

eσ = 1
〉 . (A.1)

In other words, Rn is generated by elements {eσ}σ∈Sn
with relations eσ · eτ = 0 for

σ 6= τ and
∑
σ∈Sn

eσ = 1. Note that with the relations given, one has that

e2σ = eσ, ∀σ ∈ Sn.

We define a comultiplication on Rn as follows:

∆(eσ) =
∑
τ

eτ ⊗ eτ−1σ. (A.2)

The counit is defined as follows:

ε : Rn → N, eσ 7→

1 if σ = id,

0 otherwise.
(A.3)

The antipode is defined as follows:

S : Rn → Rn, eσ 7→ eσ−1 . (A.4)

Lemma A.1. With the same notation as above, for any semiring A, Rn(A) :=
Hom(Rn, A) is equipped with a natural group structure.

Proof. For f, g ∈ Rn(A), the group multiplication is defined as follows:

f ∗ g := µ ◦ (f ⊗ g)⊗∆, (A.5)

where µ : Rn ⊗N Rn → Rn is the multiplication.
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The inverse is given as follows:

f−1 = f ◦ S. (A.6)

The unit is given as follows:

e = i ◦ ε, i : N → A. (A.7)

Now, we check the group axioms. To show that e is the identity, we only have to
check that e ∗ f(eσ) = f ∗ e(eσ) = f(eσ) as follows:

f ∗ e(eσ) = µ ◦ (f ⊗ e) ◦∆(eσ) = µ ◦ (f ⊗ e)(
∑
τ

eτ ⊗ eτ−1σ)

=
∑
τ

f(eτ )e(eτ−1σ) = f(eσ)e(1) = f(eσ).

Likewise,

e ∗ f(eσ) = µ ◦ (e⊗ f) ◦∆(eσ) =
∑
τ

e(eτ )f(eτ−1σ) = e(1)f(eσ) = f(eσ).

For the existence of inverses, we check f ∗ f−1 = e as follows:

f ∗ f−1(eσ) =
∑
τ

f(eτ )f(S(eτ−1σ)) =
∑
τ

f(eτ )f(eσ−1τ )

=
∑
τ

f(eτeσ−1τ ) =


∑
τ f(eτ ) = 1 if σ = id,

0 otherwise.

In particular, f ∗ f−1(eσ) = e(eσ). Similarly, f−1 ∗ f = e.
Finally, we check the associativity: let f, g, h ∈ Rn(A),

((f ∗ g) ∗ h)(eσ) =
∑
τ

(f ∗ g)(eτ )h(eτ−1σ) =
∑
τ

∑
δ

f(eδ)g(eδ−1τ )h(eτ−1σ).

On the other hand:

(f ∗ (g ∗ h))(eσ) =
∑
α

f(eα)(g ∗ h)(eα−1σ) =
∑
α

∑
β

f(eα)g(eβ)h(eβ−1α−1σ),

and one can easily see that the two expressions are identical with δ = α and
τ = δβ. �
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Define an element fσ in Rn by

fσ :=
∑
τ 6=σ

eτ .

Observe that for each σ, (eσ, fσ) is an idempotent pair. For instance, if n =2, this
is equivalent to the notion of idempotent pairs as in definition 2.10, i.e.,

eσ + fσ = 1, eσfσ = 0.

In fact, one can observe that Rn is just a direct sum of copies of N, labelled by
elements of Sn.
Let Sn(A) be the group of functions from the set of connected components of

SpecA to Sn. Then, we have the following.

Lemma A.2. With the same notation as above, Hom(SpecA,SpecRn) = Rn(A) is
isomorphic to Sn as a group if SpecA is connected.

Proof. Let A be a semiring. A map from SpecA to SpecRn is equivalent to a
homomorphism ϕ : Rn → A, which is determined by the elements ϕ(eσ), for
eσ ∈ Rn. Since SpecA is connected, it follows from lemma 2.11 that A has only
trivial idempotent pairs. In other words, if (e, f ) is an idempotent pair of A, then
{e, f} = {0, 1}.
We claim that each ϕ ∈ Rn(A) determines a unique element σ ∈ Sn, giving us a

bijection between Rn(A) and Sn. In fact, for each σ ∈ Sn, the pair (ϕ(eσ), ϕ(fσ))
should be a trivial idempotent pair, i.e., ϕ(eσ) is either 0 or 1 for each σ ∈ Sn. It is
easy to see from the identity

∑
σ∈Sn

eσ = 1 that ϕ(eσ) = 1 for at least one choice
of σ, and from the identities eσ · eτ = 0 that ϕ(eσ) cannot be equal to 1 for two
choices of σ. So we have obtained an element of Sn, specifically the unique element
such that ϕ(eσ) = 1.
On the other hand, for a given element σ in Sn, note that there is a unique

homomorphism ϕ : Rn → A with ϕ(eσ) = 1 and ϕ(eτ ) = 0 for all other τ , since this
choice of ϕ(eτ ) satisfies the relation defining Rn. This gives us a desired bijection
between Rn(A) and Sn.
Finally, we need to check the comultiplication in (A.2) is right one to give a

canonical isomorphism Rn(A) ' Sn as groups with the above bijection. But, it is
a straightforward calculation that

µ ◦ (σ ⊗ τ) ◦∆(x) = (στ)(x),

where we abuse notation by identifying elements of Sn with elements of Rn(A) via
the bijection. Also, the unit e ∈ Rn(A), as in (A.7), maps to the unit in Sn via the
bijection. �

Showing that this representing object has the correct A-valued points for discon-
nected A should require an extra condition. Even in the ring-theoretic case, one may
need some finiteness condition in order to describe a scheme as the disjoint union of
connected components. For example, this is not necessarily true for the spectrum
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of an infinite Boolean algebra, which is totally disconnected, but in general is not
discrete.
Suppose SpecA has finitely many connected components but is not connected.

Then we can find a non-trivial idempotent pair (e, f ). Using the idempotence of e,
it is easy to see that eA is a semiring (with identity element e), and similarly for
fA. Note that any a in A can be written as ea + fa. Furthermore, if a = eb+fc then
multiplying by f gives fa = fc and similarly ea = eb, so the decomposition as a sum
of an element of eA and an element of fA is unique, so we get a bijection between
eA× fA and A. One can check that this is a homomorphism. So A is a product of
nontrivial semirings, and SpecA is the coproduct Spec eA

⊔
Spec fA. In particular,

if Sn denotes the functor represented by Rn, then we have

Sn(A) = Sn(eA)× Sn(fA).

As in the case for rings, the following holds.

Lemma A.3. With the same notation as above, SpecA is homeomorphic to
Spec eA

⊔
Spec fA.

In particular, Spec eA and Spec fA have fewer connected components. Hence, by
inductive hypothesis, elements of Sn(eA) correspond to maps from the connected
components of eA to the discrete set Sn, and similarly for fA. By the disjoint union
property, a map from the connected components of SpecA to Sn is the same as a
pair of maps from the connected components of Spec eA and Spec fA to Sn, and
such pairs correspond to elements of Sn(eA) × Sn(fA) = Sn(A). Hence we have
the following.

Proposition A.4. With the same notation as above, Rn(A) is isomorphic to Sn
if SpecA has finitely many connected components.

Remark A.5. In proposition 2.13, we prove that there exists an exact sequence
as follows, when A is zero-sum free and has only trivial idempotent pairs:

0 → (A×)n → GLn(A) → Sn → 0. (A.8)

From proposition A.4, if SpecA is the coproduct of connected components, one can
obtain an exact sequence (A.8) as a product of copies of the exact sequences in
the connected case. A scheme-theoretic version of the above exact sequence is in
[6, Theorem 15.4].

https://doi.org/10.1017/prm.2025.10045 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10045

	Equivariant vector bundles on toric schemes over semirings
	1. Introduction
	1.1. Summary of results
	1.2. Organization of the paper

	2. Preliminaries
	2.1. Toric vector bundles
	2.2. Monoids and monoid schemes
	2.3. Semirings, toric schemes over semirings, and vector bundles

	3. Equivalence between locally free sheaves and geometric vector bundles
	4. Equivariant vector bundles
	5. Splitting of G-equivariant vector bundles on irreducible schemes
	6. Classification of equivariant vector bundles
	7. Gluing equivariant vector bundles
	8. Klyachko theorem for toric schemes over an idempotent semifield
	Acknowledgements
	References
	Appendix A. Toric varieties, toric monoid schemes, and toric schemes over  T
	Appendix B. Sn as a functor


