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Abstract

We develop a new Monte Carlo variance reduction method to estimate the expectation
of two commonly encountered path-dependent functionals: first-passage times and
occupation times of sets. The method is based on a recursive approximation of the
first-passage time probability and expected occupation time of sets of a Lévy bridge
process that relies in part on a randomisation of the time parameter. We establish this
recursion for general Lévy processes and derive its explicit form for mixed-exponential
jump-diffusions, a dense subclass (in the sense of weak approximation) of Lévy processes,
which includes Brownian motion with drift, Kou’s double-exponential model, and hyper-
exponential jump-diffusion models. We present a highly accurate numerical realisation
and derive error estimates. By way of illustration the method is applied to the valuation
of range accruals and barrier options under exponential Lévy models and Bates-type
stochastic volatility models with exponential jumps. Compared with standard Monte
Carlo methods, we find that the method is significantly more efficient.
Keywords: Lévy bridge process; mixed-exponential jump-diffusion; first-passage time;
occupation time; Markov bridge sampling.
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1. Introduction

Motivation and brief outline. The Markov bridge sampling method for the estimation of the
expectation E[F (T, §)] of a given path-functional F of a Markov process & and the horizon
T >0 con81sts of averagmg conditional expectations F (&9+ - - -+ &1y) over M independent
copies (25,0 b S,N ), i = 1,..., M, of the values (&,,...,&,) that & takes on the grid
Ty ={0= t0<t1< -<tN—T}:

1 A e i
EIF(T,6)]~ o ) FEg). ... &), (L.D)
i=1

where F (195 - - - » &ty) denotes the regular version of E[F (T, &) | &,, ..., &y]. The name of
the method derives from the fact that, conditional on the values (&, ..., &, ), the stochastic
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processes {&, ¢ € [t;, ti+1]}, fori =0, ..., N —1, are equal in law to Markov bridge processes.
The estimator in (1.1) is unbiased and has strictly smaller variance than the standard Monte
Carlo estimator, as a consequence of the tower property of conditional expectation and the
conditional variance formula. The Markov bridge sampling method has the advantage that
it allows for refinements of the generated path to the required level of accuracy, and can
be combined with importance sampling. Such a bridge method is especially suited to the
evaluation of expectations of path-dependent functionals; see, for example, [11]. Since the
function F is in general not available in closed or analytically tractable form, the viability of
the Markov bridge method hinges on the ability to efficiently approximate the function F. In
this paper we derive an efficient approximation method for the conditional expectations F of
certain path-dependent functionals given in terms of occupation times of sets and first-passage
times, which is achieved by approximating the law of the bridge process by the law of the
process pinned down at an independent random time with small variance. Since the latter
law is analytically tractable when & is a mixed-exponential Lévy process, this allows us to
develop a Markov bridge Monte Carlo method for estimation of the corresponding expectation
E[F(T, &)]. To demonstrate the potential of the simulation method we extend the approach to
a two-dimensional Markovian setting, and deploy the method to numerically approximate the
values of two common path-dependent derivatives, barrier options, and range accruals, under a
version of the Bates model [6], which is an example of a stochastic volatility model with jumps
that is widely used in financial modelling; see [15] and [20] for background.

Literature overview. In the literature, see [19], [36], and [38], a number of bridge sampling
methods exist dealing with cases in which £ is a one-dimensional Lévy process. In [19]
an adaptive bridge sampling method was developed for real-valued Lévy processes based on
short-time asymptotics of stopped Lévy processes. By conditioning on the jump-skeleton
and exploiting the explicit form of the distribution of the maximum of a Brownian bridge, a
simulation method for pricing of barrier options under jump-diffusions was presented in [36],
and a refinement of this algorithm and application to the pricing of corporate bonds was given
in [38]. An exact simulation algorithm for generation of diffusion sample paths deploying
Brownian bridges was designed and analysed in [8]. Several alternative methods have been
developed for approximation of path-dependent functionals, often based on weak or strong
(pathwise) approximations of the solution of the stochastic differential equation (SDE). In the
setting of diffusions, a classical treatment of various strong and weak approximation schemes
was given in [28]. More recently, the problem of approximation of general path-dependent
functionals has also received attention in the case of Lévy-driven SDEs. In [16] a multi-level
Monte Carlo algorithm was developed for path-dependent functionals of Lévy driven SDEs that
are Lipschitz continuous in the supremum norm, and identified error bounds. This algorithm is
based on an approximation of the driving Lévy process by a Lévy jump-diffusion constructed
by replacing the small jumps by a Brownian motion, as was investigated in [2]. Adopting an
alternative approach that does not rely on the Brownian small-jump approximation, a multi-level
extension was presented in [18] of the Monte Carlo method developed in [30] for estimation
of Lipschitz functions of the final value and running maximum of a real-valued Lévy process.
Some functionals that are of interest in various applications are not included in the analysis
of [16] and [18], as these fail to satisfy the Lipschitz condition. The bridge method that we
present in this paper provides approximations in two such cases; namely, the distribution of the
running maximum and the expected occupation time of sets.

Approximation of bridge functionals. As mentioned above, a key step in the development of
the Markov bridge method is the availability of an efficient approximation of the conditional
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expectations F. Asin general the transition probabilities of the Markov processes considered
here are not explicitly available, the first step is to approximate the Markov process in question
by its continuous-time Euler-Maruyama (EM) scheme. The approximation of expectations of
path-dependent functionals under stochastic volatility models with jumps using the continuous-
time EM scheme is based on the harness property of a Markov process which states that, for
any two epochs #; and #; the collections of values of the Markov process at times in between
11 and 1, are independent of the values for ¢ outside this interval, conditional on the values of
the process at #; and ;. Noting that a Lévy process that is conditioned to start from position x
and to take the value y at the horizon T is equal in law to a Lévy bridge process from (0, x) to
(T, y), we are led to the problem of evaluating the expectations of path-dependent functionals
of Lévy bridges.

Randomisation method and recursions. The approximation method of the Lévy bridge
quantities that we present is based in part on a randomisation of the time-parameter. This
randomisation method was originally developed in [13] for the valuation of American put
options, and is known as Erlangisation in risk theory [1, Chapter IX.8]. The method has been
deployed in [3] for the efficient computation of ruin probabilities and in [4], [10], [26], [30], [32],
and [33] for the valuation of American-type and barrier options. This randomisation method
is based on the fact that, according to the law of large numbers, the average of independent
exponential random variables with mean ¢ converges to . An average of n such exponential
random variables is equal in distribution to a gamma(n, n/t) random variable Iy, »/;, which
has mean ¢ and variance t%/n. As observed in [17, Chapter VIL6), the approximation of the
value f(t) of a continuous bounded function f atz > 0 by the expectation E[ f (' n¢)] of f
evaluated at the random time I'; ,/; is asymptotically exact. Since I' »/; converges to a point
mass at ¢, it follows that the expectation E[ f (I'n, /)] converges to f(¢) as n tends to co. As
regards the rate of convergence, the form of the probability density function (PDF) of 'y, »/;
implies that, in the case that f is C? at ¢, the decay of the error E[ f (I'y.» /)] — f(@) is linear
in 1/n, in line with [3, Theorem 6], and that, moreover, E[ f (I', ;)] admits the following
expansion if the function f is C% at t:

k m
Elf(TCnn/)l = f(2) = Z bm(t)(’ll) +o(n™*) asn— oo,
m=1

for certain functions by, ..., by (given in Theorem 3.1 below). We apply this expansion to
functions f(¢) that are equal to the expectations of path-dependent functionals of Lévy bridges
living on the time-interval [0, t]. We note that E[ f(I's »/;)] is equal to the expectation of
the corresponding path-functional of the Lévy process X pinned down at an independent
random time that is equal in distribution to I ,/,;. For the path-dependent functionals that
we consider (namely, first-passage times and occupation times of sets) the corresponding
functions f are sufficiently smooth, so that the use of the Richardson extrapolation is fully
justified. Furthermore, it holds (see Theorem A.1) that the density functions D, (x, y) and
Qn(x, y),n €N, given by Dy 4(x, y)dy = P(Xr,, < x,Xr,, €dy) and Qu 4(x, y)dxdy =
E[ fo " 1yx, edr, Xr, 4 €dy} du} corresponding to a random horizon I, ,,/; satisfy the following
recursions for x, y e Randn € N:

X
Dpy1,4(x,y) = / Dy q(x —w,y —w)Di 4(x, w) dw, max{y, 0} < x, (1.2)

—0o0

Qupi1,q(x,y) = / [Q21,4(x, wnp g (y — w) + L g(x —w, y — wuy g(w)ldw, (1.3)
—00
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where uy, 4 is the PDF of the random variable X, ,- For the dense class of mixed-exponential
Lévy processes (see Definition 2.1 below) we present explicit solutions to these recursions. By
way of numerical illustration the method was implemented for a number of models in this class,
and the numerical outcomes are reported in Section 4, confirming the theoretically predicted
rates of decay of the error. We observed that the Richardson extrapolation based on a small
number (about ten) recursive steps already yields highly accurate approximations.

Markov bridge method. We combine subsequently these approximations with a continuous-
time EM scheme to estimate the conditional expectations F corresponding to the first-passage
times and occupation times of sets of a stochastic volatility process with jumps. To illustrate
the effectiveness of the method, we evaluated a barrier option and a range note under a Bates-
type model using the proposed Markov bridge Monte Carlo scheme, and report the results in
Section 5. The rates of decay of the error that we find numerically in the case of barrier options
are in line with the corresponding error estimates that were established in [21] for the case of
killed diffusion processes.

The remainder of this paper is organized as follows. In Section 2 explicit expressions are
derived for the first-passage probabilities and expected occupation times of a mixed-exponential
Lévy process. Section 3 is devoted to error estimates and numerical illustrations are presented
in Section 4. Section 5 contains a Markov bridge sampling method based on the randomisation
method and numerical illustrations. The proof of the recursions (1.2) and (1.3) is deferred to
Appendix A.

2. Maximum and occupation time of mixed-exponential Lévy models

In this section we show that the recursions in (1.2) and (1.3) admit explicit solutions in the
case that the Lévy process X is a mixed-exponential jump-diffusion, the definition of which we
recall next.

Definition 2.1. (i) A random variable has a mixed-exponential density if it has PDF f given by

mt m~
—at - — a7
fx) = ZP,*OI{FC % % 1(0,00) (x) + ZP,- aje %1 o000 (),
i=1 j=1
whereZZ':] p,:f =q% gt +qg = l,and —e, _ <--- < —oy <O<oelJr < .- <a;";+.
(ii) A Lévy process X = {X,,t € R} is a mixed-exponential jump-diffusion (MEJD) if it is of

the form
N;

X, =pt+oW+) Ui
i=1
where p is a real number and o is strictly positive, W is a standard Brownian motion, N is a
Poisson process with intensity A, and the jump sizes {U;, i € N} are independent and identically
distributed (i.i.d.) with mixed-exponential density. Here, the collections W = {W,,r € R},
N = {N;,t € R.}, and {(U;, i € N} are independent.

Remark 2.1. (i) Including in Definition 2.1 the additional restriction that the weights pki
are nonnegative, the Lévy process is a hyper-exponential jump-diffusion (HEJD). While HEJD
processes are dense in the class of all Lévy processes with a completely monotone Lévy density,
the collection of MEJDs is dense in the class of all Lévy processes, in the sense of weak
convergence of probability measures; see [9].
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(ii) The parameters { p,’f, k=1,..., mi} cannot be chosen arbitrarily but need to satisfy a
restriction to guarantee that f is a PDF. Necessary and sufficient conditions for f to be a PDF
are
l
pjt>0, Zpkak and Zpkotk >0 foralll=1,...,m%,

respectively. For a proof of these results and alternative conditions, see [S]. In Section 5 we
will impose the additional condition a?‘ > 1, which ensures that the expectation E[S,] of the
exponential Lévy process S; = exp{X,} is finite for any nonnegative ¢.

(iii) Samples can be drawn from the mixed-exponential distribution by using the acceptance-
rejection method (see [37]) and taking as the instrumental distribution a double-exponential
distribution. The double-exponential density multiplied by a constant will dominate the original
mixed-exponential density. In the next section this method was used to obtain the Monte Carlo
results.

(iv) Since o is strictly positive, Assumption A.1 given in Appendix A is satisfied for the MEJD
process X, and Xr, ., n € N, g > 0, has a density by Lemma A.2.

From the definition of the MEJD process X it is straightforward to verify that the character-
istic exponent W (s) = — log E[e**X] is a rational function of the form

Z P

i=1 i j=

o252
W(s) = ——1us+ —_ —A(Zp, - 1) s eR.

2 a +1s

The distributions of X, the running supremum X, and the running infimum X at the random
time I'y 4 and also the functions Dy 4 and 1,4 can be expressed, as we shall see below, in
terms of the roots {p,j’,k =1,...,m" + 1} and {o, .,k =1,...,m™ + 1} with positive and
negative real parts of the Cramér-Lundberg equation

g+ VY (—is) =0, q > 0. 2.1

For the MEJD X the Wiener—Hopf factors \11; and W, can be identified explicitly. It is well
known that \ll; (6) and W, (6) have neither Os nor poles on the half-planes {Im(z) > 0} and
{Im(z) < 0}, respectively, as a consequence of the fact that \IJ;” and W~ are the characteristic
functions of infinitely divisible distributions supported on the positive and negative half-lines
respectively; see [39, Chapter 9]. In particular, using the fact that \IJ“I“ (6) and W, (8) satisfy
q/(g + ¥(@©)) = \ll; (0)\114‘ ©) for 6 € R, the Wiener-Hopf factors of an MEJD can be
identified as certain rational functions; see [34].

Lemma 2.1. Let g > 0 be given. The functions lll; and W " are given explicitly by

mt . mt+1 . —1
+ o —_IS_ _ 15
vo=I1(1-5) TH(1-575)

i=1 i i=1

W (s) = ﬁ(l + —”:) mﬁl(l _ s >—1.
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The fact that the Wiener—Hopf factors \II+ and W~ are rational functions implies that, when
the roots of the Cramér-Lundberg equatlon are dlstlnct the running supremum X r,, and
infimum Xr, of X at 'y 4, where X, = sup;, X5 and X, := inf;<, X; denote the running
supremum and infimum of X at ¢ € R4, also follow mlxed-exponentlal distributions.

Lemma 2.2. Let g > 0 be given and suppose that the roots of (2.1) are distinct. The random
variables Xr, . Xr and X Tig have mixed-exponential distributions with densities u) 4,
Uy 4> and uy g given by

m¥+1 . m~+1 _
Hg@ = ) AT @ @e™ D w @ =) A7 (@)(-p; (@)e’ V7,
i=1 j=1
m*+1 . m~+1 _
()= Y Bi@e ™ D 1oy (x) + Y Ci(@e i D 1 o0 0)(x)
i=l1 j=1

forzeRyandx e Rwith, fori =1,....mY+landj=1,...,m™ +1,

M- @) o T+ @)
[ewei 1 = 07 (@) /0 (@) PR Mg j (L= 7 @/ 0 (@)
Bi(q) := Af (@), (pf(q))p, @,  Cj@ = A7 (@Y (o] @) (=p; (@),

Al @) =

where we define AE = 1 in the m* = 0 case (i.e. if there are no positive/negative jumps).
k p 8 D

Proof. It is straightforward to verify that the coefficients of the function (1 — is/p; @) !
in the partial-fraction decompositions of the functions q/(g + ¥(s)) and \Il+(s) are glven by
Ci(q) and A+(q), respectively, while the coefficients of the function (1 — 1s/ pj (q))‘ in the
partial-fraction decompositions of the functions g /(g + W (s)) and Wy (s) are glven by Bj(q)
and A7 ' (q), respectlvely Subsequently inverting the Fourier transforms 1-—1is/ p+(q))‘ and
(1—is/p; ; ~(g))~! yields the stated expressions for the densities of X Mg —X Xr, and Xr, .

The functions 2, 4 and D, 4 and the density u, 4 can be explicitly identified by combining
the forms of the functions 2; 4, and D, 4 (identified below) with the recursive relations in (1.2)
and (1.3). From the form of these recursive relations it follows that the functions Q, 4, Dy 4,
and u, 4 can be expressed as linear combinations of exponentials with the weights given by
certain polynomials—the exphc1t expressions are given in the followmg result.

Consider the polynomials Pk ino Pli’ x.n» and real numbers & C; j » defined by

X
+ —pi y—p; (x~ —pfx p+ o xot
fo P (e YA O dy = AR, () = AT,

0 - -~ _
/ Pk_,n (y)e_pk Yooy dy =e ka,i,n (x) — e xck,i,n’
x

mt+1
+
[ e a2y D@ = Y B e,
0
k=1

m~+1

/ p] (x— Z)u (Z)dz_ Z ljkn(x)e_pk—x9
0
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where we denoted ,o,'l" = p,"l" (¢9) and p, = p, (q), and Pk":n and Py, are the polynomials to
be defined shortly. The fact that there exist polynomials and constants satisfying the above
relations follows by repeated integration by parts. By induction the following expressions for
the functions up g, Dy 4, and 2, 4 can be derived.

Proposition 2.1. For any n € N U {0}, we have

mt+1 . m~+1
Untrg()) = D P (e T 10,00 () + Y Py (07 1o00)(x),
k=1 k=1
m¥+1m™+1

—p7 (y=2)—p;
Dat1,g@ ¥) = tni1g = Y D Pijnti(z, y)e OmAA L 2y,
i=1 j=1

n+1
1.0 ) =7 “upia 4 (Durg(y — 2),
k=1
forx,y € R, and z € Ry with, as before, p; = pr;(q) and pi+ = ;o,.+ (q), and with Pk"_" | =
Bi(q), Py, = Ci(q) and Pij1 = Eij(@)/(p; — p) == AT (@ AT (@0 (@)r; @)/ (0] -
pi+ ), and where Pkﬂ,:n 41 and P; j ny) are polynomials and c,:f’i, n are real numbers that are defined
recursively forn € N as
m~+1 o
P (x) = Z (c,(q) /0 elPr A )ZP,:'”(x +27)dz + Bk(q)ck_’r’n)
r=1
mt+1 _
+ ) B(g)(P}, () =Ch ).

r=1

mt+1 0 _
Prn® =Y (Br@ e POPL (x + 2) dz+ck<q>c;:.,.n)

r=1 —00
m~+1 -
+ ) Cr@(Pg,,x) =T ),
r=1

0 m*+1

+ ~
Pijns1(x,y) = _[ Pijn(x —z,y —2)e” *ui(z) dz + Z Plinx )
k=1

—00
m~+1 o]
- Z I';,-,‘k_jv,,(y - x)+ Bi(Q)/(; P (y—x— 2)el?i =0 g
k=1
Eij(q) [
p; —p o
mt+1m 41 Ek,l(q) 0

B Z Z — ¥ Pijn(=2,y —x — 2)eli TP 2 4y,

—
k=1 I=1 pl —pk —0

+ Un,g (2)efi P dz

0 00

— +_ - _ - _ At

Corn = / PP () dz, o, = f e =P2pY (2)dz.
—00 0
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Proof. By combining the identity
P[Xr,, € dx,x — Xr,, €dz] = P[Xr,, € dx]P[~X, €dz],  x,z€Ry

(which follows from the Wiener—Hopf factorisation of X) with Lemma 2.2 and performing
a one-dimensional integration, we obtain the expression for the function Dy 4. The Markov
property and stationarity of increments yields 2, ,4(x, y) = q“ul,q (y — x) uy,4(x), whence
we have the form of the function 2; 4 by inserting the expression for 4 in Lemma 2.2. The
expressions for 11,4, Dn+1,4, and 2,41, 4 follow by induction with respect to n, utilising

(i) the fact that u, 4 is equal to the convolution of Unq and ug 4, as a consequence of the
independence and stationarity of the increments of X,

(ii) the form of D 4 and the recursive relation in (1.2), and

(iii) the form of 2 4 and the recursive relation in (1.3).

3. Convergence and error estimates

The randomisation method consists of approximating the value f(¢) of a function f at time
t > 0 by the expectation E[ f(I'n,»/;)] of f evaluated at a random time I'y ,,; that follows
a gamma distribution with expectation E[T' ;] = ¢ and variance E[(T's n/r — 1% = t2/ n.
Since the random variables 'y n/; converge in distribution to ¢ as n tends to oo, the error
E[f (Tn,n/)]1 — f(¢) converges to O for any bounded and continuous function f. The error can
be expanded in terms of powers of 1/n provided that f is sufficiently smooth, as shown in the
following result.

Theorem 3.1. Let k be a given nonnegative integer and consider f € C**t2(R,.). There exist
Sfunctions by, ..., bry1: Ry — R such that for any t € R4, we have

k m
1
nt! []E[f(rn,n/t)] - f@- z bm(‘)(;) ] =bry1(t) +o(l) asn—>o0.  (3.1)

m=1

In particular, denoting by f™ the mth derivative of f, we have
1? 4 13
b =220, bO=2f0+37%0,
16 r 4
b0) = OO+ 2P0+ %0

Remark 3.1. (i) Theorem 3.1 implies that for f € C%(R..) the error of the approximation of
@) by E[f(Tn,n/e)] decays linearly, that is, E[ f(Tn,n/1)] — f(t) = bi1(t)/n + 0o(1/n) as n
tends to oo.

(ii) Theorem 3.1 also provides a justification for the use of the Richardson extrapolation to
increase the speed of convergence if the function f is sufficiently smooth. Since the error of the
approximation is given in terms of positive integer powers of 1/n, the Richardson extrapolation
that utilises the first N values E[ f(I"1,1/,)], ..., E[f(I'n,n/:)] is explicitly given by

N

(—I)N_kkN
Py =) v —Tor B Tk (3.2)
il !
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see [35, Section 1.3] for a derivation of this formula. In particular, note that in order to deploy
the extrapolation (3.2) it suffices to know the existence of functions b,, such that (3.1) holds and
it is not required to find their explicit form. In the f € C**2(R,), k < N case Theorem 3.1
implies that the error Pj.y — f(t) of the interpolation Py.y is o(N ~*~1). In particular, if f
is C then the error P;.y — f(t) is O(N~k=1y for every k, as N tends to co. See [40] for
background on the theory of extrapolation and interpolation.

Proof of Theorem 3.1. To the best of the authors’ knowledge a proof of this result does
not exist in the literature; here we provide a brief proof. Taylor’s theorem and the fact that
f € C*+2 imply

2k+1 (s —
fO-f0 =3 C= pmgy 1 RGs, ),
m=1
where the remainder term is given by R(s, 1) = ((s — 1)2%*2/(2k + 2)!) f @k+2) (¢) for some &
between s and ¢. Replacing s by the independent gamma random variable I', /;, we obtain

2k+1

ELf (Tnnye) = FO) = Y 222 £ () + E[RTpnyr, )]

m=2

withap n = E[(["s,n/: —t)™], where we have ay,, = 0 as the expectation E[T',, ,,;;] is equal to 7.
The numbers a,, , are equal to a,, , = (d™/du™)|,=oM (), where M denotes the moment-
generating function of the random variable I'y, ,/; — ¢ which is given by

M@) = (1 - ”7’)_ expl—ut),  u<

~ | X

In particular, it follows from the form of M that the a,, , are linear combinations of positive
integer powers of 1/n. Reordering of terms and straightforward manipulations result in the
identity in (3.1).

‘We next turn to the problem of approximation of the distribution of the supremum and the
expected occupation time of the set (—oo, x] of the Lévy bridge process X @0~ from (0, 0)
to (¢, y) (its definition is given in Appendix A):

0,00 ( - !
d,(x y) = IP(X( )—(2,5) <x), w(x,y) = E[/ l‘x'(‘O.O)a(l,y)Sx] du],
with X(O ,0)— (1, y)
the corresBondmg quantmes in the case of a general starting point (s, z) are given in terms of d
and @ by d;—s(x — z, y — z) and &;—s(x — z, y — z). The approximations of d and & are given
in terms of the randomised bridge process X (0 0)>Tng.) (see Appendix A) as

= SUPy¢(0,1] Xu 0.0~ By the spatial and temporal homogeneity of X,

r
(0 0)—(Tp ) 2 4
D(n) (x,y) :=PX ¥ x), Q‘(In)(x, y) = ]E[/(; l{X,(‘O‘O)_'(r"“”y)sx} du].

Error estimates for these randomised bridge approximations are given as follows.

Corollary 3.1. Let x, y € Rand t > 0. For some constants C¢ and C®, we have, for all
positive integers n,

[

~ 5 c? n . C
IDyix,3) = diGe )l < =, 197, = Brlx, )l < —. (33)
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Proof. Since the distribution of X, has a continuous density p,;(y) and s +— Js(x, ¥),
s wg(x,y),and s — pg(y) are CZats =t with p;(y) > 0, the estimates in (3.3) follow by
applying Theorem 3.1 to the functions t > d;(x, y) p:(¥), t > @ (x, Y)p:(y), and t > p;(y).

4. Illustration: first-passage time probabilities and occupation times

To provide a numerical illustration of the randomisation method, we implemented the
recursive formulae (given in Proposition 2.1) to approximate the following expectations of
path-dependent functionals:

t
0,x)—(t,y)
]P( sup X( SZ), ]E[/ 1, 0x0-0y du],

wel0.] o (Xu €(a,b))

where z = 1.2, a = 1.05, b = 1.25, witht = 1, x = 1, y = 1.1, for the case that the
underlying Lévy process X is equal to a HEJD process with typical parameters, which are
detailed in Table 1; see [41, Chapter 3] for additional numerical examples. The outcomes are
reported in Table 2 and Figure 1. In Table 2 the values are listed of the first-passage time
probabilities and the expected occupation times of the randomised Lévy bridges corresponding
to a I'(n, n)-randomisation of the fixed time " = 1 for a number of values of n. We also report
the results obtained by applying a Richardson extrapolation P;., of order n, using the first n
outcomes (defined in (3.2)). The logarithms of the corresponding absolute errors are plotted
in Figure 1. The errors were computed with respect to the value Pj.;; that was obtained after
Richardson’s extrapolation with n = 11 stages.

5 5
5 5
8 8
=2 =
2 g
£ £
kS| bS]
g g
5 =
g g
& &
- .}
_18 T T T T T 1 —18 T T T ! T 1
00 05 10 15 20 25 30 00 05 10 15 20 25 30
Log(n) Log(n)
(@ (b)
lu Recursive ¢ Extrapolated —— OLS Recursive - OLS Extrapolated

FIGURE 1: The logarithms of the absolute errors of the outcomes generated by the recursive algorithm
for (a) the one-sided first-passage probabilities and (b) the expected occupation time under the HEID
processes as a function of n, where n is the number of steps in the recursions. In each figure the errors
of the recursive values and the Richardson extrapolated values are displayed. Also OLS estimations of
either series of results are plotted (in the case of the unextrapolated values the OLS line was estimated
using the last six values only). The slopes of the solid lines in (a) and (b) are given by —0.98 and —0.99,
respectively. The starting point of the bridge is 1.0, the end point is 1.1, the barrier level is 1.2, and the
range is (1.05, 1.25). In all cases the Lévy bridge process is assumed to start at time 0 and to end at time 1.
The model parameters that were used are given in Table 1.
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TaBLE 1: The model parameters used throughout the paper. The parameters for the Kou model are taken
from [29], the parameters for the HEJD model from [24], and the parameters for the MEJD model from
[12] (which for the latter two models have been reexpressed using our notation).

KOU HEID
o 0.2 0.042
A 3.0 11.5
at 500 (5, 10, 15, 25, 30, 60, 80)
a” 250 (5, 10, 15, 25, 30, 60, 80)
pt 0.3 (0.05,0.05,0.1,0.6,1.2,1.9,6.1) x0.51/x
P~ 0.7 (0.5,0.3,1.1,0.8, 1, 4,2.3) x 0.64/A
MEID
o 0.2 0.2
A 3.0 1.0

at 500 (213.0215,236.0406, 237.1139, 939.7441, 939.8021)

a” 250 (213.0215, 236.0406, 237.1139, 939.7441, 939.8021)
pt 0.3 (4.36515, 1.0833, -5, 0.0311, 0.02045)
P~ 0.7 (4.36515, 1.0833, -5, 0.0311, 0.02045)

TABLE 2: Approximations of one-sided first-passage time (FPT) probabilities and expected occupation

times obtained recursively (P, ) and with Richardson extrapolation ( Py.,,) for the HEJD model as a function

of n, where n is the number of recursions. The starting point of the bridge is assumed to be 1.0, the end

point is 1.1, the barrier level is 1.2, and the range is (1.05, 1.25). In all cases the Lévy bridge is assumed
to start at time 0 and to end at time 1 with parameters as given in Table 1.

FPT probability Expected occupation time
P,HEID P;,HEID P,HEID Py, HEID

0.3006853 0.3006853 0.3680801 0.368080 1
03617512 0.4228170 0.4142655 0.4604509
0.3911554 0.4635372 04322124 0.4719338
0.4084846 0.4734619 0.4415893 0.4711338
0.4198448 04735378 0.4473202 0.4707490
0.4278257 0.4720958 04511786 0.4708328
04337174 04713210 0.4539517 04708704
04382332 04711443 04560403 0.4708630
0.4417979 04711707 0.4576699 0.4708578
0.4446794 0.4712065 04589767 04708575
0.4470546 04712177 04600480 0.4708575

B

— = 0 00 IO\ W B WN

—_— O

Empirically, we observe that the rate of decay of the error of the unextrapolated outcomes to
be (approximately) linear for both different functionals, in line with the theoretical error bound
given in Corollary 3.1. Indeed, the ordinary least squares (OLS) regression lines (dotted) in
the log-log plots had slopes equal to —0.94 (—0.98) and —0.98 (—0.99) in the case of the
first-passage probabilities (and expected occupation times) of the Lévy bridges corresponding
to the HEJD model. Moreover, in line with the theoretical error estimates given in Theorem 3.1,
we observe that the application of the Richardson extrapolation leads to a significantly faster
decay of the error. By comparing the error plots of the expectations of the two path-dependent
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functionals we note that the logarithmic errors for the expected occupation times (for a given n)
are consistently and significantly the smaller of the two, suggesting that the randomisation
method converges faster in this case. This feature is likely to be related to the higher degree
of smoothness in the case of the expected occupation time. Finally, we mention that we
computed the roots of the Cramér-Lundberg equation featuring in the solutions D, , and 2, 4
by deploying the Newton—Raphson method.

Remark 4.1. (i) We investigated the round-off error resulting from the computation of the
roots based on single precision arithmetic, and found that in that case the computed roots were
accurate up to an error of 1.0 x e~11,

(i) In order to efficiently approximate the first-passage time probability and the expected
occupation time of the Lévy bridge process, one could combine the procedure described in
this section with interpolation. One would then compute these quantities for a grid of points
and subsequently construct functions on the real line R by using (linear) interpolation.

5. Illustration: option valuation using the bridge sampling method

By way of illustration, we present next the numerical results that were obtained by valuing
an up-and-in barrier option and a range note under a number of models by using a Markov
bridge algorithm described in Algorithm 5.1 below (the recursive method for approximation of
first-passage time probabilities and expected occupation times from Section 4 is applied).

We assume that the stock price process S = {S;, t € R} evolves according to a Bates-type
stochastic volatility model with mixed-exponential jumps. The process S is thus specified by
the exponential model S; = exp(Y;}, ¢t € R, where the log-price process Y = {¥;,t € R, }

satisfies the SDE
Z
dY; = (u— 7’) dt + /|Z;|dB; +dJ;, Yo =x, 5.1)
dZ, =«(6 — Z;)dt + &/|Z,| dW,, teRy, Zp=v, 5.2)

where x and v are strictly positive, (B, W) is a two-dimensional Brownian motion with
correlation parameter o, and J; is an independent compound Poisson process with intensity A
and jump sizes distributed according to a mixed-exponential distribution F with mean m. The
parameters «, §, and £ of the model are positive and represent the speed of mean-reversion
of the volatility, the long-term volatility level and the volatility of the volatility parameter.
The parameter p is set equal to 4 = r — g — Am which ensures that the moment condition
Elexp{Y:}] = exp{(r — q)t + Yo} is satisfied for all nonnegative ¢, where the constants r and g
are nonnegative constants representing the risk-free rate of return and the dividend yield. Under
this moment condition it holds that the process {e~" 9§, t € R, } is a martingale. Note that
choosing « and £ equal to 0 yields the MEJD process.

By way of example we consider an up-and-in call (UIC) option and a range note (RN). By
arbitrage pricing theory, the UIC option and the RN have values at time 0 given by

UIC(K, H) = Ele™"" (St — K)" Lsupy_, .1 5,5 )],

7C (T
RN(ay, ap) =1E[e rT;/ﬂ L <5, <ay) du],

where K is the strike price, H is the barrier level, C is the nominal, and a; and a; are the lower
and upper bound of the range, respectively.
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5.1. Markov bridge sampling method

The first step is to approximate the log-price process Y by a process that has piecewise
constant drift and volatility deploying the EM approximation of the process (Y, Z) on the
equidistant partition Ty, which can be expressed as

!

z
Y, =Y, + (u - 2’">A,, + J1Z; AW, + ATy, Yg=1x, (5.3)

Z;”l = Z;n + k(- Z’,")A,l +£&,/1Z; |ABy, Zy=v, 54)
for n € N\{0}, with AW, = W,,,, — W,,, AB, = By,,, — By,, AJy = Jy,,, — Jy,, and
A, = tyy1 — T, = T/N; see [23] and [27] for results on strong and weak-convergence
of this scheme. The Markov bridge-sampling method is based on the continuous-time EM
approximation Y” leaving the (piecewise constant) approximation (Z; )nen for Z given in (5.4)
unchanged. We arrive at the approximation

Z ’ !
Y, =Y, + (u - 2’")(; )+ IZ W = W)+ (=), Z=Z,, (5.5)

for t € [z, Th4+1]. Observe that with this choice of interpolation it holds that, conditional on
the values of the random variable Z;n , the process {Y,'_,n, t € [Tn, Th+1]} is a Lévy process for
eachn =0, ..., N — 1. The bridge sampling algorithm is summarised as follows.

Algorithm 5.1. Bridge sampling algorithm for approximating E[F(T, Y, Z)].
0. Fix M, N e N sufficiently large.
1. Sample M i.i.d. copies £, ..., €M) from the law of (Y. , Z!

L Zh YL 2L,
2. Evaluate the estimator (1/M) Y"M | F(M (£®) with

ﬁ(N)(yO,ZO"..’yN’ZN)
= ]E[F(T, Y/’ Z’) | Y';O = Yo, Z‘lto =2Z0,..-, Y;N = yN’Z/tN = zn].

Remark 5.1. The choice of N = 1 in the above algorithm corresponds to the case of a single
large step bridge sampling, which is the version of the algorithm that was implemented to
produce the results reported in Section 4.

Next we focus on the application of the bridge sampling method to the approximation of the
expectation of two path-dependent functionals that are given in terms of the running maximum
and the occupation time of Y as

Fs(T,Y,Z):=g(YT) l{7rsa}’ a>0

with Yr = sup{Ys:s <t}

T
Fo(T,Y,Z2) = / g(Ys)ds
0

for some function g: R4 — R. The functionals Fg and Fp admit the following multiplicative
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and additive decompositions into parts that only involve the processes Y~/ := (Y1, _,,t €
[0, T — fi—l]} fori = 1, ...,N:

N

Fs(T.Y,2) =g(D [ FP,2),  FP(,2) = Lupg, . ¥eals
i=1
N

. . Ti
Fo(T.Y,Z)=Y FQ(.2), FQ¥.2)= ] g(¥s)ds.
i=1 Ti-1

These decompositions in turn imply that the conditional expectations

~(N
Fs( )90, 20, - - YN ZN)

=E[Fs(T. Y, Z') | Yy = y0. Zyy = 20, .-, Yy, = YN, Zy,, = 2N],
F 50,20, -, yw. 2w)

:=E[Fo(T,Y’, Z/)IYT'0 = yo, Z;o =20,.., Y;N = yN, Z;N = zn]
can be expressed in terms of Lévy bridge processes, as shown next.

Proposition 5.1. For any N € N the following decompositions hold true:

N
FM (o, 20), -, s 2n)) = 8w [T FS et i 2,
i=1

N
FS (30,200, ... Owsaw)) = Y FS et yi, 2ic),

i=1
where the functions x +— fg)(x, y,2) and x —> Fg)(x, ¥, 2) are given by

A
=0 B A,y),i
Lo @i ) FS’(x,y,z)=1E[f0 gL ”')ds]

with A = T/N, where LX)~ A9\ denotes the Lévy bridge process from (0, x) to (A, y)
with underlying Lévy process LY that is equal in law to Y~V conditional on Zy_, =zand
Y, =x.

0] -
Fs Gy, =Ell g,

Proof. The decompositions hold true as a consequence of the harness property of a Lévy
process, the definition of a Lévy bridge, and the fact that a Lévy process is temporally homo-
geneous.

5.2. Bates-type stochastic volatility model with jumps

By approximating the log-price process Y of the Bates-type model by the EM scheme in
(5.3)—5.5), and computing first-passage time probabilities and expected occupation times of the
process Y’ as before using the recursive algorithm (as in Section 4), we obtained the approximate
values of an up-and-in call option and a range note under the Heston model and Bates-type
models with double-exponential and hyper exponential jumps. We ran Algorithm 5.1 with 10
million paths (M = 107) on a uniform grid Y with N = 2! steps. forz =0,1,...,10. We used
the recursions with n = 7 steps and approximated the functions F¢ S (x y, 2) by evaluatmg these
on a grid of points and using (trilinear) interpolation to obtain approximations of the values of
the function outside the grid. By way of comparison, we also report the results obtained by
a standard (discrete-time) EM approximation with 10 million paths and a varying number of
(equidistant) time-steps.
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TABLE 3: Model parameters of the generalised Bates-type model. The maturity, strike, barrier and spot
levels, range of the up-and-in call option, and range note to be used in Figure 2 and Table 4 (with jump
parameters as given in Table 1).

K ) 3 ye) Vo K H (ay,az) So r d T
1.00 0.10 020 -0.50 0.07 100 120 (1.15,1.35) 100 0.05 0.00 1.00

o
<

8
8 g
8 g

*D
[c o3

Logarithm of absolute error
I
w
.
*m
L}
@
Logarithm of absolute error
I
oo
e
<

L
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7
Log(N) Log(N)

(a) Up-and-in call option (b) Range note

o Discrete Heston o Discrete Bates (KOU) ¢ Discrete Bates (HEJD)
= Continuous Heston e Continuous Bates (KOU) & Continouos Bates (HEJD)

FIGURE 2: The absolute error of the values of an up-and-in call option and range note under the Heston
and Bates-type models plotted on a log-log scale against the number of time-steps N. Parameters are as
given in Tables 1 and 3.

For the results shown in Figure 2 we take the value corresponding to N = 1024 as true
value and compute the logarithm of the absolute errors for all other outcomes with respect to
this value. In order to estimate the rates of decay of the error we added OLS regression lines to
the figures. The slopes of the OLS lines for the Heston model and the Bates-type model with
double-exponential and hyper-exponential jumps that we found are —1.03, —1.02, and —1.04
in the case of the up-and-in call option and —1.36, —0.96, and —1.02, in the case of the range
note, which suggests a rate of decay of the error that is linear in the reciprocal of the number
of steps.

By way of comparison we also implemented the standard (discrete-time) EM scheme for
each of the three models and found the corresponding three slopes of the OLS lines to be equal
to —0.48 in the case of the values of the up-and-in call options and to —1.00 in the case of values
of the range notes. These results suggest that, in the case of an UIC option, only a square-root
rate holds for the decay of the error as function of the reciprocal of the number of time-steps
rather than a linear rate, which is in line with the well-known fact that the strong order of the
discrete-time EM scheme is 0.5, and that, furthermore, for killed diffusion models the weak
error of the discrete-time EM scheme has been shown to be bounded by a constant times N ~1/2
in the number of time-steps N under suitable regularity assumptions on the coefficients and the
payoff; see [21, Theorems 2.3 and 2.4].
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Appendix A. Recursions for maxima and occupation times of Lévy bridges

Let X = {X;,t € R;} be a Lévy process (a stochastic process with stationary and
independent increments and right-continuous paths with left limits such that X¢ = 0) that is
defined on some filtered probability space (2, ¥, F, P), where F = {%;,t € R} denotes the
completed right-continuous filtration generated by X. See [31] and [39] for general treatments
of the theory of Lévy processes. To avoid degeneracies we exclude in the sequel the case
that | X| is a subordinator. The bridge method under consideration involves randomised bridge
processes that can be informally described as processes that are equal in law to X conditioned
to take a given value at certain independent random times.

Formally, such a process can be constructed by invoking general results on the existence of
conditional distributions and disintegration; see [25, Theorems 6.3 and 6.4]. More specifically,
letthe triplet (X, 11, 72) of the Lévy process X and independent random times 7}, t; with 7} < 13
be defined on the Borel space D x U that is the product of the Skorokhod space D of RCLL
(right continuous with left limits) functions and the space U = ]Rﬁ_. Then, by disintegration,
we obtain a family of conditional laws conditional on different values of (91, n2) := (X¢,, X1,)
that may be used to define the randomised bridge process with starting point (t;, y;) and end
point (72, y2) by {X(s+1)ar, § € Ry} for almost all realisations (y1, y2) of (n1, 72).

Under regularity assumptions on the Lévy process X and for specific choices of the random
times the construction in the previous paragraph may be extended to all realisations of (71, 172),
drawing onresults in [ 14] where weak-continuity results and pathwise constructions of a Markov
bridges have been recently provided (see also [42] for the case of Lévy processes conditioned
to stay positive).

Assumption A.1. The Lévy process X satisfies the integrability condition

/ o _
Ry O]

where WV is the characteristic exponent of X, which is the function ¥ : R — C that satisfies the
identity E[exp(i0 X;)] = exp(—tW(0)) forall® €e Randt € R,.

As random times we consider gamma random variables 'y 4, n € N, ¢ > 0, with mean n/q
and variance n/q? that are independent of X. We suppose that the pair (X, 'y 4) is defined
on the product space (2 x Ry, ¥ ® B(R4), P x P). To simplify notation we use in the
sequel IP to denote the product-measure P x P. It follows from Sato [39, Proposition 28.1] that
under Assumption A.1 the distributions under IP of both X, , and X;, ¢ > 0, admit continuous
densities.

Lemma A.1. Let Assumption A.1 hold. (i) Then for any q > 0 and n € N the random variable
Xr,, has a continuous and bounded density uy 4.

(i1) X; has a bounded density p(t, x) that is continuous in (¢, x) € (0, 00) x R.

Under Assumption A.1 we may define the randomised Lévy bridge process starting at
(0, x) and pinned down at (I'y 4, y) for any x,y € R. We recall first from [14, Theo-
rem 1] that, under Assumption A.1 and for any + > 0 and x,y € R such that p(z,y —
x) > 0, there exists a Markov process on the probability space (2, ¥, P), denoted by
XO0=ty) = (x00=E) €10, 1)), that starts at time 0 at x almost surely is equal to y
at time ¢ almost surely and satisfies the disintegration property. The process X ©-¥)~>®y) =
(xOO=>E e 10, 1]) is referred to as the Lévy bridge process from (0, 0) to (z, y).
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We next specify the definition of a Lévy bridge process pinned down at a gamma random
time and a given fixed end point. For any a1r x(,ry € R with u, 4(y — x) > 0, the randomised

Lévybridge process X 0)~> Tng:y) = ,t € Ry} startmg from (0, x) and pinned
down at (T g, y) is the stochastic process with sample paths t > X, A’s“ 2O ()5 Ty @)

for given realisations (w, y) in the sample space Q x R... The process X @)~ Tng:¥) satisfies
the disintegration property (which can be shown by a similar line of reasoning as was given
in the proof of [14, Theorem 1]), and is, hence, equal in law to the corresponding process
obtained by the construction descnbed m the second Paragraph of this section. The derivation
of the expressions for the functions D (x y) and Q (x, y) is based in part on the following
auxiliary result concerning the dlfferentlablllty of two related functions under Assumption A.1
(the proof of which is omitted as it follows by standard arguments).

Lemma A.2. Let Assumption A.1 hold and let q be any strictly positive number.

(i) For any fixed x € Ry, the function y +—> ]P’(Yr[‘q < x,Xr,, < y) is continuously
differentiable on R and its derivative y +— D) 4(x, y) is bounded.

(i1) The map (x,y) — E[ fo 1ix,<x) du 1{x.~ q<y}] is continuously differentiable with
respect to x and y in R. The mixed derzvatzve with respect to x and y is given by
Qiq(x, y) forx,y € R.

The functions D; 4 and 2 , admit semianalytical expressions, which can be derived using
the Markov property and the Wiener—Hopf factorisation of X. We recall (see, for example, [7,
Chapter VI]) that the probabilistic form of the Wiener—Hopf factorisation of X states that

(a) the running supremum Yr,‘ . and the drawdown Yr,_ _— Xr,, . of X at the random time
I'1,4 are independent, and

(b) the drawdown Yr,' , — X, has the same law as the negative of the running infimum
-X Fig:

The probabilistic form of the Wiener—Hopf factorisation implies that the characteristic function
of the random variable X, , is equal to the product of the characteristic functions \Il; and W -

Offrl,,, and Xr, ,

V. (6) = Elexp(i6Xr,,)], W, (6) = Elexp(i6Xr, )]

In the following result we establish that the functions D, 4, 2, 4 are well defined and satisfy
(1.2) and (1.3).

Theorem A.1. Let q > 0, n € N, and let Assumption A.1 hold.

(i) For any x € Ry, the function y — ]P’(an‘q < x,Xr,, =< y) admits a continuous
bounded density denoted by Dy 4, and

Tng
(x,y) IE[ /0 1ix,<x} du I{Xrn,qSy}]

is continuously differentiable on R* with bounded mixed-derivative denoted by Qp q.

(i) The functions Dy 4 and Q, 4 satisfy (1.2) and (1.3).
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Remark A.1. Since the pinned process X 0~ Tnq:») s equal in law to the process X ne =
{X,,uel0,T, q]} stopped at the random time I",, ; and conditioned on {Xt,, = y}, it follows
that the functions D (SZ ) are equal to the ratio of Dy, , (25,4, respectively) and uy 4, that
is, for x € R4 andy e R,

- d -
Dng(x,y) = D (x, ung (), Qnglx,y) = QP (x, Ytn,g (-

Proof of Theorem A.1. (i) Several applications of the strong Markov property of X and the
lack of memory property of the exponential distribution yield

P[Xr,, < x, Xr,, €dy]
=Pt} > Tnyq, Xr,, € dy]

n
=P[Xr,, €dy] = ) P[Tk-14 <ty < Tkyg. Xr,, € dy]
k=1
= P[Xr,, € dy]

n
- Z/R E[I{rk——l,qft;'<rk.q] l[X(;edz]]]P’[z + Xryjar, € Y]
-+

with T, := 0. The Fourier transform Fr.(s), s € Ry, of the measure r;'? given by
r'?(dy) :==P[Xr,, < x, Xr,, € dy] can be expressed as

n
Elexp{isXr, ,}1 — Z Elexp{isXr,_,,, .} IE[exp{is X +} llrk——l,q <o} <Fk,ql]‘
k=1

Since the second factors in the sum in the previous display are bounded by 1 and

. q "
Elexp(i0Xr, )] = (q 2 (9)) ,
we have |Fry(s)| < Y ry [ q*lg + W(s)|*ds for any x € Ry, g > O and n € N, which
is finite by Assumption A.1 and the bound |q/(g + ¥ (s))| < 1 that holds for all s € R. We
conclude that, for any x € R, the measure ;"7 (dy) admits a continuous bounded density (by
(39, Proposition 28.1]).

We show the required differentiability of E[ fo " 1x,<x) duly Xr, , <y}] by induction with
respect to n. Noting that the n = 1 case follows from Lemma A. 2(11), we next turn to the
induction step. Assume thus that the assertion is valid for given n € N. By an application of
the Markov property, we have

t+u t
]E[/ 1(x,<x} ds l{X,+uedb)] =/ ]E[] 1ix,<x} ds l{X,edw]}P[w‘i‘Xu € db]
0 wekR 0

u
+/ E[/ Ywix,<xy ds 1{w+Xu€db}:|IP[Xt € dw]
weR 0
A1)

for any real x. Replacing 7 and u in (A.1) by the independent random times I"y 4 and I",—1 4,
using the fact that their sum is equal in distribution to I', ;, and that the random variables
Xr,, and Xr, , have continuous densities u, 4 and uy 4 (by Lemma A.2), it follows from the
induction assumption that the assertion holds for n 4 1. It follows thus by induction that we
have the required differentiability for all n € N.
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(ii) Since we may write

7,=max[Xs+ sup (Xu+s—Xs),Y3] for any s, t

O<u<t—s

with 0 < s < t, it follows as a consequence of the stationarity and independence of increments
of X, and the fact that a I', ; random variable is equal in distribution to the sum of independent
[n-1,4 and ' 4, random variables, that we have

H’(anvq <x,Xr,, €dw)
= P(max{Xr,, + Xr,_, , Xr,,} <%, Xr,, + Xp,_, €dw)

= / ]P’(er <x,Xr,, €dz)P(z + an_,,q <x,z+Xr,,, €dw),
(—00,x]

where the random variables Y;-n_l'q and X
the Lévy process X is spatially homogeneous.'

The recursion follows from (A.1) replacing as before ¢ and u by the independent random
times I'y 4 and "', 4 and using the fact that their sum is equal in distribution to a I', ; random
variable.

. are independent of X. We arrive at (1.2) since
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